首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A split-stream flow-injection analysis system is described for simultaneous determination of glucose and L-glutamine in serum-free hybridoma bioprocesses media. Amperometric measurement of glucose is based on anodic oxidation of hydrogen peroxide produced by immobilized glucose oxidase within a triple layer membrane of an integrated flow-through glucose-selective biosensor. Determination of L-glutamine is based on quantitating ammonium ions produced in a flow-through enzymes reactor containing immobilized glutaminase enzyme, and subsequent downstream potentiometric detection of these ions by a nonacting-based ion-selective polymer membrane electrode. Endogenous potassium and ammonium ion interference in the L-glutamine determination are eliminated by using a novel in-line tubular cation-exchange membrane unit to exchange these interferent species for cations undetectable by the membrane electrode. The first generation split-steam flow-injections system can assay 12 samples/h using direct injections of 50 muL of media samples, with linear responses to glucose in the range of 0.03 to 30mM, and log-linear response to L-glutamine from 0.1 to 10 mM. (c) 1993 Wiley & Sons, Inc.  相似文献   

2.
This report describes technical improvements to the manufacture of a carbon fibre electrode for the stable and sensitive detection of H2O2 (detection limit at 0.5 microM). This electrode was also modified through the co-immobilisation of acetylcholinesterase (AChE) and/or choline oxidase (ChOx) in a bovine serum albumin (BSA) membrane for the development of a sensor for in vivo measurements of acetylcholine and choline. Amperometric measurements were performed using a conventional three-electrode system forming part of a flow-injection set-up at an applied potential of 800-1100 mV relative to an Ag/AgCl reference electrode. The optimised biosensor obtained was reproducible and stable, and exhibited a detection limit of 1 microM for both acetylcholine and choline. However, due to the high operating potential used, the biosensor was prone to substantial interference from other electroactive compounds, such as ascorbic acid. Therefore, in a further step, a mediated electron transfer approach was used that incorporated horseradish peroxidase into an osmium-based redox hydrogel layered onto the active surface of the electrode. Afterwards, a Nafion layer and a coating containing AChE and/or ChOx co-immobilised in a BSA membrane were successively deposited. This procedure further increased the selectivity of the biosensor, when operated in the same flow-injection system but at an applied potential of -50 mV relative to an Ag/AgCl reference electrode. The sensor exhibited good selectivity and a high sensitivity over a concentration range (0.3-100 microM) suitable for the measurement of choline and acetylcholine in vivo.  相似文献   

3.
A bienzymatic glucose biosensor was proposed for selective and sensitive detection of glucose. This mediatorless biosensor was made by simultaneous immobilization of glucose oxidase (GOD) and horseradish peroxidase (HRP) in an electropolymerized pyrrole (PPy) film on a single-wall carbon nanotubes (SWNT) coated electrode. The amperometric detection of glucose was assayed by potentiostating the bienzymatic electrode at -0.1 versus Ag/AgCl to reduce the enzymatically produced H(2)O(2) with minimal interference from the coexisting electroactive compounds. The single-wall carbon nanotubes, sandwiched between the enzyme loading polypyrrole (PPy) layer and the conducting substrate (gold electrode), could efficiently promote the direct electron transfer of HRP. Operational characteristics of the bienzymatic sensor, in terms of linear range, detection limit, sensitivity, selectivity and stability, were presented in detail.  相似文献   

4.
A potentially implantable glucose biosensor for continuous monitoring of glucose levels in diabetic patients has been developed. The glucose biosensor is based on an amperometric oxygen electrode and glucose oxidase immobilized on carbon powder held in a form of a liquid suspension. The enzyme material can be replaced (the sensor recharged) without sensor disassembly. Recharging of the biosensor is achieved by injecting fresh immobilized enzyme into the sensor using a septum. Diffusion membranes made of silastic latex-rubber coatings over a microporous polycarbonate membrane are used. Calibration curves of the amperometric signal show linearity over a wide range of glucose concentrations-up to 500 mg/dL (28 mM), covering hypoglycemic, normoglycemic, and hyperglycemic conditions. Preliminary in vitro studies of the biosensor show stable performance during several recharge cycles (of 14 days each) over a period of 4 months. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
An amperometric glucose biosensor was fabricated by the electrochemical polymerization of pyrrole onto a platinum electrode in the presence of the enzyme glucose oxidase in a KCl solution at a potential of + 0·65 V versus SCE. The enzyme was entrapped into the polypyrrole film during the electropolymerization process. Glucose responses were measured by potentio-statting the enzyme electrode at a potential of + 0·7 V versus SCE in order to oxidize the hydrogen generated by the oxidation of glucose by the enzyme in the presence of oxygen. Experiments were performed to determined the optimal conditions of the polypyrrole glucose oxidase film preparation (pyrrole and glucose oxidase concentrations in the plating solution) and the response to glucose from such electrodes was evaluated as a function of film thickness, pH and temperature. It was found that a concentration of 0·3 M pyrrole in the presence of 65 U/ml of glucose oxidase in 0·01 M KCl were the optimal parameters for the fabrication of the biosensor. The optimal response was obtained for a film thickness of 0·17 μm (75 mC/cm2) at pH 6 and at a temperature of 313 K. The temperature dependence of the amperometric response indicated an activation energy of 41 kJ/mole. The linearity of the enzyme electrode response ranged from 1·0 mM to 7·5 mM glucose and kinetic parameters determined for the optimized biosensors were 33·4 mM for the Km and 7·2 μA for the Imax. It was demonstrated that the internal diffusion of hydrogen peroxide through the polypyrrole layer to the platinum surface was the main limiting factor controlling the magnitude of the response of the biosensor to glucose. The response was directly related to the enzyme loading in the polypyrrole film. The shelf life and the operational stability of the optimized biosensor exceed 500 days and 175 assays, respectively. The substrate specificity of the entrapped glucose oxidase was not altered by the immobilization procedure.  相似文献   

6.
Glucose potentiometric biosensor was prepared by immobilizing glucose oxidase on iodide-selective electrode. The hydrogen peroxide formed after the oxidation of glucose catalysed by glucose oxidase (GOD) was oxidized by sodium molybdate (SMo) at iodide electrode in the presence of dichlorometane. The glucose concentration was calculated from the decrease of iodide concentration determined by iodide-selective sensor. The sensitivity of glucose biosensor towards iodide ions and glucose was in the concentration ranges of 1.0 × 10?1–1.0 × 10?6 M and 1.0 × 10?2?1.0 × 10?4 M, respectively. The characterization of proposed glucose biosensor and glucose assay in human serum were also investigated.  相似文献   

7.
A novel biosensor for glucose measurement using functional polymers was fabricated and tested. The biosensor utilizes the physical and chemical functions of hydrophobic polydimethyl siloxane (PDMS) and hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymerized with dodecyl methacrylate (DMA). The glucose sensor was constructed by immobilizing glucose oxidase (GOD) onto a flexible hydrogen peroxide electrode (Pt working electrode and Ag/AgCl counter/reference electrode). The electrodes were fabricated using microelectromechanical systems (MEMS) techniques onto those functional polymers. The sensor showed novel functions of flexibility and it was stretchable so that the sensor could normally work when it was released after expanding to 120% longer than that of normal length. Also, basic characteristics of the sensor were evaluated. The output current of the hydrogen peroxide electrode was linearly related to the hydrogen peroxide concentration in a range of 0.20-2.50 mmol/l, with a correlation coefficient of 0.998. GOD was then immobilized onto the surface of the sensor using MPC polymer. In this case, the current output of the glucose sensor related to the glucose level over a range of 0.06-2.00 mmol/l, with a correlation coefficient of 0.997. The calibration range includes the reported concentration of tear glucose in normal human subject (0.14 mmol/l).  相似文献   

8.
In this paper, a mediatorless amperometric glucose biosensor based on direct covalent immobilisation of monomolecular layer of glucose oxidase (GOx) on a semiconducting indium-tin oxide (ITO) is demonstrated. The abundance of surface hydroxyl functional group of ITO allows it to be used as a suitable platform for direct covalent immobilisation of the enzyme for sensor architecture. The anodic current corresponding to electrochemical oxidation of the enzymatic product, hydrogen peroxide, at a sputtered Pt electrode at 0.500 V (vs. SCE) was obtained as the sensor signal. It was found that the biosensor based on the direct immobilisation scheme shows a fast biosensor response, minimum interference from other common metabolic species and ease of biosensor miniaturisation. A linear range of 0-10 mM of glucose was demonstrated, which exhibits a high sensitivity as far as performance per immobilised GOx molecule is concerned. A detection limit as low as 0.05 mM and long-term stability were observed. Even more important, the biosensor design allows fabrication through a dry process. These characteristics make it possible to achieve mass production of biosensor compatible with the current electronic integrated circuit manufacturing technologies.  相似文献   

9.
Yin B  Yuan R  Chai Y  Chen S  Cao S  Xu Y  Fu P 《Biotechnology letters》2008,30(2):317-322
A glucose biosensor based on layer-by-layer (LBL) self-assembling of chitosan and glucose oxidase (GOD) on a Prussian blue film was developed. First, Prussian blue was deposited on a cleaned gold electrode then chitosan and GOD were assembled alternately to construct a multilayer film. The resulting amperometric glucose biosensor exhibited a fast response time (within 10 s) and a linear calibration range from 6 μM to 1.6 mM with a detection limit of 3.1 μM glucose (s/n = 3). With the low operating potential, the biosensor showed little interference to the possible interferents, including ascorbic acid, acetaminophen and uric acid, indicating an excellent selectivity.  相似文献   

10.
Immobilization of glucose oxidase in electropolymerized polypyrrole film on the surface of a platinum wire electrode, provides a convenient sensor for flow-injection glucose determination. An upper limit of linear response for 100 microliters injected sample volume was estimated as 20 mM, whereas a 500 microliters injected sample volume gave an estimated detection limit of 0.5 mM. A simple electrode preparation procedure allows quick electrode renewal before each series of measurements.  相似文献   

11.
In order to eliminate the interference of impurities, such as ascorbic acid, a noninterference polypyrrole glucose biosensor was constructed with a four-electrode cell consisting of a polypyrrole film electrode, a polypyrrole-glucose oxidase electrode, a counter electrode and a reference electrode. The pure catalytic current of glucose oxidase (GOD) can be obtained from the difference between response currents of two working electrodes with and without GOD. The effects of potential, pH and temperature on analytical performance of the glucose biosensor were discussed. The optimum pH and apparent activation energy of enzyme-catalyzed reaction are 5.5 and 25 kJ mol(-1), respectively. The response current of the biosensor increases linearly with the increasing glucose concentration from 0.005 to 20.0 mmol dm(-3). The results show the glucose biosensor with under 2% of relative deviation has good ability of anti-interference. The glucose biosensor was also characterized with FT-IR and UV-vis spectra.  相似文献   

12.
A new glucose biosensor has been fabricated by immobilizing glucose oxidase into a sol-gel composite at the surface of a basal plane pyrolytic graphite (bppg) electrode modified with multiwall carbon nanotube. First, the bppg electrode is subjected to abrasive immobilization of carbon nanotubes by gently rubbing the electrode surface on a filter paper supporting the carbon nanotubes. Second, the electrode surface is covered with a thin film of a sol-gel composite containing encapsulated glucose oxidase. The carbon nanotubes offer excellent electrocatalytic activity toward reduction and oxidation of hydrogen peroxide liberated in the enzymatic reaction between glucose oxidase and glucose, enabling sensitive determination of glucose. The amperometric detection of glucose is carried out at 0.3 V (vs saturated calomel electrode) in 0.05 M phosphate buffer solution (pH 7.4) with linear response range of 0.2-20 mM glucose, sensitivity of 196 nA/mM, and detection limit of 50 microM (S/N=3). The response time of the electrode is < 5s when it is stored dried at 4 degrees C, the sensor showed almost no change in the analytical performance after operation for 3 weeks. The present carbon nanotube sol-gel biocomposite glucose oxidase sensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and rapid response and in comparison to bulk modified composite biosensors the amounts of enzyme and carbon nanotube needed for electrode fabrication are dramatically decreased.  相似文献   

13.
An interference and cross-talk free dual electrode amperometric biosensor integrated with a microdialysis sampling system is described, for simultaneous monitoring of glucose and lactate by flow injection analysis. The biosensor is based on a conventional thin layer flow-through cell equipped with a Pt dual electrode (parallel configuration). Each Pt disk was modified by a composite bilayer consisting of an electrosynthesised overoxidized polypyrrole (PPYox) anti-interference membrane covered by an enzyme entrapping gel, obtained by glutaraldehyde co-crosslinking of glucose oxidase or lactate oxidase with bovine serum albumin. The advantages of covalent immobilization techniques were coupled with the excellent interference-rejection capabilities of PPYox. Ascorbate, cysteine, urate and paracetamol produced lactate or glucose bias in the low micromolar range; their responses were, however, completely suppressed when the sample was injected through the microdialysis unit. Under these operational conditions the flow injection responses for glucose and lactate were linear up to 100 and 20 mM with typical sensitivities of 9.9 (+/- 0.1) and 7.2 (+/- 0.1) nA/mM. respectively. The shelf-lifetime of the biosensor was at least 2 months. The potential of the described biosensor was demonstrated by the simultaneous determination of lactate and glucose in untreated tomato juice samples; results were in good agreement with those of a reference method.  相似文献   

14.
An electrochemical biosensor is described consisting of a thin-layer gold film electrode prepared by cathodic sputtering using a poly(vinyl chloride) sheet as substrate, with voltammetric behaviour comparable to that of conventional polycrystalline gold electrodes, coated with the hydrolysed copolymer hydroxyethyl methacrylate-co-methyl methacrylate onto which glucose oxidase was immobilized. The mechanical properties of the plastic foil substrate permit easy construction of circular-shaped electrodes which were employed as working electrodes for batch injection analysis. The electrochemical biosensor fabrication is inexpensive and can be used as disposable enzyme sensor for the detection of hydrogen peroxide. The biosensor was tested for the determination of glucose in serum and a good correlation was obtained with the measurement using the electrochemical and the spectrophotometric methods.  相似文献   

15.
In this paper, a novel amperometric glucose biosensor was constructed by alternative self-assembly of positively charged poly(diallydimethylammonium chloride) (PDDA) and negatively charged glucose oxidase (GOx) onto a 3D Nafion network via electrostatic adsorption. The amount of Nafion in the electrode and the number of the (PDDA/GOx)n multilayers were optimized to develop a sensitive and selective glucose biosensor. Under optimal conditions, the glucose biosensor with (PDDA/GOx)5 multilayers exhibited remarkable electrocatalytic activity, capable of detecting glucose with enhanced sensitivity of 9.55 μA/mM cm2 and a commendably low detection limit of 20 μM (S/N = 3). A linear response range of 0.05–7 mM (a linear correlation coefficient of 0.9984, n = 20) was achieved. In addition, the glucose biosensor demonstrated superior selectivity towards glucose over some interferents, such as ascorbic acid (AA) and uric acid (UA), at an optimized detection potential of 0.6 V versus Ag/AgCl reference.  相似文献   

16.
The direct electrochemistry of glucose oxidase (GOD) adsorbed on a CdS nanoparticles modified pyrolytic graphite electrode was investigated, where the enzyme demonstrated significantly enhanced electron-transfer reactivity. GOD adsorbed on CdS nanoparticles maintained its bioactivity and structure, and could electro-catalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. Upon the addition of glucose, the reduction peak current decreased, which could be used for glucose detection. Performance and characteristics of the fabricated glucose biosensor were assessed with respect to detection limit, sensitivity, storage stability and interference exclusion. The results showed that the fabricated biosensor was sensitive and stable in detecting glucose, indicating that CdS nanoparticle was a good candidate material for the immobilization of enzyme in glucose biosensor construction.  相似文献   

17.
We have developed an affinity biosensor system based on avidin-biotin interaction on a gold electrode. As the building block of an affinity-sensing monolayer, a fourth-generation (G4) poly(amidoamine) dendrimer having partial ferrocenyl-tethered surface groups was prepared and used. The unmodified surface amine groups from dendrimers were functionalized with biotinamidocaproate, and the biotinylated and electroactive dendritic monolayer was constructed on a gold electrode for the affinity-sensing surface interacting with avidin. An electrochemical signal from the affinity biosensor was generated by free glucose oxidase in electrolyte, depending on the degree of coverage of the sensing surface with avidin. The sensor signal decreased correlatively with increasing avidin concentration and approached a minimum level when the sensing surface was fully covered with avidin. The detection limit of avidin was about 4.5 pM, and the sensor signal was linear ranging from 1.5 pM to 10 nM under optimized conditions. From the kinetic analysis using the biotinylated glucose oxidase, an active enzyme coverage of 2.5 x 10(-12) mol/cm(2) on the avidin-pretreated surface was registered, which demonstrates the formation of a spatially ordered and compact protein layer on the derivatized electrode surface.  相似文献   

18.
Although most of enzyme catalytic reactions are specific, the amperometric detection of the enzymatic reaction products is largely nonselective. How to improve the detection selectivity of the enzyme-based electrochemical biosensors has to be considered in the sensor fabrication procedures. Herein, a highly selective amperometric glucose biosensor based on the concept of diffusion layer gap electrode pair which we previously proposed was designed. In this biosensor, a gold tube coated with a conductive layer of glucose oxidase/Nafion/graphite was used to create an interference-free region in its diffusion layer by electrochemically oxidizing the interfering electroactive species at proper potentials. A Pt probe electrode was located in this diffusion layer of the tube electrode to selectively detect hydrogen peroxide generated from the enzyme catalytic oxidation of glucose in the presence of oxygen in the solution. In practical performance of the microdevice, parameters influencing the interference-removing efficiency, including the tip-tube opening distance, the tube electrode potential and the electrolyzing time had been investigated systematically. Results showed that glucose detection free from interferents could be achieved at the electrolyzing time of 30s, the tip-tube opening distance of 3mm and the tube electrode potential of 0.4V. The electrochemical response showed linear dependence on the concentration of glucose in the range of 1 x 10(-5) to 4 x 10(-3) M (the correlation coefficient: 0.9936, without interferents; 0.9995, with interferents). In addition, the effectiveness of this device was confirmed by numerical simulation using a model system of a solution containing interferents. The simulated results showed good agreement with the experimental data.  相似文献   

19.
A miniaturized glucose biosensor in which glucose oxidase (GOD) and poly(p-phenylenediamine) (poly-PPD) were coimmobilized at the surface of a platinum microdisk electrode was developed and used successfully for amperometric determination of glucose. The performance of sensors prepared at different monomer concentrations and polymerization potentials with different media was investigated in detail. It was found that similarly to poly(o-phenylenediamine) (poly-OPD), (poly-PPD) noticeably eliminated the electrochemical interference of ascorbic acid, uric acid, and l-cysteine. The amperometric response of glucose with the biosensor under optimal conditions exhibited a linear relationship in the range of 5.0 x 10(-5) to 3.0 x 10(-3) M with correlation coefficient 0.9995. According to the Michaelis-Menten equation, the apparent Michaelis constant for glucose and the maximum steady-state current density of the poly-PPD/GOD-modified microelectrode were 3.94 mM and 607.5 microA cm(-2), respectively. The current density of the sensor responding to glucose in the linear range can reach 160 microA cm(-2) mM(-1), which is far greater than that obtained using poly-OPD and poly(phenol) film. In addition, the stability of the sensor was examined over a 2-month period.  相似文献   

20.
A novel amperometric glucose biosensor based on the nine layers of multilayer films composed of multi-wall carbon nanotubes (MWCNTs), gold nanoparticles (GNp) and glucose oxidase (GOD) was developed for the specific detection of glucose. MWCNTs were chemically modified with the H2SO4–HNO3 pretreatment to introduce carboxyl groups which were used to interact with the amino groups of poly(allylamine) (PAA) and cysteamine via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide cross-linking reaction, respectively. A cleaned Pt electrode was immersed in PAA, MWCNTs, cysteamine and GNp, respectively, followed by the adsorption of GOD, assembling the one layer of multilayer films on the surface of Pt electrode (GOD/GNp/MWCNTs/Pt electrode). Repeating the above process could assemble different layers of multilayer films on the Pt electrode. PBS washing was applied at the end of each assembly deposition for dissociating the weak adsorption. Film assembling and characterization were studied by transmission electron microscopy and quartz crystal microbalance, and properties of the resulting glucose biosensors were measured by electrochemical measurements. The marked electrocatalytic activity of Pt electrode based on multilayer films toward H2O2 produced during GOD enzymatic reactions with glucose permitted effective low-potential amperometric measurement of glucose. Taking the sensitivity and selectivity into consideration, the applied potential of 0.35 V versus Ag/AgCl was chosen for the oxidation detection of H2O2 in this work. Among the resulting glucose biosensors, the biosensor based on nine layers of multilayer films was best. It showed a wide linear range of 0.1–10 mM glucose, with a remarkable sensitivity of 2.527 μA/mM, a detection limit of 6.7 μM estimated at a signal-to-noise ratio of 3 and fast response time (within 7 s). Moreover, it exhibited good reproducibility, long-term stability and the negligible interferences of ascorbic acid, uric acid and acetaminophen. The study can provide a feasible approach on developing new kinds of oxidase-based amperometric biosensors, and can be used as an illustration for constructing various hybrid structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号