首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof-of-concept study, we demonstrate the value of this approach for the further high throughput and specific detection of B. anthracis spores within complex samples.Bacillus anthracis is a highly virulent bacterium, which is the etiologic agent of anthrax, an acute and often lethal disease of animals and humans (1). According to the Centers for Disease Control and Prevention, B. anthracis is classified as a category A agent, the highest rank of potential bioterrorism agents (http://www.bt.cdc.gov/agent/agentlist-category.asp). The infectious agent of anthrax, the spore, was used as a bioterrorism weapon in 2001 in the United States when mailed letters containing B. anthracis spores caused 22 cases of inhalational and/or cutaneous anthrax, five of which were lethal (2). These events have emphasized the need for rapid and accurate detection of B. anthracis spores.Bacillus anthracis is a member of the genus Bacillus, Gram-positive, rod-shaped bacteria characterized by the ability to form endospores under aerobic or facultative anaerobic conditions (3). The genus Bacillus is a widely heterogeneous group encompassing 268 validly described species to date (http://www.bacterio.net/b/bacillus.html, last accessed on August 9th 2013). B. anthracis is part of the B. cereus group which consists of six distinct species: B. anthracis, B. cereus, B. thuringiensis, B. mycoides, B. pseudomycoides, and B. weihenstephanensis (4, 5). The latter three species are generally regarded as nonpathogenic whereas B. cereus and B. thuringiensis could be opportunistic or pathogenic to mammals or insects (5, 6). B. cereus is a ubiquitous species that lives in soil but is also found in foods of plant and animal origin, such as dairy products (7). Its occurrence has also been linked to food poisoning and it can cause diarrhea and vomiting (6, 8). B. thuringiensis is primarily an insect pathogen, also present in soil, and often used as a biopesticide (9).B. anthracis is highly monomorphic, that is, shows little genetic variation (10), and primarily exists in the environment as a highly stable, dormant spore in the soil (1). Specific identification of B. anthracis is challenging because of its high genetic similarity (sequence similarity >99%) with B. cereus and B. thuringiensis (5, 11). The fact that these closely related species are rather omnipresent in the environment further complicates identification of B. anthracis. The main difference among these three species is the presence in B. anthracis of the two virulence plasmids pXO1 and pXO2 (1), which are responsible for its pathogenicity. pXO1 encodes a tripartite toxin (protective antigen (PA), lethal factor (LF), and edema factor (EF)) which causes edema and death (1), whereas pXO2 encodes a poly-γ-d-glutamate capsule which protects the organism from phagocytosis (1). B. anthracis identification often relies on the detection of the genes encoded by these two plasmids via nucleic acid-based assays (1214). Nevertheless, the occasionally observed loss of the pXO2 plasmid within environmental species may impair the robustness of detection (1). In addition, in recent years a series of findings has shown that the presence of pXO1 and pXO2 is not a unique feature of B. anthracis. Indeed, Hu et al. have demonstrated that ∼7% of B. cereus/B. thuringiensis species can have a pXO1-like plasmid and ∼1.5% a pXO2-like plasmid (15). This was particularly underlined for some virulent B. cereus strains (i.e. B. cereus strains G9241, B. cereus biovar anthracis strains CA and CI) (1620).Because of these potential drawbacks, the use of chromosome-encoded genes would be preferable for the specific detection of B. anthracis. Such genes (rpoB, gyrA, gyrB, plcR, BA5345, and BA813) have been reported as potential markers (2125), but concerns have also been raised about their ability to discriminate B. anthracis efficiently from closely related B. cereus strains (26). Ahmod et al. have recently pointed out, by in silico database analysis, that a specific sequence deletion (indel) occurs in the yeaC gene and exploited it for the specific identification of B. anthracis (27). Nevertheless, a few B. anthracis strains (e.g. B. anthracis A1055) do not have this specific deletion and so may lead to false-negative results (27).In the last few years, protein profiling by MS, essentially based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS), has emerged as an alternative (or a complement) to genotypic or phenotypic methods for the fast and efficient identification of microorganisms (28, 29). Such an approach is based on the reproducible acquisition of global bacterial protein fingerprints/patterns. The combination of MS-based protein patterns and chemometric/bioinformatic tools has been demonstrated to efficiently differentiate members of the B. cereus group from other Bacillus species (30). However, the specific discrimination of B. anthracis from the closely related B. cereus and B. thuringiensis remains difficult (30). This study of Lasch and coworkers, performed on vegetative cells, identified a few ribosomal and spore proteins as being responsible for this clustering (30). Closer inspection of the data revealed that B. anthracis identification was essentially based on one particular isoform of the small acid-soluble spore protein B (SASP-B)1 (3034), which is exclusively expressed in spores, as the samples were shown to contain residual spores. However, the specificity of SASP-B has recently been questioned as the published genomes of B. cereus biovar anthracis CI and B. thuringiensis BGSC 4CC1 strains have been shown to share the same SASP-B isoform as B. anthracis (35). Altogether these results underline that the quest for specific markers of B. anthracis needs to be pursued.Mass spectrometry also represents a powerful tool for the discovery and identification of protein markers (36, 37). In the case of B. anthracis, this approach has more commonly been used for the comprehensive characterization of given bacterial proteomes. For example, the proteome of vegetative cells with variable plasmid contents has been extensively studied (3840), as the proteomes of mature spores (41, 42) and of germinating spores (43, 44). Only one recent study, based on a proteo-genomic approach, was initiated to identify protein markers of B. anthracis (45). In this work, potential markers were characterized but using a very limited number of B. cereus group strains (three B. cereus and two B. thuringiensis). Moreover, this study was done on vegetative cells, whereas the spore proteome is drastically different. To our knowledge, no study has characterized and validated relevant protein markers specific to B. anthracis spores, which constitute the dissemination form of B. anthracis and are often targeted by first-line immunodetection methods (46).Here we report comparative proteomics analyses of Bacillus anthracis/cereus/thuringiensis spores, undertaken to identify proteoforms unique to B. anthracis. Preliminary identification was performed on a limited set of Bacillus species both at the peptide (after enzymatic digestion) and protein levels by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) using a high resolution/high mass accuracy LTQ-Orbitrap instrument. The pertinence of 11 markers was further demonstrated using proteomics and genomics approaches on a representative larger set of up to 55 different strains, including the closely related B. cereus biovar anthracis CI, CA, and B. thuringiensis 9727. Lastly, as a proof-of-concept study, we also report for four B. anthracis markers the implementation of a targeted LC-MS/MS method using selected reaction monitoring (SRM), based on the extension of a previous one focused on SASP-B (35). Preliminary results regarding method usefulness for the high throughput and accurate detection of B. anthracis spores in complex samples were also obtained and will be reported herein.  相似文献   

2.
3.
4.
5.
6.
7.
The Dbf4-Cdc7 kinase (DDK) is required for the activation of the origins of replication, and DDK phosphorylates Mcm2 in vitro. We find that budding yeast Cdc7 alone exists in solution as a weakly active multimer. Dbf4 forms a likely heterodimer with Cdc7, and this species phosphorylates Mcm2 with substantially higher specific activity. Dbf4 alone binds tightly to Mcm2, whereas Cdc7 alone binds weakly to Mcm2, suggesting that Dbf4 recruits Cdc7 to phosphorylate Mcm2. DDK phosphorylates two serine residues of Mcm2 near the N terminus of the protein, Ser-164 and Ser-170. Expression of mcm2-S170A is lethal to yeast cells that lack endogenous MCM2 (mcm2Δ); however, this lethality is rescued in cells harboring the DDK bypass mutant mcm5-bob1. We conclude that DDK phosphorylation of Mcm2 is required for cell growth.The Cdc7 protein kinase is required throughout the yeast S phase to activate origins (1, 2). The S phase cyclin-dependent kinase also activates yeast origins of replication (35). It has been proposed that Dbf4 activates Cdc7 kinase in S phase, and that Dbf4 interaction with Cdc7 is essential for Cdc7 kinase activity (6). However, it is not known how Dbf4-Cdc7 (DDK)2 acts during S phase to trigger the initiation of DNA replication. DDK has homologs in other eukaryotic species, and the role of Cdc7 in activation of replication origins during S phase may be conserved (710).The Mcm2-7 complex functions with Cdc45 and GINS to unwind DNA at a replication fork (1115). A mutation of MCM5 (mcm5-bob1) bypasses the cellular requirements for DBF4 and CDC7 (16), suggesting a critical physiologic interaction between Dbf4-Cdc7 and Mcm proteins. DDK phosphorylates Mcm2 in vitro with proteins purified from budding yeast (17, 18) or human cells (19). Furthermore, there are mutants of MCM2 that show synthetic lethality with DBF4 mutants (6, 17), suggesting a biologically relevant interaction between DBF4 and MCM2. Nevertheless, the physiologic role of DDK phosphorylation of Mcm2 is a matter of dispute. In human cells, replacement of MCM2 DDK-phosphoacceptor residues with alanines inhibits DNA replication, suggesting that Dbf4-Cdc7 phosphorylation of Mcm2 in humans is important for DNA replication (20). In contrast, mutation of putative DDK phosphorylation sites at the N terminus of Schizosaccharomyces pombe Mcm2 results in viable cells, suggesting that phosphorylation of S. pombe Mcm2 by DDK is not critical for cell growth (10).In budding yeast, Cdc7 is present at high levels in G1 and S phase, whereas Dbf4 levels peak in S phase (18, 21, 22). Furthermore, budding yeast DDK binds to chromatin during S phase (6), and it has been shown that Dbf4 is required for Cdc7 binding to chromatin in budding yeast (23, 24), fission yeast (25), and Xenopus (9). Human and fission yeast Cdc7 are inert on their own (7, 8), but Dbf4-Cdc7 is active in phosphorylating Mcm proteins in budding yeast (6, 26), fission yeast (7), and human (8, 10). Based on these data, it has been proposed that Dbf4 activates Cdc7 kinase in S phase and that Dbf4 interaction with Cdc7 is essential for Cdc7 kinase activity (6, 9, 18, 2124). However, a mechanistic analysis of how Dbf4 activates Cdc7 has not yet been accomplished. For example, the multimeric state of the active Dbf4-Cdc7 complex is currently disputed. A heterodimer of fission yeast Cdc7 (Hsk1) in complex with fission yeast Dbf4 (Dfp1) can phosphorylate Mcm2 (7). However, in budding yeast, oligomers of Cdc7 exist in the cell (27), and Dbf4-Cdc7 exists as oligomers of 180 and 300 kDa (27).DDK phosphorylates the N termini of human Mcm2 (19, 20, 28), human Mcm4 (10), budding yeast Mcm4 (26), and fission yeast Mcm6 (10). Although the sequences of the Mcm N termini are poorly conserved, the DDK sites identified in each study have neighboring acidic residues. The residues of budding yeast Mcm2 that are phosphorylated by DDK have not yet been identified.In this study, we find that budding yeast Cdc7 is weakly active as a multimer in phosphorylating Mcm2. However, a low molecular weight form of Dbf4-Cdc7, likely a heterodimer, has a higher specific activity for phosphorylation of Mcm2. Dbf4 or DDK, but not Cdc7, binds tightly to Mcm2, suggesting that Dbf4 recruits Cdc7 to Mcm2. DDK phosphorylates two serine residues of Mcm2, Ser-164 and Ser-170, in an acidic region of the protein. Mutation of Ser-170 is lethal to yeast cells, but this phenotype is rescued by the DDK bypass mutant mcm5-bob1. We conclude that DDK phosphorylation of Ser-170 of Mcm2 is required for budding yeast growth.  相似文献   

8.
9.
10.
11.
Clinically, amniotic membrane (AM) suppresses inflammation, scarring, and angiogenesis. AM contains abundant hyaluronan (HA) but its function in exerting these therapeutic actions remains unclear. Herein, AM was extracted sequentially with buffers A, B, and C, or separately by phosphate-buffered saline (PBS) alone. Agarose gel electrophoresis showed that high molecular weight (HMW) HA (an average of ∼3000 kDa) was predominantly extracted in isotonic Extract A (70.1 ± 6.0%) and PBS (37.7 ± 3.2%). Western blot analysis of these extracts with hyaluronidase digestion or NaOH treatment revealed that HMW HA was covalently linked with the heavy chains (HCs) of inter-α-inhibitor (IαI) via a NaOH-sensitive bond, likely transferred by the tumor necrosis factor-α stimulated gene-6 protein (TSG-6). This HC·HA complex (nHC·HA) could be purified from Extract PBS by two rounds of CsCl/guanidine HCl ultracentrifugation as well as in vitro reconstituted (rcHC·HA) by mixing HMW HA, serum IαI, and recombinant TSG-6. Consistent with previous reports, Extract PBS suppressed transforming growth factor-β1 promoter activation in corneal fibroblasts and induced mac ro phage apo pto sis. However, these effects were abolished by hyaluronidase digestion or heat treatment. More importantly, the effects were retained in the nHC·HA or rcHC·HA. These data collectively suggest that the HC·HA complex is the active component in AM responsible in part for clinically observed anti-inflammatory and anti-scarring actions.Hyaluronan (HA)4 is widely distributed in extracellular matrices, tissues, body fluids, and even in intracellular compartments (reviewed in Refs. 1 and 2). The molecular weight of HA ranges from 200 to 10,000 kDa depending on the source (3), but can also exist as smaller fragments and oligosaccharides under certain physiological or pathological conditions (1). Investigations over the last 15 years have suggested that low Mr HA can induce the gene expression of proinflammatory mediators and proangiogenesis, whereas high molecular weight (HMW) HA inhibits these processes (47).Several proteins have been shown to bind to HA (8) such as aggrecan (9), cartilage link protein (10), versican (11), CD44 (12, 13), inter-α-inhibitor (IαI) (14, 15), and tumor necrosis factor-α stimulated gene-6 protein (TSG-6) (16, 17). IαI consists of two heavy chains (HCs) (HC1 and HC2), both of which are linked through ester bonds to a chondroitin sulfate chain that is attached to the light chain, i.e. bikunin. Among all HA-binding proteins, only the HCs of IαI have been clearly demonstrated to be covalently coupled to HA (14, 18). However, TSG-6 has also been reported to form stable, possibly covalent, complexes with HA, either alone (19, 20) or when associated with HC (21).The formation of covalent bonds between HCs and HA is mediated by TSG-6 (2224) where its expression is often induced by inflammatory mediators such as tumor necrosis factor-α and interleukin-1 (25, 26). TSG-6 is also expressed in inflammatory-like processes, such as ovulation (21, 27, 28) and cervical ripening (29). TSG-6 interacts with both HA (17) and IαI (21, 24, 3033), and is essential for covalently transferring HCs on to HA (2224). The TSG-6-mediated formation of the HC·HA complex has been demonstrated to play a crucial role in female fertility in mice. The HC·HA complex is an integral part of an expanded extracellular “cumulus” matrix around the oocyte, which plays a critical role in successful ovulation and fertilization in vivo (22, 34). HC·HA complexes have also been found at sites of inflammation (3538) where its pro- or anti-inflammatory role remain arguable (39, 40).Immunostaining reveals abundant HA in the avascular stromal matrix of the AM (41, 42).5 In ophthalmology, cryopreserved AM has been widely used as a surgical graft for ocular surface reconstruction and exerts clinically observable actions to promote epithelial wound healing and to suppress inflammation, scarring, and angiogenesis (for reviews see Refs. 4345). However, it is not clear whether HA in AM forms HC·HA complex, and if so whether such an HC·HA complex exerts any of the above therapeutic actions. To address these questions, we extracted AM with buffers of increasing salt concentration. Because HMW HA was found to form the HC·HA complex and was mainly extractable by isotonic solutions, we further purified it from the isotonic AM extract and reconstituted it in vitro from three defined components, i.e. HMW HA, serum IαI, and recombinant TSG-6. Our results showed that the HC·HA complex is an active component in AM responsible for the suppression of TGF-β1 promoter activity, linkable to the scarring process noted before by AM (4648) and by the AM soluble extract (49), as well as for the promotion of macrophage death, linkable to the inflammatory process noted by AM (50) and the AM soluble extract (51).  相似文献   

12.
Most human genes undergo alternative splicing, but aberrant splice forms are hallmarks of many cancers, usually resulting from mutations initiating abnormal exon skipping, intron retention, or the introduction of a new splice sites. We have identified a family of aberrant splice variants of HAS1 (the hyaluronan synthase 1 gene) in some B lineage cancers, characterized by exon skipping and/or partial intron retention events that occur either together or independently in different variants, apparently due to accumulation of inherited and acquired mutations. Cellular, biochemical, and oncogenic properties of full-length HAS1 (HAS1-FL) and HAS1 splice variants Va, Vb, and Vc (HAS1-Vs) are compared and characterized. When co-expressed, the properties of HAS1-Vs are dominant over those of HAS1-FL. HAS1-FL appears to be diffusely expressed in the cell, but HAS1-Vs are concentrated in the cytoplasm and/or Golgi apparatus. HAS1-Vs synthesize detectable de novo HA intracellularly. Each of the HAS1-Vs is able to relocalize HAS1-FL protein from diffuse cytoskeleton-anchored locations to deeper cytoplasmic spaces. This HAS1-Vs-mediated relocalization occurs through strong molecular interactions, which also serve to protect HAS1-FL from its otherwise high turnover kinetics. In co-transfected cells, HAS1-FL and HAS1-Vs interact with themselves and with each other to form heteromeric multiprotein assemblies. HAS1-Vc was found to be transforming in vitro and tumorigenic in vivo when introduced as a single oncogene to untransformed cells. The altered distribution and half-life of HAS1-FL, coupled with the characteristics of the HAS1-Vs suggest possible mechanisms whereby the aberrant splicing observed in human cancer may contribute to oncogenesis and disease progression.About 70–80% of human genes undergo alternative splicing, contributing to proteomic diversity and regulatory complexities in normal development (1). About 10% of mutations listed so far in the Human Gene Mutation Database (HGMD) of “gene lesions responsible for human inherited disease” were found to be located within splice sites. Furthermore, it is becoming increasingly apparent that aberrant splice variants, generated mostly due to splicing defects, play a key role in cancer. Germ line or acquired genomic changes (mutations) in/around splicing elements (24) promote aberrant splicing and aberrant protein isoforms.Hyaluronan (HA)3 is synthesized by three different plasma membrane-bound hyaluronan synthases (1, 2, and 3). HAS1 undergoes alternative and aberrant intronic splicing in multiple myeloma, producing truncated variants termed Va, Vb, and Vc (5, 6), which predicted for poor survival in a cohort of multiple myeloma patients (5). Our work suggests that this aberrant splicing arises due to inherited predispositions and acquired mutations in the HAS1 gene (7). Cancer-related, defective mRNA splicing caused by polymorphisms and/or mutations in splicing elements often results in inactivation of tumor suppressor activity (e.g. HRPT2 (8, 9), PTEN (10), MLHI (1114), and ATR (15)) or generation of dominant negative inhibitors (e.g. CHEK2 (16) and VWOX (17)). In breast cancer, aberrantly spliced forms of progesterone and estrogen receptors are found (reviewed in Ref. 3). Intronic mutations inactivate p53 through aberrant splicing and intron retention (18). Somatic mutations with the potential to alter splicing are frequent in some cancers (1925). Single nucleotide polymorphisms in the cyclin D1 proto-oncogene predispose to aberrant splicing and the cyclin D1b intronic splice variant (2629). Cyclin D1b confers anchorage independence, is tumorogenic in vivo, and is detectable in human tumors (30), but as yet no clinical studies have confirmed an impact on outcome. On the other hand, aberrant splicing of HAS1 shows an association between aberrant splice variants and malignancy, suggesting that such variants may be potential therapeutic targets and diagnostic indicators (19, 3133). Increased HA expression has been associated with malignant progression of multiple tumor types, including breast, prostate, colon, glioma, mesothelioma, and multiple myeloma (34). The three mammalian HA synthase (HAS) isoenzymes synthesize HA and are integral transmembrane proteins with a probable porelike structural assembly (3539). Although in humans, the three HAS genes are located on different chromosomes (hCh19, hCh8, and hCh16, respectively) (40), they share a high degree of sequence homology (41, 42). HAS isoenzymes synthesize a different size range of HA molecules, which exhibit different functions (43, 44). HASs contribute to a variety of cancers (4555). Overexpression of HASs promotes growth and/or metastatic development in fibrosarcoma, prostate, and mammary carcinoma, and the removal of the HA matrix from a migratory cell membrane inhibits cell movement (45, 53). HAS2 confers anchorage independence (56). Our work has shown aberrant HAS1 splicing in multiple myeloma (5) and Waldenstrom''s macroglobulinemia (6). HAS1 is overexpressed in colon (57), ovarian (58), endometrial (59), mesothelioma (60), and bladder cancers (61). A HAS1 splice variant is detected in bladder cancer (61).Here, we characterize molecular and biochemical characteristics of HAS1 variants (HAS1-Vs) (5), generated by aberrant splicing. Using transient transfectants and tagged HAS1 family constructs, we show that HAS1-Vs differ in cellular localization, de novo HA localization, and turnover kinetics, as compared with HAS1-FL, and dominantly influence HAS1-FL when co-expressed. HAS1-Vs proteins form intra- and intermolecular associations among themselves and with HAS1-FL, including covalent interactions and multimer formation. HAS1-Vc supports vigorous cellular transformation of NIH3T3 cells in vitro, and HAS1-Vc-transformed NIH3T3 cells are tumorogenic in vivo.  相似文献   

13.
Bacillus cereus 569 (ATCC 10876) germinates in response to inosine or to l-alanine, but the most rapid germination response is elicited by a combination of these germinants. Mutants defective in their germination response to either inosine or to l-alanine were isolated after Tn917-LTV1 mutagenesis and enrichment procedures; one class of mutant could not germinate in response to inosine as a sole germinant but still germinated in response to l-alanine, although at a reduced rate; another mutant germinated normally in response to inosine but was slowed in its germination response to l-alanine. These mutants demonstrated that at least two signal response pathways are involved in the triggering of germination. Stimulation of germination in l-alanine by limiting concentrations of inosine and stimulation of germination in inosine by low concentrations of l-alanine were still detectable in these mutants, suggesting that such stimulation is not dependent on complete functionality of both these germination loci. Two transposon insertions that affected inosine germination were found to be located 2.2 kb apart on the chromosome. This region was cloned and sequenced, revealing an operon of three open reading frames homologous to those in the gerA and related operons of Bacillus subtilis. The individual genes of this gerI operon have been named gerIA, gerIB, and gerIC. The GerIA protein is predicted to possess an unusually long, charged, N-terminal domain containing nine tandem copies of a 13-amino-acid glutamine- and serine-rich sequence.Bacillus species have the ability, under certain nutrient stresses, to undergo a complex differentiation process resulting in the formation of a highly resistant dormant endospore (6). These spores can then persist in the environment for prolonged periods until a sensitive response mechanism detects specific environmental conditions, initiating the processes of germination and outgrowth (9, 21, 25). Germination can be initiated by a variety of agents (12), including nutrients, enzymes, or physical factors, such as abrasion or hydrostatic pressure.The molecular genetics of spore germination has been most extensively studied in Bacillus subtilis 168 (21). B. subtilis spores can be triggered to germinate in response to either l-alanine or to a combination (29) of asparagine, glucose, fructose, and potassium ions (AGFK). Mutants of B. subtilis which are defective in germination responses to one or to both types of germinant have been isolated previously (20, 27). Analysis of these mutants suggests that the germinants interact with separate germinant-specific complexes within the spore (21). This in some way leads to activation of components of the germination apparatus common to both responses, such as germination-specific cortex lytic enzymes, leading in turn to complete germination of the spore (10, 22). The mutations within the gerA operon of B. subtilis specifically block germination initiated by l-alanine (34). The predicted amino acid sequences of the three GerA proteins encoded in the operon suggest that these proteins could be membrane associated, and they are the most likely candidates to represent the germinant receptor for alanine (21).The amino acid l-alanine has been identified as a common but not universal germinant in a variety of Bacillus species, often requiring the presence of adjuncts such as electrolytes and sugars. Ribosides, such as inosine, represent another type of common germinant, although many species are unable to germinate rapidly in response to these without the addition of l-alanine (9).The food-borne pathogen Bacillus cereus is a major cause of food poisoning of an emetic and diarrheal type (13, 16). The germination and growth of Bacillus cereus spores during food storage can lead to food spoilage and the potential to cause food poisoning (16). B. cereus has been shown to germinate in response to l-alanine and to ribosides (11, 18, 23). Spore germination can be triggered by l-alanine alone, but at high spore densities this response becomes inhibited by d-alanine, generated by the alanine racemase activity associated with the spores (8, 11). This auto-inhibition of l-alanine germination can be reduced by the inclusion of a racemase inhibitor (O-carbamyl-d-serine) with the germinating spores (11).Inosine is the most effective riboside germinant for B. cereus T, while adenosine and guanosine are less potent (28). The rate of riboside-triggered germination has been reported to be enhanced dramatically by the addition of l-alanine (18). It is unclear whether ribosides can act as a sole germinant, or whether there is an absolute requirement for l-alanine (28).An attempt has been made to analyze genetically the molecular components of the germination apparatus in B. cereus in order to dissect the germination responses of this species and to determine whether riboside-induced germination involves components related to those already described for amino acid and sugar germinants in B. subtilis.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号