首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
Liver/lymph node-specific intercellular adhesion molecule-3-grabbing integrin (L-SIGN) facilitates hepatitis C virus (HCV) infection through interaction with HCV envelope protein E2. Signaling events triggered by the E2 via L-SIGN are poorly understood. Here, kinase cascades of Raf–MEK–ERK pathway were defined upon the E2 treatment in NIH3T3 cells with stable expression of L-SIGN. The E2 bound to the cells through interaction with L-SIGN and such binding subsequently resulted in phosphorylation and activation of Raf, MEK, and ERK. Blockage of L-SIGN with antibody against L-SIGN reduced the E2-induced phosphorylation of Raf, MEK, and ERK. In the cells infected with cell culture-derived HCV, phosphorylation of these kinases was enhanced by the E2. Up-regulation of Raf–MEK–ERK pathway by HCV E2 via L-SIGN provides new insights into signaling cascade of L-SIGN, and might be a potential target for control and prevention of HCV infection.  相似文献   

3.
Insulin-like growth factors (IGFs) play active role in mitogenic and metabolic processes. In the peripheral circulation, they are mostly bound to specific IGF-binding proteins (IGFBPs). Proteolysis of IGFBPs releases free, active IGFs. IGFBP-2 is the second most abundant of the six binding proteins and its concentration increases in catabolic states. The possible interaction between IGFBP-2 and other proteins in the circulation was investigated in this study. Our results showed that IGFBP-2 associates with α2-macroglobulin (α2M), a protease inhibitor. Formation of IGFBP-2/α2M complexes most likely contributes to the regulation of IGFBP-2 proteolysis and, thus, the activity of IGFs.  相似文献   

4.
The 44-amino-acid E5 protein of bovine papillomavirus is a dimeric transmembrane protein that exists in a stable complex with the platelet-derived growth factor (PDGF) β receptor, causing receptor activation and cell transformation. The transmembrane domain of the PDGF β receptor is required for complex formation, but it is not known if the two proteins contact one another directly. Here, we studied a PDGF β receptor mutant containing a leucine-to-isoleucine substitution in its transmembrane domain, which prevents complex formation with the wild-type E5 protein in mouse BaF3 cells and inhibits receptor activation by the E5 protein. We selected E5 mutants containing either a small deletion or multiple substitution mutations that restored binding to the mutant PDGF β receptor, resulting in receptor activation and growth factor independence. These E5 mutants displayed lower activity with PDGF β receptor mutants containing other transmembrane substitutions in the vicinity of the original mutation, and one of them cooperated with a receptor mutant containing a distal mutation in the juxtamembrane domain. These results provide strong genetic evidence that the transmembrane domains of the E5 protein and the PDGF β receptor contact one another directly. They also demonstrate that different mutations in the E5 protein allow it to tolerate the same mutation in the PDGF β receptor transmembrane domain and that a mutation in the E5 protein can allow it to tolerate different mutations in the PDGF β receptor. Thus, the rules governing direct interactions between transmembrane helices are complex and not restricted to local interactions.  相似文献   

5.
6.
7.
Ribosome-inactivating proteins (RIPs) inactivate prokaryotic or eukaryotic ribosomes by removing a single adenine in the large ribosomal RNA. Here we show maize RIP (MOD), an atypical RIP with an internal inactivation loop, interacts with the ribosomal stalk protein P2 via Lys158–Lys161, which is located in the N-terminal domain and at the base of its internal loop. Due to subtle differences in the structure of maize RIP, hydrophobic interaction with the ‘FGLFD’ motif of P2 is not as evidenced in MOD-P2 interaction. As a result, interaction of P2 with MOD was weaker than those with trichosanthin and shiga toxin A as reflected by the dissociation constants (KD) of their interaction, which are 1037.50±65.75 µM, 611.70±28.13 µM and 194.84±9.47 µM respectively.Despite MOD and TCS target at the same ribosomal protein P2, MOD was found 48 and 10 folds less potent than trichosanthin in ribosome depurination and cytotoxicity to 293T cells respectively, implicating the strength of interaction between RIPs and ribosomal proteins is important for the biological activity of RIPs. Our work illustrates the flexibility on the docking of RIPs on ribosomal proteins for targeting the sarcin-ricin loop and the importance of protein-protein interaction for ribosome-inactivating activity.  相似文献   

8.
9.
A plethora of evidence suggests that protein misfolding and aggregation are underlying mechanisms of various neurodegenerative diseases, such as prion diseases and Alzheimer's disease(AD). Like prion diseases, AD has been considered as an infectious disease in the past decades as it shows strain specificity and transmission potential. Although it remains elusive how protein aggregation leads to AD, it is becoming clear that cellular prion protein(PrP~C ) plays an important role in AD pathogenesis. Here, we briefly reviewed AD pathogenesis and focused on recent progresses how PrP~C contributed to AD development. In addition, we proposed a potential mechanism to explain why infectious agents, such as viruses, conduce AD pathogenesis. Microbe infections cause Aβ deposition and upregulation of PrP~C , which lead to high affinity binding between Aβ oligomers and PrP~C . The interaction between PrP~C and Aβ oligomers in turn activates the Fyn signaling cascade, resulting in neuron death in the central nervous system(CNS). Thus, silencing PrP~C expression may turn out be an effective treatment for PrP~C dependent AD.  相似文献   

10.
Low-risk type human papillomavirus (HPV) 6 and 11 infection causes recurrent respiratory papillomatosis (RRP) and genital warts. RRP is the most common benign tumor of the larynx in children with frequent relapses. Repeated surgeries are often needed to improve vocal function and prevent life-threatening respiratory obstruction. Currently, there are no effective treatments available to completely eliminate these diseases, largely due to limited knowledge regarding their viral molecular pathogenesis. HPV E6 proteins contribute to cell immortalization by interacting with a variety of cellular proteins, which have been well studied for the high-risk type HPVs related to cancer progression. However, the functions of low-risk HPV E6 proteins are largely unknown. In this study, we report GST-pulldown coupled mass spectrometry analysis with low-risk HPV E6 proteins that identified sterile alpha motif domain containing 9 (SAMD9) as a novel interacting partner. We then confirmed the interaction between HPV-E6 and SAMD9 using co-immunoprecipitation, proximity ligation assay, and confocal immunofluorescence staining. The SAMD9 gene is down-regulated in a variety of neoplasms and deleteriously mutated in normophosphatemic familial tumoral calcinosis. Interestingly, SAMD9 also has antiviral functions against poxvirus. Our study adds to the limited knowledge of the molecular properties of low-risk HPVs and describes new potential functions for the low-risk HPV E6 protein.  相似文献   

11.
Caspase 8 plays an essential role in the regulation of apoptotic and non-apoptotic signaling pathways. The long form of cellular FLICE-inhibitory protein (c-FLIPL) has been shown previously to regulate caspase 8-dependent nuclear factor κB (NF-κB) activation by receptor-interacting protein 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). In this study, the molecular mechanism by which c-FLIPL regulates caspase 8-dependent NF-κB activation was further explored in the human embryonic kidney cell line HEK 293 and variant cells barely expressing caspase 8. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone greatly diminished caspase 8-dependent NF-κB activation induced by Fas ligand (FasL) when c-FLIPL, but not its N-terminal fragment c-FLIP(p43), was expressed. The prodomain of caspase 8 was found to interact with the RIP1 death domain and to be sufficient to mediate NF-κB activation induced by FasL or c-FLIP(p43). The interaction of the RIP1 death domain with caspase 8 was inhibited by c-FLIPL but not c-FLIP(p43). Thus, these results reveal that the C-terminal domain of c-FLIPL specifically inhibits the interaction of the caspase 8 prodomain with the RIP1 death domain and, thereby, regulates caspase 8-dependent NF-κB activation.  相似文献   

12.
PKCδ signaling to mitochondria has been implicated in both mitochondrial apoptosis and metabolism. However, the mechanism by which PKCδ interacts with mitochondria is not well understood. Using FRET-based imaging, we show that PKCδ interacts with mitochondria by a novel and isozyme-specific mechanism distinct from its canonical recruitment to other membranes such as the plasma membrane or Golgi. Specifically, we show that PKCδ interacts with mitochondria following stimulation with phorbol esters or, in L6 myocytes, with insulin via a mechanism that requires two steps. In the first step, PKCδ translocates acutely to mitochondria by a mechanism that requires its C1A and C1B domains and a Leu-Asn sequence in its turn motif. In the second step, PKCδ is retained at mitochondria by a mechanism that depends on its C2 domain, a unique Glu residue in its activation loop, intrinsic catalytic activity, and the mitochondrial membrane potential. In contrast, of these determinants, only the C1B domain is required for the phorbol ester-stimulated translocation of PKCδ to other membranes. PKCδ also basally localizes to mitochondria and increases mitochondrial respiration via many of the same determinants that promote its agonist-evoked interaction. PKCδ localized to mitochondria has robust activity, as revealed by a FRET reporter of PKCδ-specific activity (δCKAR). These data support a model in which multiple determinants unique to PKCδ drive a specific interaction with mitochondria that promotes mitochondrial respiration.  相似文献   

13.
Ki67 is a protein widely used as cell-proliferation marker, with its cellular functions being hardly unveiled. In this paper, we present the direct interaction between Ki67 and PP1γ, a protein phosphatase showing characteristic accumulation on anaphase chromosomes via the canonical PP1-binding motif within Ki67. In cells depleted of Ki67, PP1γ is targeted to anaphase chromosomes less efficiently. Additionally, overexpression of Ki67, but not a mutant form without the ability to bind PP1γ, induced ectopic localization of PP1γ οn metaphase chromosomes. These observations demonstrate that Ki67 is one factor that defines the cellular behavior of PP1γ in anaphase. To explore the specific roles of the subset of PP1γ recruited on chromosome via its interaction with Ki67 (PP1γ-Ki67), endogenous Ki67 was replaced with a Ki67 mutant deficient in its ability to interact with PP1γ. Although no obvious defects in the progression of mitosis were observed, the timing of dephosphorylation of the mutant Ki67 in anaphase was delayed, indicating that Ki67 itself is one of the substrates of PP1γ-Ki67.  相似文献   

14.
We have recently demonstrated that human apolipoprotein E (apoE) is required for the infectivity and assembly of hepatitis C virus (HCV) (K. S. Chang, J. Jiang, Z. Cai, and G. Luo, J. Virol. 81:13783-13793, 2007; J. Jiang and G. Luo, J. Virol. 83:12680-12691, 2009). In the present study, we have determined the molecular basis underlying the importance of apoE in HCV assembly. Results derived from mammalian two-hybrid studies demonstrate a specific interaction between apoE and HCV nonstructural protein 5A (NS5A). The C-terminal third of apoE per se is sufficient for interaction with NS5A. Progressive deletion mutagenesis analysis identified that the C-terminal α-helix domain of apoE is important for NS5A binding. The N-terminal receptor-binding domain and the C-terminal 20 amino acids of apoE are dispensable for the apoE-NS5A interaction. The NS5A-binding domain of apoE was mapped to the middle of the C-terminal α-helix domain between amino acids 205 and 280. Likewise, deletion mutations disrupting the apoE-NS5A interaction resulted in blockade of HCV production. These findings demonstrate that the specific apoE-NS5A interaction is required for assembly of infectious HCV. Additionally, we have determined that using different major isoforms of apoE (E2, E3, and E4) made no significant difference in the apoE-NS5A interaction. Likewise, these three major isoforms of apoE are equally compatible with infectivity and assembly of infectious HCV, suggesting that apoE isoforms do not differentially modulate the infectivity and/or assembly of HCV in cell culture.Hepatitis C virus (HCV) remains a major global health problem, chronically infecting approximately 170 million people worldwide, with severe consequences such as hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC) (2, 57). The current standard therapy for hepatitis C is pegylated alpha interferon in combination with ribavirin. However, this anti-HCV regimen has limited efficacy (<50% sustained antiviral response for the dominant genotype 1 HCV) and causes severe side effects (17, 39). Recent clinical studies on the HCV protease- and polymerase-specific inhibitors showed promising results but also found that drug-resistant HCV mutants emerged rapidly (3, 27), undermining the efficacy of specific antiviral therapy for hepatitis C. Therefore, future antiviral therapies for hepatitis C likely require a combination of several safer and more efficacious antiviral drugs that target different steps of the HCV life cycle. The lack of knowledge about the molecular details of the HCV life cycle has significantly impeded the discovery of antiviral drugs and development of HCV vaccines.HCV is a small enveloped RNA virus classified as a member of the Hepacivirus genus in the family Flaviviridae (46, 47). It contains a single positive-sense RNA genome that encodes a large viral polypeptide, which is proteolytically processed by cellular peptidases and viral proteases into different structural and nonstructural proteins in the order of C, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B (30, 31). Other novel viral proteins derived from the C-coding region have also been discovered (11, 13, 55, 59). The nucleotides at both the 5′ and 3′ untranslated regions (UTR) are highly conserved and contain cis-acting RNA elements important for internal ribosome entry site (IRES)-mediated initiation of protein translation and viral RNA replication (15, 16, 33, 56, 60).The success in the development of HCV replicon replication systems has made enormous contributions to the determination of the roles of the conserved RNA sequences/structures and viral NS proteins in HCV RNA replication (4, 5, 7, 32). However, the molecular mechanisms of HCV assembly, morphogenesis, and egression have not been well understood. A breakthrough advance has been the development of robust cell culture systems for HCV infection and propagation, which allow us to determine the roles of viral and cellular proteins in the HCV infectious cycle (9, 29, 54, 63). We have recently demonstrated that infectious HCV particles are enriched in apolipoprotein E (apoE) and that apoE is required for HCV infection and assembly (10, 23). apoE-specific monoclonal antibodies efficiently neutralized HCV infectivity. The knockdown of endogenous apoE expression by a specific small interfering RNA (siRNA) and the blockade of apoE secretion by microsomal triglyceride transfer protein (MTP) inhibitors remarkably suppressed HCV assembly (10, 23). More importantly, apoE was found to interact with the HCV NS5A in the cell and purified HCV particles, as determined by yeast two-hybrid and coimmunoprecipitation (co-IP) studies (6, 23). These findings suggest that apoE has dual functions in HCV infection and assembly via distinct interactions with cell surface receptors and HCV NS5A. To further understand the molecular mechanism of apoE in HCV assembly, we carried out a mutagenesis analysis of apoE and determined the importance of the apoE-NS5A interaction in HCV assembly. Progressive deletion mutagenesis analysis has mapped the NS5A-binding domain of apoE to the C-terminal α-helix region between amino acid residues 205 and 280. Mutations disrupting the apoE-NS5A interaction also blocked HCV production. Additionally, we have determined the effects of three major isoforms of apoE on HCV infection and assembly. Our results demonstrate that apoE isoforms do not determine the infectivity and assembly of infectious HCV in cell culture.  相似文献   

15.
16.
Hepatitis E virus (HEV), a non-enveloped, positive-stranded RNA virus, is transmitted in a faecal-oral manner, and causes acute liver diseases in humans. The HEV capsid is made up of capsomeres consisting of homodimers of a single structural capsid protein forming the virus shell. These dimers are believed to protrude from the viral surface and to interact with host cells to initiate infection. To date, no structural information is available for any of the HEV proteins. Here, we report for the first time the crystal structure of the HEV capsid protein domain E2s, a protruding domain, together with functional studies to illustrate that this domain forms a tight homodimer and that this dimerization is essential for HEV–host interactions. In addition, we also show that the neutralizing antibody recognition site of HEV is located on the E2s domain. Our study will aid in the development of vaccines and, subsequently, specific inhibitors for HEV.  相似文献   

17.
Modulation of intracellular protein–protein interactions has been – and remains – a challenging goal for the discovery and development of small-molecule therapeutic agents. Progress in the pharmacological targeting and understanding at the molecular level of one such interaction that is relevant to cancer drug research, viz. that between the tumour suppressor protein p53 and its negative regulator HDM2, is reviewed here. The first X-ray crystal structure of a complex between a small peptide from the trans-activation domain of p53 and the N-terminal domain of HDM2 was reported almost 10 years ago. The nature of this interaction, which involves just three residue side chains in the p53 peptide ligand and a compact hydrophobic binding pocket in the HDM2 receptor, together with the attractive concept of reactivating the anti-proliferative functions of p53 in tumour cells, has spurned a great deal of effort aimed at finding drug-like antagonists of this interaction. A variety of approaches, including both structure-guided peptidomimetic and de novo design, as well as high through-put screening campaigns, have provided a wealth of leads that might be turned into actual drugs. There is still some way to go as far as optimisation and preclinical development of such leads is concerned, but it is clear already now that antagonists of the p53–HDM2 protein–protein interaction have a good chance of ultimately being successful in providing a new anti-cancer therapy modality, both in monotherapy and to potentiate the effectiveness of existing chemotherapies.  相似文献   

18.
Adrenergic receptors are integral membrane proteins involved in cellular signalling that belong to the G protein-coupled receptors. Synthetic peptides resembling the putative transmembrane (TM) segments TM4, TM6 and TM7, of the human α2-adrenergic receptor subtype C10 (P08913) and defined lipid vesicles were used to assess protein-lipid interactions that might be relevant to receptor structure/function. P6 peptide contains the hydrophobic core of TM6 plus the N-terminal hydrophilic motif REKR, while peptides P4 and P7 contained just the hydrophobic stretches of TM4 and TM7, respectively. All the peptides increase their helical tendency at moderate concentrations of TFE (30–50%) and in presence of 1,2-dielaidoyl-sn-glycero-3-phosphatidylethanolamine (DEPE) lipids. However, only P6 displays up to 19% of α-helix in the presence of just the DEPE lipids, evidences a transmembrane orientation and stabilizes the Lα lipid phase. Conversely, P4 and P7 peptides form only stable β-sheet structures in DEPE and favour the non-lamellar, inverted hexagonal (HII) phase of DEPE by lowering its phase transition temperature. This study highlights the potential of using synthetic peptides derived from the amino acid sequence in the native proteins as templates to understand the behaviour of the transmembrane segments and underline the importance of interfacial anchoring interactions to meet hydrophobic matching requirements and define membrane organization.  相似文献   

19.
We here present a detailed study of the ligand-receptor interactions between single and triple-helical strands of collagen and the α2A domain of integrin (α2A), providing valuable new insights into the mechanisms and dynamics of collagen-integrin binding at a sub-molecular level. The occurrence of single and triple-helical strands of the collagen fragments was scrutinized with atom force microscopy (AFM) techniques. Strong interactions of the triple-stranded fragments comparable to those of collagen can only be detected for the 42mer triple-helical collagen-like peptide under study (which contains 42 amino acid residues per strand) by solid phase assays as well as by surface plasmon resonance (SPR) measurements. However, changes in NMR signals during titration and characteristic saturation transfer difference (STD) NMR signals are also detectable when α2A is added to a solution of the 21mer single-stranded collagen fragment. Molecular dynamics (MD) simulations employing different sets of force field parameters were applied to study the interaction between triple-helical or single-stranded collagen fragments with α2A. It is remarkable that even single-stranded collagen fragments can form various complexes with α2A showing significant differences in the complex stability with identical ligands. The results of MD simulations are in agreement with the signal alterations in our NMR experiments, which are indicative of the formation of weak complexes between single-stranded collagen and α2A in solution. These results provide useful information concerning possible interactions of α2A with small collagen fragments that are of relevance to the design of novel therapeutic A-domain inhibitors.  相似文献   

20.
Phospholipase Cβ2 (PLC β2) is activated by G proteins and generates calcium signals in cells. PLCβ2 is absent in normal breast tissue, but is highly expressed in breast tumors where its expression is correlated with the progression and migration of the tumor. This pattern of expression parallels the expression of the breast cancer specific gene protein 1 which is also known as γ-synuclein. The cellular function of γ-synuclein and the role it plays in proliferation are unknown. Here, we determined whether γ-synuclein can interact with PLCβ2 and affect its activity. Using co-immunprecitation and co-immunofluorescence, we find that in both benign and aggressive breast cancer cell lines γ-synuclein and PLCβ2 are associated. In solution, purified γ-synuclein binds to PLCβ2 with high affinity as measured by fluorescence methods. Protease digestion and mass spectrometry studies show that γ-synuclein binds to a site on the C-terminus of PLCβ2 that overlaps with the Gαq binding site. Additionally, γ-synuclein competes for Gαq association, but not for activators that bind to the N-terminus (i.e. Rac1 and Gβγ). Binding of γ-synuclein reduces the catalytic activity of PLCβ2 by mechanism that involves inhibition of product release without affecting membrane interactions. Since activated Gαq binds more strongly to PLCβ2 than γ-synuclein, addition of Gαq(GTPγS) to the γ-synuclein -PLCβ2 complex allows for relief of enzyme inhibition along with concomitant activation. We also find that Gβγ can reverse γ-synuclein inhibition without dissociating the γ-synuclein- PLCβ2- complex. These studies point to a role of γ-synuclein in promoting a more robust G protein activation of PLCβ2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号