首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modification of proteins at serine or threonine residues with N-acetylglucosamine, termed O-GlcNAcylation, plays an important role in most eukaryotic cells. To understand the molecular mechanism by which O-GlcNAcylation regulates the entry of Caenorhabditis elegans into the non-aging dauer state, we performed proteomic studies using two mutant strains: the O-GlcNAc transferase-deficient ogt-1(ok430) strain and the O-GlcNAcase-defective oga-1(ok1207) strain. In the presence of the dauer pheromone daumone, ogt-1 showed suppression of dauer formation, whereas oga-1 exhibited enhancement of dauer formation. Consistent with these findings, treatment of wild-type N2 worms with low concentrations of daumone and the O-GlcNAcase inhibitor O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc) enhanced dauer formation, which was dependent on intact O-GlcNAcylation metabolism. We also found that the treatment of daumone enhanced O-GlcNAcylation in vivo. Seven proteins, identified by coupled two-dimensional electrophoresis/liquid chromatography-mass spectroscopy (LC-MS) analysis, were differentially expressed in oga-1(ok1207) worms compared with wild-type N2 worms. The identities of these proteins suggest that O- GlcNAcylation influences stress resistance, protein folding, and mitochondrial function. Using O-GlcNAc labeling with fluorescent dye combined with two-dimensional electrophoresis/LC-MS analysis, we also identified five proteins that were differentially O-GlcNAcylated during dauer formation. Analysis of these candidate O-GlcNAcylated proteins suggests that O-GlcNAcylation may regulate cytoskeleton modifications and protein turnover during dauer formation.  相似文献   

2.
The liver is one of the most susceptible organs to aging, and hepatic inflammation and fibrosis increase with age. Chronic inflammation has been proposed as the major molecular mechanism underlying aging and age-related diseases, whereas calorie restriction has been shown to be the most effective in extending mammalian lifespan and to have anti-aging effects through its anti-inflammatory action. Thus, it is necessary to develop effective calorie restriction mimetics. Daumone [(2)-(6R)-(3,5-dihydroxy-6-methyltetrahydropyran-2-yloxy)heptanoic acid], a pheromone secreted by Caenorhabditis elegans, forces them to enter the dauer stage when facing inadequate conditions. Because Caenorhabditis elegans live longer during the dauer stage under energy deprivation, it was hypothesized that daumone may improve survival in mammals by mimicking calorie restriction. Daumone (2 mg kg−1 day−1) was administered orally for 5 months to 24-month-old male C57BL/6J mice. Daumone was found to reduce the risk of death by 48% compared with age-matched control mice, and the increased plasma insulin normally presented in old mice was significantly reduced by daumone. The increased hepatic hypertrophy, senescence-associated β-galactosidase activity, insulin resistance, lipid accumulation, inflammation, oxidative stress, and fibrosis in old mice were significantly attenuated by daumone. From a mechanistic view, daumone reduced the phosphorylation of the IκBα and upregulation of Rela and Nfkbia mRNA in the livers of old mice. The anti-inflammatory effect of daumone was confirmed in lipopolysaccharide-induced liver injury model. Oral administration of daumone improves survival in mice and delivers anti-aging effects to the aged liver by modulating chronic inflammation, indicating that daumone could be developed as an anti-aging compound.  相似文献   

3.
Previously we reported that CFL-1, the single LRR-type F-box protein in the Caenorhabditis elegans genome, affected defecation behavior and daumone response. CFL-1 is highly homologous to the FBXL20 in mammals, which regulates synaptic vesicle release by targeting its substrate Rim1 for ubiquitin-mediated degradation. The worm homolog of Rim1 is UNC-10, a presynaptic membrane protein that triggers synaptic vesicle fusion through interaction with RAB-3 GTPase. To examine if CFL-1 exerts its modulatory effect on the defecation and daumone response via ubiquitination of UNC-10, we performed RNAi knock-down of CFL-1 in the unc-10(e102) mutant background. We noticed additive increase in defecation interval when the activities of both CFL-1 and UNC-10 were compromised. Also, the degree of dauer formation upon daumone treatment in unc-10 mutants treated with CFL-1 RNAi decreased further than the level observed in untreated mutants or wild type N2 worms with CFL-1 RNAi knock-down. Our data suggest that CFL-1 affects defecation frequency and daumone response in C. elegans through the ubiquitination of UNC-10.  相似文献   

4.
When Caenorhabditis elegans senses dauer pheromone (daumone), signaling inadequate growth conditions, it enters the dauer state, which is capable of long-term survival. However, the molecular pathway of dauer entry in C. elegans has remained elusive. To systematically monitor changes in gene expression in dauer paths, we used a DNA microarray containing 22,625 gene probes corresponding to 22,150 unique genes from C. elegans. We employed two different paths: direct exposure to daumone (Path 1) and normal growth media plus liquid culture (Path 2). Our data reveal that entry into dauer is accomplished through the multi-step process, which appears to be compartmentalized in time and according to metabolic flux. That is, a time-course of dauer entry in Path 1 shows that dauer larvae formation begins at post-embryonic stage S4 (48 h) and is complete at S6 (72 h). Our results also suggest the presence of a unique adaptive metabolic control mechanism that requires both stage-specific expression of specific genes and tight regulation of different modes of fuel metabolite utilization to sustain the energy balance in the context of prolonged survival under adverse growth conditions. It is apparent that worms entering dauer stage may rely heavily on carbohydrate-based energy reserves, whereas dauer larvae utilize fat or glyoxylate cycle-based energy sources. We created a comprehensive web-based dauer metabolic database for C. elegans (www.DauerDB.org) that makes it possible to search any gene and compare its relative expression at a specific stage, or evaluate overall patterns of gene expression in both paths. This database can be accessed by the research community and could be widely applicable to other related nematodes as a molecular atlas.  相似文献   

5.
6.
In response to stressful growth conditions of high population density, food scarcity, and elevated temperature, young larvae of nematode Caenorhabditis elegans can enter a developmentally arrested stage called dauer that is characterized by dramatic anatomic and metabolic remodeling. Genetic analysis of dauer formation of C. elegans has served as an experimental paradigm for the identification and characterization of conserved neuroendocrine signaling pathways. Here, we report the identification and characterization of a conserved c-Jun N-terminal Kinase-like mitogen-activated protein kinase (MAPK) pathway that is required for dauer formation in response to environmental stressors. We observed that loss-of-function mutations in the MLK-1-MEK-1-KGB-1 MAPK pathway suppress dauer entry. A loss-of-function mutation in the VHP-1 MAPK phosphatase, a negative regulator of KGB-1 signaling, results in constitutive dauer formation, which is dependent on the presence of dauer pheromone but independent of diminished food levels or elevated temperatures. Our data suggest that the KGB-1 pathway acts in the sensory neurons, in parallel to established insulin and TGF-β signaling pathways, to transduce the dauer-inducing environmental cues of diminished food levels and elevated temperature.  相似文献   

7.
Lee SS  Schroeder FC 《PLoS biology》2012,10(4):e1001307
Larvae of the nematode Caenorhabditis elegans must choose between reproductive development and dauer diapause. This decision is based on sensing of environmental inputs and dauer pheromone, a small molecule signal that serves to monitor population density. These signals are integrated via conserved neuroendocrine pathways that converge on steroidal ligands of the nuclear receptor DAF-12, a homolog of the mammalian vitamin D receptor and liver X receptor. DAF-12 acts as the main switch between gene expression programs that drive either reproductive development or dauer entry. Extensive studies in the past two decades demonstrated that biosynthesis of two bile acid-like DAF-12 ligands, named dafachronic acids (DA), controls developmental fate. In this issue of PLoS Biology, Wollam et al. showed that a conserved steroid-modifying enzyme, DHS-16, introduces a key feature in the structures of the DAF-12 ligands, closing a major gap in the DA biosynthesis pathway. The emerging picture of DA biosynthesis in C. elegans enables us to address a key question in the field: how are complex environmental signals integrated to enforce binary, organism-wide decisions on developmental fate? Schaedel et al. demonstrated that pheromone and DA serve as competing signals, and that a positive feedback loop based on regulation of DA biosynthesis ensures organism-wide commitment to reproductive development. Considering that many components of DA signaling are highly conserved, ongoing studies in C. elegans may reveal new aspects of bile acid function and lifespan regulation in mammals. C. elegans normally goes through a simple life cycle: from egg, through four larval stages, to reproductive adult. However, under adverse environmental conditions, these worms enter an alternate third larval stage termed dauer. Compared to normal third stage larvae, dauer larvae have dramatically different metabolism and physiology, and distinct morphology and behavior [1], which confer greatly increased stress resistance and facilitate dispersal. When environmental conditions improve, C. elegans exit dauer and resume reproductive development. The dauer stage is generally considered as “non-aging,” as dauers can persist for months before recovering to develop into a reproductive adult that lives the normal lifespan of a few weeks. Not surprisingly, recent findings suggest that re-activation of some of the molecular signature of dauer later in life contributes to prolonged longevity in C. elegans [2].  相似文献   

8.
9.

Background

The soybean cyst nematode Heterodera glycines is the most important parasite in soybean production worldwide. A comprehensive analysis of large-scale gene expression changes throughout the development of plant-parasitic nematodes has been lacking to date.

Results

We report an extensive genomic analysis of H. glycines, beginning with the generation of 20,100 expressed sequence tags (ESTs). In-depth analysis of these ESTs plus approximately 1,900 previously published sequences predicted 6,860 unique H. glycines genes and allowed a classification by function using InterProScan. Expression profiling of all 6,860 genes throughout the H. glycines life cycle was undertaken using the Affymetrix Soybean Genome Array GeneChip. Our data sets and results represent a comprehensive resource for molecular studies of H. glycines. Demonstrating the power of this resource, we were able to address whether arrested development in the Caenorhabditis elegans dauer larva and the H. glycines infective second-stage juvenile (J2) exhibits shared gene expression profiles. We determined that the gene expression profiles associated with the C. elegans dauer pathway are not uniformly conserved in H. glycines and that the expression profiles of genes for metabolic enzymes of C. elegans dauer larvae and H. glycines infective J2 are dissimilar.

Conclusion

Our results indicate that hallmark gene expression patterns and metabolism features are not shared in the developmentally arrested life stages of C. elegans and H. glycines, suggesting that developmental arrest in these two nematode species has undergone more divergent evolution than previously thought and pointing to the need for detailed genomic analyses of individual parasite species.  相似文献   

10.
Changes in the cytoplasm of prothoracic gland cells were compared in pharate adults, dauer pupae, and aminophylline inhibited pupae of H. cecropia. For the first 3 to 4 days after transfer from 4 to 22°C, a similar sequence of changes in the cytoplasmic elements was observed. At day 4 the cytoplasm of pharate adults exhibited further differentiation which was consistent with the initiation of secretion, while dauer and inhibited pupae remained at the stage achieved at day 4 and did not advance further even after a substantial lapse of time. These results are interpreted as indicating that the early changes represent a response by the cells to the temperature change, while the initiation of secretion requires the intervention of brain hormone.  相似文献   

11.
How any complex trait has evolved is a fascinating question, yet the evolution of parasitism among the nematodes is arguably one of the most arresting. How did free-living nematodes cross that seemingly insurmountable evolutionary chasm between soil dwelling and survival inside another organism? Which of the many finely honed responses to the varied and harsh environments of free-living nematodes provided the material upon which natural selection could act? Although several complementary theories explain this phenomenon, I will focus on the dauer hypothesis. The dauer hypothesis posits that the arrested third-stage dauer larvae of free-living nematodes such as Caenorhabditis elegans are, due to their many physiological similarities with infective third-stage larvae of parasitic nematodes, a pre-adaptation to parasitism. If so, then a logical extension of this hypothesis is that the molecular pathways which control entry into and recovery from dauer formation by free-living nematodes in response to environmental cues have been co-opted to control the processes of infective larval arrest and activation in parasitic nematodes. The molecular machinery that controls dauer entry and exit is present in a wide range of parasitic nematodes. However, the developmental outputs of the different pathways are both conserved and divergent, not only between populations of C. elegans or between C. elegans and parasitic nematodes but also between different species of parasitic nematodes. Thus the picture that emerges is more nuanced than originally predicted and may provide insights into the evolution of such an interesting and complex trait.  相似文献   

12.
Succinoyl trehalose lipids (STLs) are promising glycolipid biosurfactants produced from n-alkanes that are secreted by Rhodococcus species bacteria. These compounds not only exhibit unique interfacial properties but also demonstrate versatile biochemical actions. In this study, three novel types of genes involved in the biosynthesis of STLs, including a putative acyl coenzyme A (acyl-CoA) transferase (tlsA), fructose-bisphosphate aldolase (fda), and alkane monooxygenase (alkB), were identified. The predicted functions of these genes indicate that alkane metabolism, sugar synthesis, and the addition of acyl groups are important for the biosynthesis of STLs. Based on these results, we propose a biosynthesis pathway for STLs from alkanes in Rhodococcus sp. strain SD-74. By overexpressing tlsA, we achieved a 2-fold increase in the production of STLs. This study advances our understanding of bacterial glycolipid production in Rhodococcus species.  相似文献   

13.
Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian Go and Gq homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans. [BMB Reports 2014; 47(2): 80-85]  相似文献   

14.
The mechanisms controlling stress-induced phenotypic plasticity in animals are frequently complex and difficult to study in vivo. A classic example of stress-induced plasticity is the dauer stage of C. elegans. Dauers are an alternative developmental larval stage formed under conditions of low concentrations of bacterial food and high concentrations of a dauer pheromone. Dauers display extensive developmental and behavioral plasticity. For example, a set of four inner-labial quadrant (IL2Q) neurons undergo extensive reversible remodeling during dauer formation. Utilizing the well-known environmental pathways regulating dauer entry, a previously established method for the production of crude dauer pheromone from large-scale liquid nematode cultures is demonstrated. With this method, a concentration of 50,000 - 75,000 nematodes/ml of liquid culture is sufficient to produce a highly potent crude dauer pheromone. The crude pheromone potency is determined by a dose-response bioassay. Finally, the methods used for in vivo time-lapse imaging of the IL2Qs during dauer formation are described.  相似文献   

15.
16.
Toh E  Kurtz HD  Brun YV 《Journal of bacteriology》2008,190(21):7219-7231
Caulobacter crescentus cells adhere to surfaces by using an extremely strong polar adhesin called the holdfast. The polysaccharide component of the holdfast is comprised in part of oligomers of N-acetylglucosamine. The genes involved in the export of the holdfast polysaccharide and the anchoring of the holdfast to the cell were previously discovered. In this study, we identified a cluster of polysaccharide biosynthesis genes (hfsEFGH) directly adjacent to the holdfast polysaccharide export genes. Sequence analysis indicated that these genes are involved in the biosynthesis of the minimum repeat unit of the holdfast polysaccharide. HfsE is predicted to be a UDP-sugar lipid-carrier transferase, the glycosyltransferase that catalyzes the first step in polysaccharide biosynthesis. HfsF is predicted to be a flippase, HfsG is a glycosyltransferase, and HfsH is similar to a polysaccharide (chitin) deacetylase. In-frame hfsG and hfsH deletion mutants resulted in severe deficiencies both in surface adhesion and in binding to the holdfast-specific lectin wheat germ agglutinin. In contrast, hfsE and hfsF mutants exhibited nearly wild-type levels of adhesion and holdfast synthesis. We identified three paralogs to hfsE, two of which are redundant to hfsE for holdfast synthesis. We also identified a redundant paralog to the hfsC gene, encoding the putative polysaccharide polymerase, and present evidence that the hfsE and hfsC paralogs, together with the hfs genes, are absolutely required for proper holdfast synthesis.  相似文献   

17.
18.
19.
The mechanisms for the enhancement of pristinamycin production in the high-yielding recombinants of Streptomyces pristinaespiralis obtained by genome shuffling were investigated by quantitative real-time PCR (Q-PCR) and amplified fragment length polymorphism (AFLP) techniques. Q-PCR analysis showed that snaB and snbA involved, respectively, in the biosynthesis of pristinamycins II and I component had more extended high expression in the recombinant than that in the ancestor during fermentation process, indicating their expression changes might be key factors during the biosynthesis of the antibiotic. In addition, the antecedent establishment of the high self-resistance to pristinamycin, because ptr resistance gene started high-level expression ahead of the onset of the antibiotic production in the recombinant, might also lead to the increase of the antibiotics yield. AFLP analysis of these recombinants revealed genome variation of two novel genes, the homologs of AfsR regulatory gene and transposase gene, indicating these two gene variations were probably responsible for yield improvement of pristinamycin. This study provided several potential molecular clues for pristinamycin yield enhancement.  相似文献   

20.
The dauer larva is a specialized third-larval stage of Caenorhabditis elegans that is long-lived and resistant to environmental insult. The dauer larva is formed in response to a high external concentration of a constitu-tively secreted pheromone. Response to the dauer-inducing pheromone of C. elegans is a promising genetic model for metazoan chemosensory transduction. More than 20 genes have been identified that are required for normal pheromone response. The functions of these genes include production of the pheromone, exposure of sensory neuron endings to the environment, structural and functional integrity of those sensory endings, and the capacity of sensory neurons to make appropriate output. Genetic evidence suggests that two partially redundant sensory pathways act in concert to control dauer formation. At least two classes of chemosensory neurons, ADF and ASI, are implicated in the pheromone response. On the basis of on these findings, a speculative model for the pheromone response is proposed. In this model, the neurons ADF and ASI are pheromone sensors that repress dauer formation in the absence of pheromone and dere-press dauer formation in response to pheromone. It is currently unclear whether or not the two genetically defined sensory pathways both act in ADF and ASI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号