共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Lucía B. Chemes María G. Noval Ignacio E. Sánchez Gonzalo de Prat-Gay 《The Journal of biological chemistry》2013,288(26):18923-18938
The retinoblastoma tumor suppressor (Rb) controls the proliferation, differentiation, and survival of cells in most eukaryotes with a role in the fate of stem cells. Its inactivation by mutation or oncogenic viruses is required for cellular transformation and eventually carcinogenesis. The high conservation of the Rb cyclin fold prompted us to investigate the link between conformational stability and ligand binding properties of the RbAB pocket domain. RbAB unfolding presents a three-state transition involving cooperative secondary and tertiary structure changes and a partially folded intermediate that can oligomerize. The first transition corresponds to unfolding of the metastable B subdomain containing the binding site for the LXCXE motif present in cellular and viral targets, and the second transition corresponds to the stable A subdomain. The low thermodynamic stability of RbAB translates into a propensity to rapidly oligomerize and aggregate at 37 °C (T50 = 28 min) that is suppressed by human papillomavirus E7 and E2F peptide ligands, suggesting that Rb is likely stabilized in vivo through binding to target proteins. We propose that marginal stability and associated oligomerization may be conserved for function as a “hub” protein, allowing the formation of multiprotein complexes, which could constitute a robust mechanism to retain its cell cycle regulatory role throughout evolution. Decreased stability and oligomerization are shared with the p53 tumor suppressor, suggesting a link between folding and function in these two essential cell regulators that are inactivated in most cancers and operate within multitarget signaling pathways. 相似文献
5.
Sara Crowell Lyn M. Wancket Yasmine Shakibi Pingping Xu Jianjing Xue Lobelia Samavati Leif D. Nelin Yusen Liu 《The Journal of biological chemistry》2014,289(42):28753-28764
MAPK phosphatases (MKPs) are critical modulators of the innate immune response, and yet the mechanisms regulating their accumulation remain poorly understood. In the present studies, we investigated the role of post-translational modification in the accumulation of MKP-1 and MKP-2 in macrophages following LPS stimulation. We found that upon LPS stimulation, MKP-1 and MKP-2 accumulated with different kinetics: MKP-1 level peaked at ∼1 h, while MKP-2 levels continued to rise for at least 6 h. Accumulation of both MKP-1 and MKP-2 were attenuated by inhibition of the ERK cascade. Interestingly, p38 inhibition prior to LPS stimulation had little effect on MKP-1 and MKP-2 protein levels, but hindered their detection by an M-18 MKP-1 antibody. Studies of the epitope sequence recognized by the M-18 MKP-1 antibody revealed extensive phosphorylation of two serine residues in the C terminus of both MKP-1 and MKP-2 by the ERK pathway. Remarkably, the stability of both MKP-1 and MKP-2 was markedly decreased in macrophages in the presence of an ERK pathway inhibitor. Mutation of the two C-terminal serine residues in MKP-1 and MKP-2 to alanine decreased their half-lives, while mutating these residues to aspartate dramatically increased their half-lives. Deletion of the C terminus from MKP-1 and MKP-2 also considerably increased their stabilities. Surprisingly, enhanced stabilities of the MKP-1 and MKP-2 mutants were not associated with decreased ubiquitination. Degradation of both MKP-1 and MKP-2 was attenuated by proteasomal inhibitors. Our studies suggest that MKP-1 and MKP-2 stability is regulated by ERK-mediated phosphorylation through a degradation pathway independent of polyubiquitination. 相似文献
6.
7.
Chenxi Shen Stephanie Y. Jo Chenzhong Liao Jay L. Hess Zaneta Nikolovska-Coleska 《The Journal of biological chemistry》2013,288(42):30585-30596
The MLL fusion proteins, AF9 and ENL, activate target genes in part via recruitment of the histone methyltransferase DOT1L (disruptor of telomeric silencing 1-like). Here we report biochemical, biophysical, and functional characterization of the interaction between DOT1L and MLL fusion proteins, AF9/ENL. The AF9/ENL-binding site in human DOT1L was mapped, and the interaction site was identified to a 10-amino acid region (DOT1L865–874). This region is highly conserved in DOT1L from a variety of species. Alanine scanning mutagenesis analysis shows that four conserved hydrophobic residues from the identified binding motif are essential for the interactions with AF9/ENL. Binding studies demonstrate that the entire intact C-terminal domain of AF9/ENL is required for optimal interaction with DOT1L. Functional studies show that the mapped AF9/ENL interacting site is essential for immortalization by MLL-AF9, indicating that DOT1L interaction with MLL-AF9 and its recruitment are required for transformation by MLL-AF9. These results strongly suggest that disruption of interaction between DOT1L and AF9/ENL is a promising therapeutic strategy with potentially fewer adverse effects than enzymatic inhibition of DOT1L for MLL fusion protein-associated leukemia. 相似文献
8.
9.
Christopher H. Douse Judith L. Green Paula S. Salgado Peter J. Simpson Jemima C. Thomas Gordon Langsley Anthony A. Holder Edward W. Tate Ernesto Cota 《The Journal of biological chemistry》2012,287(44):36968-36977
The interaction between the C-terminal tail of myosin A (MyoA) and its light chain, myosin A tail domain interacting protein (MTIP), is an essential feature of the conserved molecular machinery required for gliding motility and cell invasion by apicomplexan parasites. Recent data indicate that MTIP Ser-107 and/or Ser-108 are targeted for intracellular phosphorylation. Using an optimized MyoA tail peptide to reconstitute the complex, we show that this region of MTIP is an interaction hotspot using x-ray crystallography and NMR, and S107E and S108E mutants were generated to mimic the effect of phosphorylation. NMR relaxation experiments and other biophysical measurements indicate that the S108E mutation serves to break the tight clamp around the MyoA tail, whereas S107E has a smaller but measurable impact. These data are consistent with physical interactions observed between recombinant MTIP and native MyoA from Plasmodium falciparum lysates. Taken together these data support the notion that the conserved interactions between MTIP and MyoA may be specifically modulated by this post-translational modification. 相似文献
10.
Michael A. Jamros Leandro C. Oliveira Paul C. Whitford José N. Onuchic Joseph A. Adams Donald K. Blumenthal Patricia A. Jennings 《The Journal of biological chemistry》2010,285(46):36121-36128
C-terminal Src kinase (Csk) phosphorylates and down-regulates the Src family tyrosine kinases (SFKs). Crystallographic studies of Csk found an unusual arrangement of the SH2 and SH3 regulatory domains about the kinase core, forming a compact structure. However, recent structural studies of mutant Csk in the presence of an inhibitor indicate that the enzyme accesses an expanded structure. To investigate whether wt-Csk may also access open conformations we applied small angle x-ray scattering (SAXS). We find wt-Csk frequently occupies an extended conformation where the regulatory domains are removed from the kinase core. In addition, all-atom structure-based simulations indicate Csk occupies two free energy basins. These basins correspond to ensembles of distinct global conformations of Csk: a compact structure and an extended structure. The transitions between these structures are entropically driven and accessible via thermal fluctuations that break local interactions. We further characterized the ensemble by generating theoretical scattering curves for mixed populations of conformations from both basins and compared the predicted scattering curves to the experimental profile. This population-combination analysis is more consistent with the experimental data than any rigid model. It suggests that Csk adopts a broad ensemble of conformations in solution, populating extended conformations not observed in the crystal structure that may play an important role in the regulation of Csk. The methodology developed here is broadly applicable to biological macromolecules and will provide useful information about what ensembles of conformations are consistent with the experimental data as well as the ubiquitous dynamic reversible assembly processes inherent in biology. 相似文献
11.
Zhuo Liu Lin Lin Cai Yuan Gerry A. F. Nicolaes Liqing Chen Edward J. Meehan Bruce Furie Barbara Furie Mingdong Huang 《The Journal of biological chemistry》2010,285(12):8824-8829
Factor VIII (FVIII) plays a critical role in blood coagulation by forming the tenase complex with factor IXa and calcium ions on a membrane surface containing negatively charged phospholipids. The tenase complex activates factor X during blood coagulation. The carboxyl-terminal C2 domain of FVIII is the main membrane-binding and von Willebrand factor-binding region of the protein. Mutations of FVIII cause hemophilia A, whereas elevation of FVIII activity is a risk factor for thromboembolic diseases. The C2 domain-membrane interaction has been proposed as a target of intervention for regulation of blood coagulation. A number of molecules that interrupt FVIII or factor V (FV) binding to cell membranes have been identified through high throughput screening or structure-based design. We report crystal structures of the FVIII C2 domain under three new crystallization conditions, and a high resolution (1.15 Å) crystal structure of the FVIII C2 domain bound to a small molecular inhibitor. The latter structure shows that the inhibitor binds to the surface of an exposed β-strand of the C2 domain, Trp2313-His2315. This result indicates that the Trp2313-His2315 segment is an important constituent of the membrane-binding motif and provides a model to understand the molecular mechanism of the C2 domain membrane interaction. 相似文献
12.
Fasken MB Leung SW Banerjee A Kodani MO Chavez R Bowman EA Purohit MK Rubinson ME Rubinson EH Corbett AH 《The Journal of biological chemistry》2011,286(43):37429-37445
13.
Emil Bulatov Esther M. Martin Sneha Chatterjee Axel Knebel Satoko Shimamura Albert Konijnenberg Clare Johnson Nico Zinn Paola Grandi Frank Sobott Alessio Ciulli 《The Journal of biological chemistry》2015,290(7):4178-4191
The multisubunit cullin RING E3 ubiquitin ligases (CRLs) target post-translationally modified substrates for ubiquitination and proteasomal degradation. The suppressors of cytokine signaling (SOCS) proteins play important roles in inflammatory processes, diabetes, and cancer and therefore represent attractive targets for therapeutic intervention. The SOCS proteins, among their other functions, serve as substrate receptors of CRL5 complexes. A member of the CRL family, SOCS2-EloBC-Cul5-Rbx2 (CRL5SOCS2), binds phosphorylated growth hormone receptor as its main substrate. Here, we demonstrate that the components of CRL5SOCS2 can be specifically pulled from K562 human cell lysates using beads decorated with phosphorylated growth hormone receptor peptides. Subsequently, SOCS2-EloBC and full-length Cul5-Rbx2, recombinantly expressed in Escherichia coli and in Sf21 insect cells, respectively, were used to reconstitute neddylated and unneddylated CRL5SOCS2 complexes in vitro. Finally, diverse biophysical methods were employed to study the assembly and interactions within the complexes. Unlike other E3 ligases, CRL5SOCS2 was found to exist in a monomeric state as confirmed by size exclusion chromatography with inline multiangle static light scattering and native MS. Affinities of the protein-protein interactions within the multisubunit complex were measured by isothermal titration calorimetry. A structural model for full-size neddylated and unneddylated CRL5SOCS2 complexes is supported by traveling wave ion mobility mass spectrometry data. 相似文献
14.
15.
Endalkachew Ashenafi Alemu Trond Lamark Knut Martin Torgersen Aasa Birna Birgisdottir Kenneth Bowitz Larsen Ashish Jain Hallvard Olsvik Aud ?vervatn Vladimir Kirkin Terje Johansen 《The Journal of biological chemistry》2012,287(47):39275-39290
Autophagy is a lysosome-dependent degradation system conserved among eukaryotes. The mammalian Atg1 homologues, Unc-51 like kinase (ULK) 1 and 2, are multifunctional proteins with roles in autophagy, neurite outgrowth, and vesicle transport. The mammalian ULK complex involved in autophagy consists of ULK1, ULK2, ATG13, FIP200, and ATG101. We have used pulldown and peptide array overlay assays to study interactions between the ULK complex and six different ATG8 family proteins. Strikingly, in addition to ULK1 and ULK2, ATG13 and FIP200 interacted with human ATG8 proteins, all with strong preference for the GABARAP subfamily. Similarly, yeast and Drosophila Atg1 interacted with their respective Atg8 proteins, demonstrating the evolutionary conservation of the interaction. Use of peptide arrays allowed precise mapping of the functional LIR motifs, and two-dimensional scans of the ULK1 and ATG13 LIR motifs revealed which substitutions that were tolerated. This information, combined with an analysis of known LIR motifs, provides us with a clearer picture of sequence requirements for LIR motifs. In addition to the known requirements of the aromatic and hydrophobic residues of the core motif, we found the interactions to depend strongly on acidic residues surrounding the central core LIR motifs. A preference for either a hydrophobic residue or an acidic residue following the aromatic residue in the LIR motif is also evident. Importantly, the LIR motif is required for starvation-induced association of ULK1 with autophagosomes. Our data suggest that ATG8 proteins act as scaffolds for assembly of the ULK complex at the phagophore. 相似文献
16.
Mateen A. Khan Hasan Yumak Dixie J. Goss 《The Journal of biological chemistry》2009,284(51):35461-35470
The wheat germ eukaryotic translation initiation factor (eIF) 4F binds tightly to the mRNA internal ribosome entry site (IRES) of tobacco etch virus (TEV) to promote translation initiation. When eIF4F is limiting, TEV is preferentially translated compared with host cell mRNA. To gain insight into the dynamic process of protein synthesis initiation and the mechanism of binding, the kinetics of eIF4F binding to TEV IRES were examined. The association rate constant (kon) and dissociation rate constant (koff) for eIF4F binding to IRES were 59 ± 2.1 μm−1 s−1 and 12.9 ± 0.3 s−1, respectively, comparable with the rates for capped RNA. Binding of eIF4E or eIF4F to the cap of mRNA is the rate-limiting step for initiation of cap-dependent protein synthesis. The concentration dependence of the reactions suggested a simple one-step association mechanism. However, the association rate was reduced more than 10-fold when KCl concentration was increased from 50 to 300 mm, whereas the dissociation rate constant was increased 2-fold. The addition of eIF4B and poly(A)-binding protein enhanced the association rate of eIF4F ∼3-fold. These results suggest a mechanism where eIF4F initially binds electrostatically, followed by a conformational change to further stabilize binding. Poly(A)-binding protein and eIF4B mainly affect the eIF4F/TEV association rate. These results demonstrate the first direct kinetic measurements of translation initiation factor binding to an IRES. 相似文献
17.
Silke Wollers Gunhild Layer Ricardo Garcia-Serres Luca Signor Martin Clemancey Jean-Marc Latour Marc Fontecave Sandrine Ollagnier de Choudens 《The Journal of biological chemistry》2010,285(30):23331-23341
Assembly of iron-sulfur (Fe-S) clusters and maturation of Fe-S proteins in vivo require complex machineries. In Escherichia coli, under adverse stress conditions, this process is achieved by the SUF system that contains six proteins as follows: SufA, SufB, SufC, SufD, SufS, and SufE. Here, we provide a detailed characterization of the SufBCD complex whose function was so far unknown. Using biochemical and spectroscopic analyses, we demonstrate the following: (i) the complex as isolated exists mainly in a 1:2:1 (B:C:D) stoichiometry; (ii) the complex can assemble a [4Fe-4S] cluster in vitro and transfer it to target proteins; and (iii) the complex binds one molecule of flavin adenine nucleotide per SufBC2D complex, only in its reduced form (FADH2), which has the ability to reduce ferric iron. These results suggest that the SufBC2D complex functions as a novel type of scaffold protein that assembles an Fe-S cluster through the mobilization of sulfur from the SufSE cysteine desulfurase and the FADH2-dependent reductive mobilization of iron. 相似文献
18.
Isabel Cruz-Gallardo Irene Díaz-Moreno Antonio Díaz-Quintana Antonio Donaire Adrián Velázquez-Campoy Rachel D. Curd Kaveri Rangachari Berry Birdsall Andres Ramos Anthony A. Holder Miguel A. De la Rosa 《The Journal of biological chemistry》2013,288(29):20896-20907
The discovery of effective new antimalarial agents is urgently needed. One of the most frequently studied molecules anchored to the parasite surface is the merozoite surface protein-1 (MSP1). At red blood cell invasion MSP1 is proteolytically processed, and the 19-kDa C-terminal fragment (MSP119) remains on the surface and is taken into the red blood cell, where it is transferred to the food vacuole and persists until the end of the intracellular cycle. Because a number of specific antibodies inhibit erythrocyte invasion and parasite growth, MSP119 is therefore a promising target against malaria. Given the structural homology of cupredoxins with the Fab domain of monoclonal antibodies, an approach combining NMR and isothermal titration calorimetry (ITC) measurements with docking calculations based on BiGGER is employed on MSP119-cupredoxin complexes. Among the cupredoxins tested, rusticyanin forms a well defined complex with MSP119 at a site that overlaps with the surface recognized by the inhibitory antibodies. The addition of holo-rusticyanin to infected cells results in parasitemia inhibition, but negligible effects on parasite growth can be observed for apo-rusticyanin and other proteins of the cupredoxin family. These findings point to rusticyanin as an excellent therapeutic tool for malaria treatment and provide valuable information for drug design. 相似文献
19.
The brown alga Agarum clathratum (Dumortier) is the only large, perennial, fleshy macrophyte commonly found on urchin‐dominated barrens in the northwestern North Atlantic. We examined the spatial and temporal stability of A. clathratum stands and their impact on algal recruitment in the Mingan Islands, northern Gulf of St. Lawrence. The stands were highly stable in space and time, with only small intersite variations. The percent cover of A. clathratum in 144‐m2 areas increased by 6.5%–11.4% over a 2‐year period, and most changes in abundance occurred at the edge of the stands. The surface area of small (<13 m2) single stands of A. clathratum increased by approximately 1.8%·month?1, although marked increases (>95%) occurred during winter, largely because adjacent stands merged into larger single stands. Mature stands of A. clathratum appear to enhance algal recruitment, as juvenile A. clathratum and the understory red alga Ptilota serrata (Kützing) were orders of magnitude more abundant inside than outside the stands. The experimental removal of the A. clathratum canopy (1‐m2 portions) had no long‐term effect on the abundance of A. clathratum, which within 14 months had recolonized most of the cleared areas. In contrast to juvenile A. clathratum, the abundance of P. serrata rapidly decreased after canopy removal. Our results demonstrate that A. clathratum stands are a stable component of urchin barrens in spite of the heavy grazing that typically occurs there. Maintenance and expansion of A. clathratum stands and associated flora appear to depend on positive interactions with self‐defended adult A. clathratum. 相似文献
20.
We studied the synthesis and binding of phycoerythrin and its associated linkers to the phycobilisome (PBS) in Rhodella violacea (Kornmann) Wehrmeyer and compared the effects of high light and translation inhibitors on these processes. Rhodella violacea has a simple hemidiscoidal PBS structure with a well-known composition. The number of PBSs per cell decreases when irradiance is increased, and at higher irradiances the rods are shortened with a specific loss of the terminal hexamer of phycoerythrin (PE) and its associated linker. To test whether or not the observed variations were due to a coordination between the expression of the chloroplast-encoded PE and the nuclear-encoded linkers, we inhibited the expression of the chloroplast genes by the translation inhibitor chloramphenicol. In the few PBSs synthesized, the linker associated to the terminal PE hexamer was missing while that associated with the intermediate PE hexamer was still present. The inhibition by cycloheximide of the translation of the nuclear-encoded linkers did not influence the synthesis of the chloroplast-encoded phycobiliproteins. The absence of linkers prevented the formation of PE hexamers and their binding to the PBSs. We therefore propose the existence of two levels of regulation for PE and associated linkers: the intermediate PE hexamer and associated linker are always present even though their amount is reduced when irradiance is increased. In contrast, the terminal hexamer of PE and its associated linker are no longer present under high light. Their absence can be due to a feedback control between the level of PE and the synthesis of the linker: when the level of PE is lowered below a given value by the action of light on the chloroplast, a signal coming from the chloroplast reaches the nucleus and the synthesis of the linker is repressed. There is no sign of nuclear regulation of the synthesis of PE, but the nuclear-encoded linkers have a structural role in the formation of PE hexamers. 相似文献