首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Fluorescence microscopy has revealed that the phospholipid cardiolipin (CL) and FlAsH-labeled transporters ProP and LacY are concentrated at the poles of Escherichia coli cells. The proportion of CL among E. coli phospholipids can be varied in vivo as it is decreased by cls mutations and it increases with the osmolality of the growth medium. In this report we compare the localization of CL, ProP, and LacY with that of other cytoplasmic membrane proteins. The proportion of cells in which FlAsH-labeled membrane proteins were concentrated at the cell poles was determined as a function of protein expression level and CL content. Each tagged protein was expressed from a pBAD24-derived plasmid; tagged ProP was also expressed from the chromosome. The osmosensory transporter ProP and the mechanosensitive channel MscS concentrated at the poles at frequencies correlated with the cellular CL content. The lactose transporter LacY was found at the poles at a high and CL-independent frequency. ProW (a component of the osmoregulatory transporter ProU), AqpZ (an aquaporin), and MscL (a mechanosensitive channel) were concentrated at the poles in a minority of cells, and this polar localization was CL independent. The frequency of polar localization was independent of induction (at arabinose concentrations up to 1 mM) for proteins encoded by pBAD24-derived plasmids. Complementation studies showed that ProW, AqpZ, MscS, and MscL remained functional after introduction of the FlAsH tag (CCPGCC). These data suggest that CL-dependent polar localization in E. coli cells is not a general characteristic of transporters, channels, or osmoregulatory proteins. Polar localization can be frequent and CL independent (as observed for LacY), frequent and CL dependent (as observed for ProP and MscS), or infrequent (as observed for AqpZ, ProW, and MscL).Modern developments in fluorescence microscopy have led to a new understanding of the organization of bacterial cells, particularly protein and lipid localization (21, 56). Analysis of the subcellular localization of diverse proteins and lipids has shown that they are not uniformly distributed. The phospholipid cardiolipin (CL) localizes at the poles and septal regions (36), and there is evidence for segregation of phosphatidylethanolamine (PE) from phosphatidylglycerol (PG) in the membranes of living Escherichia coli cells (69). Localization of many proteins that are integral or peripheral to the cytoplasmic membrane has been studied by fusing them to green fluorescent protein (GFP) (or its derivatives), and it is possible to classify the fusion proteins according to their subcellular localization. The first group, comprised of proteins that are concentrated at the cell poles, includes chemoreceptors (31, 62), the lactose permease LacY (43), and the metabolic sensor kinases DcuS and CitA (55). Members of the second group form helices that extend from pole to pole and include MreB (25), MinD (57), the Sec protein export system (58), and RNase E, which is the main component of the RNA degradosome in E. coli (67). Other proteins may appear to be similarly distributed due to their association with the Sec system (58). Members of the third group are uniformly distributed and include the mechanosensitive channel MscL (45) and the sensor kinase KdpD (32).The polar localization of proteins appears to be a critical feature of the complicated internal localization of bacteria. For example, it is important for temporally and spatially accurate placement of the septum during cell division (15). However, the mechanism of protein organization at bacterial cell poles is still unclear, and in many cases its functional role has not been determined. Do the poles merely serve as a receptacle for proteins, superstructures, or membrane domains with no functional effects, or is this location functionally important for membrane proteins and lipids?Recent evidence indicates that the subcellular localization of the transporter ProP in E. coli is related to membrane phospholipid composition, cardiolipin localization, and ProP function (51, 52). E. coli cells from cultures grown to exponential phase contain mostly the zwitterionic phospholipid PE (approximately 75 mol%) and the anionic phospholipids PG (approximately 20 mol%) and CL (approximately 5 mol%) (8). (Note that cardiolipin is diphosphatidylglycerol.) However, the phospholipid composition depends on the bacterial growth conditions. We found that the proportion of CL among E. coli lipids varies directly with growth medium osmolality (68), and increased CL synthesis was at least partially attributed to regulation of the cls locus encoding cardiolipin synthase (52). There is residual CL in cls bacteria, indicating that there is an alternative pathway for CL synthesis (51). The CL-specific fluorescent dye 10-N-nonyl-acridine orange (NAO) was used to show that CL clusters at the poles and septa in growing E. coli cells (36, 52). This result was corroborated by analyzing the phospholipid composition of E. coli minicells (DNA-free cells resulting from asymmetric cell division) (24, 51).ProP is an osmosensory transporter that senses increasing osmolality and responds by mediating the cytoplasmic accumulation of organic osmolytes (e.g., proline, glycine betaine, and ectoine). Biochemical regulation of the ProP protein ensures that ProP activity increases with increasing assay medium osmolality (49). We showed that ProP and CL colocalize at the poles and near the septa of dividing E. coli cells and that the polar concentration of ProP correlates with the polar concentration of CL (52). Moreover, we showed that the osmolality required to activate ProP increased in parallel to the CL content when E. coli was cultivated in media with increasing osmolality (51, 52, 68). The osmolality required to activate ProP was also a direct function of CL content in proteoliposomes reconstituted with purified ProP (51). We concluded that concentration at the cell poles controlled the osmoregulatory function of ProP by placing the transporter in a cardiolipin-rich environment.To determine whether CL-dependent membrane protein localization is a general phenomenon in E. coli, we compared the subcellular localization of ProP with that of its paralogue LacY, a well-characterized lactose transporter (16). LacY and ProP are both members of the major facilitator superfamily and H+ symporters. LacY transports the nutrient lactose, and LacY activity decreases while ProP activity increases with increasing osmolality (9). Nagamori et al. reported polar localization of a LacY-GFP fusion protein in E. coli (43). We confirmed this observation and demonstrated that, in contrast to the behavior of ProP, the polar concentration of LacY did not correlate with the polar concentration of CL (51).In this work we further explored the relationship between CL and protein localization in E. coli. We compared ProP with other proteins related to cellular osmoregulation. Bacteria use arrays of osmoregulatory mechanisms to survive and function when the osmotic pressure of their environment changes. In E. coli, the aquaporin AqpZ mediates transmembrane water flux, the transporters ProP, ProU, BetT, and BetU mediate organic osmolyte accumulation at high osmotic pressure, and the mechanosensitive (MS) channels MscL and MscS mediate solute efflux in response to osmotic downshock (71). Localization of these proteins might be expected since AqpZ might influence cell morphology changes by accelerating water flux at particular positions on the cell surface and the pressure sensitivities of MscL and MscS are known to depend on membrane curvature in vitro (18).For ProP and LacY, we labeled the inserted peptide tag CCPGCC with the biarsenical fluorescein reagent FlAsH-EDT2 (fluorescein arsenical helix binder, bis-EDT adduct) (1, 2) to examine the subcellular localization of AqpZ, the integral membrane component ProW of the osmoregulatory ATP-binding cassette (ABC) transporter ProU, and the MS channel proteins MscS and MscL in cls+ and cls bacteria. Fluorescence microscopy was used to determine the proportion of cells with labeled protein concentrated at the poles as a function of bacterial CL content and protein expression level. For ProP, the frequency with which MscS was concentrated at cell poles was proportional to the level and polar concentration of CL. LacY concentrated at the cell poles at a high and CL-independent frequency. The frequencies with which AqpZ, MscL, and ProW concentrated at the cell poles and septa were low (up to 12%) and CL independent.  相似文献   

2.
Members of the COG2244 protein family are integral membrane proteins involved in synthesis of a variety of extracellular polymers. In several cases, these proteins have been suggested to move lipid-linked oligomers across the membrane or, in the case of Escherichia coli MviN, to flip the lipid II peptidoglycan precursor. Bacillus subtilis SpoVB was the first member of this family implicated in peptidoglycan synthesis and is required for spore cortex polymerization. Three other COG2244 members with high similarity to SpoVB are encoded within the B. subtilis genome. Mutant strains lacking any or all of these genes (yabM, ykvU, and ytgP) in addition to spoVB are viable and produce apparently normal peptidoglycan, indicating that their function is not essential in B. subtilis. Phenotypic changes associated with loss of two of these genes suggest that they function in peptidoglycan synthesis. Mutants lacking YtgP produce long cells and chains of cells, suggesting a role in cell division. Mutants lacking YabM exhibit sensitivity to moenomycin, an antibiotic that blocks peptidoglycan polymerization by class A penicillin-binding proteins. This result suggests that YabM may function in a previously observed alternate pathway for peptidoglycan strand synthesis.The Bacillus subtilis spoVB gene was first identified as a locus in which a mutation could produce a block at a late stage of spore development (14, 30). Analysis of this locus revealed that it encoded an apparent integral membrane protein (33), and a detailed analysis of a spoVB null mutant demonstrated a block at a very early step in synthesis of the spore cortex peptidoglycan (PG) (40). The mutant synthesized essentially no cortex and accumulated cytoplasmic PG precursors, the same phenotype found in other mutant strains blocked in functions known to be directly involved in PG polymerization (40). These results suggested that SpoVB plays a direct role in assembly or function of the spore PG synthesis apparatus.PG synthesis is a highly conserved and complex process that must span the cell membrane (reviewed in reference 38). Soluble nucleotide-linked PG precursors are synthesized in the cytoplasm. N-Acetylmuramic acid with a pentapeptide side chain is then transferred to an undecaprenol lipid carrier to produce lipid I, with subsequent addition of N-acetylglucosamine to produce lipid II, undecaprenyl-pyrophosphoryl-N-acetylmuramic acid (pentapeptide)-N-acetylglucosamine. Lipid II is then flipped across the membrane via an unknown mechanism. Two families of proteins have been postulated to perform this function: the SEDS family of integral membrane proteins, including FtsW, RodA, and SpoVE (13), and, more recently, the COG2244 family (23), which includes SpoVB and the MviN (MurJ) protein of Escherichia coli (35). In both cases, loss of a protein within one of these families has been shown to result in a block in PG synthesis and the accumulation of lipid-linked and/or soluble PG precursors (16, 20, 35, 40).In the standard model of PG synthesis, flippase activity brings the disaccharide-pentapeptide moieties to the penicillin-binding proteins (PBPs), which polymerize the PG macromolecule on the outer surface of the membrane (39). The class A, high-molecular-weight PBPs possess an N-terminal glycosyl transferase domain that polymerizes the disaccharides into polysaccharide chains (38). These chains are cross-linked via the transpeptidase activity within the penicillin-binding, C-terminal domains of both the class A and the class B PBPs. The N-terminal domains of the class A PBPs and the closely related monofunctional glycosyl transferases found in some species are the only defined PG glycan strand polymerases, and in several species the presence of at least one of these enzymes is essential. However, in B. subtilis (26) and Enterococcus faecalis (3), strains lacking all of these known glycosyl transferases are viable and produce PG walls, indicating the presence of another glycosyl transferase capable of this activity. This alternate glycosyl transferase is distinct in that it is relatively resistant to moenomycin (3, 26), an inhibitor of the class A PBP glycosyl transferase activity (6).Given the strong and early block in cortex PG polymerization observed to occur in a spoVB mutant (40), we wished to further analyze the potential role of this class of protein. SpoVB is a member of a relatively large family of proteins, COG2244 (23), some of which are involved in polymerization of other polysaccharides in bacteria, archaea, and eukaryotes. Bioinformatic analysis has generally predicted that these proteins span the membrane 12 to 14 times, and in some cases experimental evidence has supported this structure (7, 24). A role generally ascribed to these proteins is the flipping of lipid-linked oligosaccharides, produced on the inner face of a membrane, to the outside, where the oligosaccharides are then further polymerized or transferred to other substrates. Some prominent members of this family include Wzx, which functions in O-antigen synthesis in gram-negative bacteria (41); TuaB, which functions in teichuronic acid synthesis in B. subtilis (36); and Rft1, which functions in protein glycosylation in eukaryotes (12). MviN is essential in some gram-negative species, including Burkholderia pseudomallei, E. coli, and Sinorhizobium meliloti (22, 34), and has been shown to play a role in E. coli PG synthesis (16, 35). A Rhizobium tropici mutation that truncates mviN approximately 50% into the coding sequence was not lethal (29). However, it is not known whether this was the sole mviN homolog in the genome or whether the truncated gene product might be functional.We have analyzed the phenotypic properties of B. subtilis strains lacking other proteins within the COG2244 family that are most closely related to SpoVB. Results suggest that these proteins also play roles in PG synthesis and that, in one case, this role is in a synthetic system that is relatively moenomycin resistant. We postulate that these proteins function in an alternate pathway for PG synthesis that may involve the flipping of lipid-linked PG oligosaccharides rather than lipid II disaccharides.  相似文献   

3.
A bioinformatic analysis of nearly 400 genomes indicates that the overwhelming majority of bacteria possess homologs of the Escherichia coli proteins FtsL, FtsB, and FtsQ, three proteins essential for cell division in that bacterium. These three bitopic membrane proteins form a subcomplex in vivo, independent of the other cell division proteins. Here we analyze the domains of E. coli FtsL that are involved in the interaction with other cell division proteins and important for the assembly of the divisome. We show that FtsL, as we have found previously with FtsB, packs an enormous amount of information in its sequence for interactions with proteins upstream and downstream in the assembly pathway. Given their size, it is likely that the sole function of the complex of these two proteins is to act as a scaffold for divisome assembly.The division of an Escherichia coli cell into two daughter cells requires a complex of proteins, the divisome, to coordinate the constriction of the three layers of the Gram-negative cell envelope. In E. coli, there are 10 proteins known to be essential for cell division; in the absence of any one of these proteins, cells continue to elongate and to replicate and segregate their chromosomes but fail to divide (29). Numerous additional nonessential proteins have been identified that localize to midcell and assist in cell division (7-9, 20, 25, 34, 56, 59).A localization dependency pathway has been determined for the 10 essential division proteins (FtsZ→FtsA/ZipA→FtsK→FtsQ→FtsL/FtsB→FtsW→FtsI→FtsN), suggesting that the divisome assembles in a hierarchical manner (29). Based on this pathway, a given protein depends on the presence of all upstream proteins (to the left) for its localization and that protein is then required for the localization of the downstream division proteins (to the right). While the localization dependency pathway of cell division proteins suggests that a sequence of interactions is necessary for divisome formation, recent work using a variety of techniques reveals that a more complex web of interactions among these proteins is necessary for a functionally stable complex (6, 10, 19, 23, 24, 30-32, 40). While numerous interactions have been identified between division proteins, further work is needed to define which domains are involved and which interactions are necessary for assembly of the divisome.One subcomplex of the divisome, composed of the bitopic membrane proteins FtsB, FtsL, and FtsQ, appears to be the bridge between the predominantly cytoplasmic cell division proteins and the predominantly periplasmic cell division proteins (10). FtsB, FtsL, and FtsQ share a similar topology: short amino-terminal cytoplasmic domains and larger carboxy-terminal periplasmic domains. This tripartite complex can be divided further into a subcomplex of FtsB and FtsL, which forms in the absence of FtsQ and interacts with the downstream division proteins FtsW and FtsI in the absence of FtsQ (30). The presence of an FtsB/FtsL/FtsQ subcomplex appears to be evolutionarily conserved, as there is evidence that the homologs of FtsB, FtsL, and FtsQ in the Gram-positive bacteria Bacillus subtilis and Streptococcus pneumoniae also assemble into complexes (18, 52, 55).The assembly of the FtsB/FtsL/FtsQ complex is important for the stabilization and localization of one or more of its component proteins in both E. coli and B. subtilis (11, 16, 18, 33). In E. coli, FtsB and FtsL are codependent for their stabilization and for localization to midcell, while FtsQ does not require either FtsB or FtsL for its stabilization or localization to midcell (11, 33). Both FtsL and FtsB require FtsQ for localization to midcell, and in the absence of FtsQ the levels of full-length FtsB are significantly reduced (11, 33). The observed reduction in full-length FtsB levels that occurs in the absence of FtsQ or FtsL results from the degradation of the FtsB C terminus (33). However, the C-terminally degraded FtsB generated upon depletion of FtsQ can still interact with and stabilize FtsL (33).While a portion of the FtsB C terminus is dispensable for interaction with FtsL and for the recruitment of the downstream division proteins FtsW and FtsI, it is required for interaction with FtsQ (33). Correspondingly, the FtsQ C terminus also appears to be important for interaction with FtsB and FtsL (32, 61). The interaction between FtsB and FtsL appears to be mediated by the predicted coiled-coil motifs within the periplasmic domains of the two proteins, although only the membrane-proximal half of the FtsB coiled coil is necessary for interaction with FtsL (10, 32, 33). Additionally, the transmembrane domains of FtsB and FtsL are important for their interaction with each other, while the cytoplasmic domain of FtsL is not necessary for interaction with FtsB, which has only a short 3-amino-acid cytoplasmic domain (10, 33).In this study, we focused on the interaction domains of FtsL. We find that, as with FtsB, the C terminus of FtsL is required for the interaction of FtsQ with the FtsB/FtsL subcomplex while the cytoplasmic domain of FtsL is involved in recruitment of the downstream division proteins. Finally, we provide a comprehensive analysis of the presence of FtsB, FtsL, and FtsQ homologs among bacteria and find that the proteins of this complex are likely more widely distributed among bacteria than was previously thought.  相似文献   

4.
Although peptidoglycan synthesis is one of the best-studied metabolic pathways in bacteria, the mechanism underlying the membrane translocation of lipid II, the undecaprenyl-disaccharide pentapeptide peptidoglycan precursor, remains mysterious. Recently, it was proposed that the essential Escherichia coli mviN gene encodes the lipid II flippase. Bacillus subtilis contains four proteins that are putatively homologous to MviN, including SpoVB, previously reported to be necessary for spore cortex peptidoglycan synthesis during sporulation. MviN complemented the sporulation defect of a ΔspoVB mutation, and SpoVB and another of the B. subtilis homologs, YtgP, complemented the growth defect of an E. coli strain depleted for MviN. Thus, these B. subtilis proteins are likely to be MviN homologs. However, B. subtilis strains lacking these four proteins have no defects in growth, indicating that they likely do not serve as lipid II flippases in this organism.Peptidoglycan synthesis is vital for cell growth and maintenance of cell shape in both gram-positive and gram-negative bacteria. This polymer of glycan chains that are cross-linked by peptide bridges forms an extracellular shell which provides protection against osmotic stresses as well as a sturdy scaffolding for extracellular appendages. The enzymes responsible for peptidoglycan synthesis are highly conserved in all bacteria with a cell wall. In the cytoplasm, the enzymes MurA to MurE synthesize the soluble MurNAc-pentapeptide starting with UDP-GlcNAc. MraY links this molecule to an isoprenoid chain, forming the membrane-associated lipid I precursor. MurG then adds UDP-GlcNAc to make lipid II, which is subsequently flipped across the cytoplasmic membrane and attached by penicillin-binding proteins via transglycosylation and transpeptidation reactions to the mature peptidoglycan.While these cytoplasmic and extracellular steps are well characterized, comparatively little is known about the mechanism of membrane translocation. Fluorescently tagged lipid II does not spontaneously flip in protein-free liposomes (31), as would be expected given its large hydrophilic carbohydrate and protein groups. This observation suggests that that flipping is a protein-mediated process, and, consistent with this prediction, fluorescent lipid II molecules were translocated across vesicles made from Escherichia coli membranes. Genetic data have pointed to proteins belonging to the SEDS family as potential lipid II flippases (14). These proteins are highly conserved and contain multiple membrane-spanning domains (generally 10 to 12 transmembrane helices). Since they are in most cases essential for viability, it has been problematic to demonstrate their function. However, depletion or temperature-sensitive mutations result in phenotypes consistent with a block in peptidoglycan synthesis. A nonessential SEDS protein, Bacillus subtilis SpoVE, is necessary for the formation of peptidoglycan during a later step in spore development (13), and point mutations in SpoVE block peptidoglycan synthesis without disturbing protein production or localization (24).Recently, the integral membrane protein MviN, encoded by an essential E. coli gene, was proposed to be the lipid II flippase (26). Strains carrying a temperature-sensitive mutation in MviN underwent lysis following incubation at the nonpermissive temperature and showed a twofold increase in lipid II accumulation (16). While the operon that includes mviN is essential in the gram-negative bacteria Sinorhizobium meliloti and Burkholderia pseudomallei (20, 25), mviN mutations in Rhizobium tropici, Salmonella enterica serovar Typhimurium, and Bdellovibrio bacteriovorus have not been fully characterized, and therefore the essentiality of MviN in these species remains to be demonstrated (4, 19, 21). Due to the high degree of conservation of other proteins involved in peptidoglycan synthesis between gram-positive and gram-negative bacteria and the essential nature of peptidoglycan synthesis, the protein(s) necessary for flipping of lipid II should also be essential and conserved in a gram-positive organism. We therefore set out to identify and examine the MviN (MurJ) homologs of B. subtilis.  相似文献   

5.
6.
7.
8.
9.
The single polar flagellum of Shewanella oneidensis MR-1 is powered by two different stator complexes, the sodium-dependent PomAB and the proton-driven MotAB. In addition, Shewanella harbors two genes with homology to motX and motY of Vibrio species. In Vibrio, the products of these genes are crucial for sodium-dependent flagellar rotation. Resequencing of S. oneidensis MR-1 motY revealed that the gene does not harbor an authentic frameshift as was originally reported. Mutational analysis demonstrated that both MotX and MotY are critical for flagellar rotation of S. oneidensis MR-1 for both sodium- and proton-dependent stator systems but do not affect assembly of the flagellar filament. Fluorescence tagging of MotX and MotY to mCherry revealed that both proteins localize to the flagellated cell pole depending on the presence of the basal flagellar structure. Functional localization of MotX requires MotY, whereas MotY localizes independently of MotX. In contrast to the case in Vibrio, neither protein is crucial for the recruitment of the PomAB or MotAB stator complexes to the flagellated cell pole, nor do they play a major role in the stator selection process. Thus, MotX and MotY are not exclusive features of sodium-dependent flagellar systems. Furthermore, MotX and MotY in Shewanella, and possibly also in other genera, must have functions beyond the recruitment of the stator complexes.Flagellum-mediated swimming motility is a widespread means of locomotion among bacteria. Flagella consist of protein filaments that are rotated at the filament''s base by a membrane-embedded motor (3, 39). Rotation is powered by electrochemical gradients across the cytoplasmic membrane. Thus far, two coupling ions, sodium ions and protons, have been described as energy sources for bacterial flagellar motors (4, 24, 48). Two major components confer the conversion of the ion flux into rotary motion. The first component forms a rotor-mounted ring-like structure at the base of the flagellar basal body and is referred to as the switch complex or the C ring; it is composed of the proteins FliG, FliM, and FliN. The second major component is the stator system, consisting of membrane-embedded stator complexes that surround the C ring (3). Each stator complex is composed of two subunits in a 4:2 stoichiometry. In Escherichia coli, MotA and MotB constitute the stator complex by forming a proton-specific ion channel; the Na+-dependent counterpart in Vibrio species consists of the orthologs PomA and PomB (1, 5, 49). MotA and PomA both have four transmembrane domains and are thought to interact with FliG via a cytoplasmic segment to generate torque (2, 50). Stator function is presumably made possible by a peptidoglycan-binding motif located at the C-terminal portion of MotB and PomB that anchors the stator complex to the cell wall (1, 8). In E. coli, at least 11 stator complexes can be synchronously involved in driving flagellar rotation (35). However, a single complex is sufficient for rotation of the filament (36, 40). Despite its tight attachment to the peptidoglycan, the stator ring system was found to form a surprisingly dynamic complex. It has been suggested that inactive precomplexes of the stators form a membrane-located pool before being activated upon incorporation into the stator ring system around the motor (13, 45). In E. coli, the turnover time of stator complexes can be as short as 30 s (21).In Vibrio species, two auxiliary proteins, designated MotX and MotY, are required for motor function of the Na+-driven polar flagellar system (22, 23, 28, 31). Recently, it was shown that the proteins associate with the flagellar basal body in Vibrio alginolyticus to form an additional structure, the T ring (42). MotX interacts with MotY and the PomAB stator complexes, and both proteins are thought to be crucial for the acquisition of the stators to the motor of the polar flagellum. (29, 30, 42). A MotY homolog is also associated with the proton-dependent motor system of the lateral flagella of V. alginolyticus that is induced under conditions of elevated viscosity (41).We recently showed that Shewanella oneidensis MR-1 uses two different stator systems to drive the rotation of its single polar flagellum, the Na+-dependent PomAB stator and the proton-driven MotAB stator. As suggested by genetic data, the MotAB stator has been acquired by lateral gene transfer, presumably in the process of adaptation from a marine to a freshwater environment (32). The two different stators are recruited to the motor in a way that depends on the sodium ion concentration in the medium. The Na+-dependent PomAB stator is present at the flagellated cell pole regardless of the sodium ion concentration, whereas the proton-dependent MotAB stator functionally localizes only under conditions of low sodium or in the absence of PomAB. It is still unclear how stator selection is achieved and whether additional proteins play a role in this process.Orthologs of motX and motY have been annotated in S. oneidensis MR-1. We thus hypothesized that MotX and MotY might play a role in stator selection in S. oneidensis MR-1. However, the originally published sequence of motY harbors a frameshift that would result in a drastically truncated protein lacking a functionally relevant putative peptidoglycan-binding domain at its C terminus (16, 18). This situation seemed inconsistent with a role for MotY in S. oneidensis MR-1.Here we describe a functional analysis of the MotX and MotY orthologs in S. oneidensis MR-1. We found that motY does not, in fact, contain a frameshift mutation, so that MotY is translated in its full-length form. Both MotX and MotY were essential for Na+-dependent and proton-dependent motility. Therefore, these proteins have a role in S. oneidensis MR-1 that differs from their function in Vibrio species. We also used fusions to the fluorescent protein mCherry for functional localization studies of MotX and MotY.  相似文献   

10.
11.
12.
13.
14.
The endolysin Lyb5, from Lactobacillus fermentum temperate bacteriophage φPYB5, showed a broad lytic spectrum against Gram-positive as well as Gram-negative bacteria. Sequence analysis revealed that the C terminus of the endolysin Lyb5 (Ly5C) contained three putative lysin motif (LysM) repeat regions, implying that Ly5C was involved in bacterial cell wall binding. To investigate the potential of Ly5C for surface display, green fluorescent protein (GFP) was fused to Ly5C at its N or C terminus and the resulting fusion proteins were expressed in Escherichia coli. After being mixed with various cells in vitro, GFP was successfully displayed on the surfaces of Lactococcus lactis, Lactobacillus casei, Lb. brevis, Lb. plantarum, Lb. fermentum, Lb. delbrueckii, Lb. helveticus, and Streptococcus thermophilus cells. Increases in the fluorescence intensities of chemically pretreated L. lactis and Lb. casei cells compared to those of nonpretreated cells suggested that the peptidoglycan was the binding ligand for Ly5C. Moreover, the pH and concentration of sodium chloride were optimized to enhance the binding capacity of GFP-Ly5C, and high-intensity fluorescence of cells was observed under optimal conditions. All results suggested that Ly5C was a novel anchor for constructing a surface display system for lactic acid bacteria (LAB). To demonstrate the applicability of the Ly5C-mediated surface display system, β-galactosidase (β-Gal) from Paenibacillus sp. strain K1, replacing GFP, was functionally displayed on the surfaces of LAB cells via Ly5C. The success in surface display of GFP and β-Gal opened up the feasibility of employing the cell wall anchor of bacteriophage endolysin for surface display in LAB.Surface display of heterologous proteins or peptides on bacteria is potentially important in several areas of biotechnology, including development of live vaccine delivery systems, diagnostics, whole-cell absorbents, and novel biocatalysts (11). Lactic acid bacteria (LAB) have the status of being generally recognized as safe (GRAS), making them certainly more useful in food and medical applications than other bacterial species. The development of cell surface display systems for LAB has recently become one of the most active research areas. Most of the cell surface display systems for LAB reported thus far have made use of the C terminus of a cell wall-anchoring protein via an LPXTG motif (8, 12, 19, 24). This anchoring mechanism requires processing by a sortase for covalent anchoring of the protein to the cell wall peptidoglycan (15). Various anchoring proteins, such as membrane-spanning protein PgsA (16) and S-layer protein (3), have also been exploited for surface display. However, heterologous proteins have been anchored to the producer cells, and the use of genetically modified organisms is less desirable or at least still being debated. Surface display of heterologous proteins on genetically unmodified Gram-positive bacteria has been successfully carried out using the peptidoglycan binding lysin motif (LysM) domain of the major autolysin AcmA of Lactococcus lactis (1, 2, 4, 18, 28).LysM was first discovered in the lysozyme of Bacillus phage φ29 as a C-terminal repeat composed of 44 amino acids separated by 7 amino acids (6). LysM is a common module found in more than 4,000 proteins of both prokaryotes and eukaryotes (6). Many bacterial proteins containing LysM are peptidoglycan hydrolases, such as p60 (20), Sep (26), LytF (31), AcmA (5), and Mur (7). The best-characterized LysM-containing protein is the N-acetylglucosaminidase AcmA of L. lactis subsp. cremoris MG1363. AcmA is the major autolysin and is required for cell separation and cell lysis during the stationary phase of L. lactis (5). It contains three domains: the N-terminal signal peptide, an active domain, and a C-terminal peptidoglycan anchor (cA) which consists of three LysM repeats (22). Several functional proteins, including malaria parasite surface antigen, β-lactamase, α-amylase, and viral capsid proteins, have been noncovalently bound to cell walls of AcmA-producing and non-AcmA-producing L. lactis as well as several other Gram-positive bacteria via cA (4, 17, 18, 23, 25).Endolysins from bacteriophages are cell wall hydrolases involved in cell lysis to release the progeny particles from the host cells (9, 30). Most endolysins lack a signal peptide and are translocated across the membrane by the aid of the holin protein. This protein typically contains an N-terminal catalytic domain and a C-terminal cell wall binding domain (33). The endolysins Ply118 and Ply500 of a Listeria monocytogenes phage share a unique C-terminal cell wall binding domain which establishes specific recognition of and high-affinity binding to bacterial cell wall carbohydrates (13). The temperate bacteriophage φPYB5, isolated from the Lactobacillus fermentum YB5 strain, has a hexagonal head, noncontractile tails, and several fibers and belongs to Bradley''s group B as defined by the International Committee on Taxonomy of Viruses (32). The sequence of the endolysin gene lyb5 from the genome of φPYB5 has been deposited in GenBank under accession number EF531306, and the gene product has been successfully expressed in Escherichia coli and has shown a broad lytic spectrum (30).Here, we generated a fusion of green fluorescent protein (GFP) to the C terminus of Lyb5 (Ly5C) to construct a surface display system for LAB. The GFP was bound to the surfaces of various LAB cells by the aid of Ly5C. Moreover, by using the system constructed, β-galactosidase (β-Gal) was functionally displayed on the surfaces of LAB cells and retained its activity.  相似文献   

15.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

16.
SpoIID is a membrane-anchored enzyme that degrades peptidoglycan and is essential for engulfment and sporulation in Bacillus subtilis. SpoIID is targeted to the sporulation septum, where it interacts with two other proteins required for engulfment: SpoIIP and SpoIIM. We changed conserved amino acids in SpoIID to alanine to determine whether there was a correlation between the effect of each substitution on the in vivo and in vitro activities of SpoIID. We identified one amino acid substitution, E88A, that eliminated peptidoglycan degradation activity and one, D210A, that reduced it, as well as two substitutions that destabilized the protein in B. subtilis (R106A and K203A). Using these mutants, we show that the peptidoglycan degradation activity of SpoIID is required for the first step of engulfment (septal thinning), as well as throughout membrane migration, and we show that SpoIID levels are substantially above the minimum required for engulfment. The inactive mutant E88A shows increased septal localization compared to the wild type, suggesting that the degradation cycle of the SpoIID/SpoIIP complex is accompanied by the activity-dependent release of SpoIID from the complex and subsequent rebinding. This mutant is also capable of moving SpoIIP across the sporulation septum, suggesting that SpoIID binding, but not peptidoglycan degradation activity, is needed for relocalization of SpoIIP. Finally, the mutant with reduced activity (D210A) causes uneven engulfment and time-lapse microscopy indicates that the fastest-moving membrane arm has greater concentrations of SpoIIP than the slower-moving arm, demonstrating a correlation between SpoIIP protein levels and the rate of membrane migration.Endospore formation is an evolutionarily conserved process that allows Bacillus subtilis and related Gram-positive bacteria to adapt to changes in the environment, such as nutrient depletion. Many dramatic morphological changes occur during sporulation, each requiring a multitude of specialized proteins (reviewed in references 13 and 17). First, a sporulation septum is formed near one of the cell poles, forming two separate compartments of unequal sizes and with differing fates (Fig. (Fig.1A).1A). The smaller of the two, the forespore, will eventually become the spore, while the larger, the mother cell, will ultimately lyse. Next, the mother cell membranes move up and around the forespore in the poorly understood process of engulfment. Although this process is superficially similar to eukaryotic engulfment, it is complicated by the thick cell wall that surrounds and separates the two compartments. After engulfment, the migrating membranes pinch off from the mother cell membrane, thereby releasing the forespore into the cytoplasm of the mother cell, where it can be enveloped with protective coat proteins and eventually released into the environment as a mature spore. Sporulation provides an ideal, nonessential system for understanding how bacterial cells are capable of undergoing dramatic morphological changes.Open in a separate windowFIG. 1.Engulfment in B. subtilis. (A) (i) Engulfment begins with formation of an asymmetric septum that divides the cell into the forespore (FS) and mother cell (MC). SpoIID (orange pacman) and SpoIIP (green pacman) peptidoglycan degradation enzymes localize to the center of the septum. (ii) SpoIID and SpoIIP thin the septal peptidoglycan, starting from the center and moving toward the cell edges. SpoIIQ (purple ball) and SpoIIIAH (red ball) form a zipper across the septum, assembling foci behind the leading edges. (iii) The peptidoglycan degradation enzymes localize to the leading edges during membrane migration, while additional SpoIIQ-SpoIIIAH complexes assemble around the forespore. (iv) Engulfment membrane fission occurs at the top of the forespore, releasing the forespore into the mother cell cytoplasm. (B) Burnt-bridge Brownian ratchet model for membrane migration, adapted from earlier studies (1, 7). (C) Schematic representation of the SpoIID domain structure. The transmembrane domain (TM) and putative enzymatic domain, as defined by Pfam (14), are indicated. Amino acid numbers are below the schematic, and mutations causing in vivo phenotypes are indicated by an “X”.Engulfment involves dynamic protein localization and large-scale rearrangements of cellular membranes and peptidoglycan to accommodate internalization of the forespore. The physical basis for engulfment remains unclear, but two separate protein machineries that contribute to engulfment have been discovered. The first module involves the only three proteins known to be required for engulfment under all physiological conditions: SpoIID, SpoIIM, and SpoIIP (16, 24, 35). Zymography assays have demonstrated that both SpoIID and SpoIIP degrade peptidoglycan in vitro (1, 8), and this function is thought to be essential for engulfment in wild-type cells (1, 2, 8). SpoIID and SpoIIP are membrane-spanning proteins that directly interact both in vivo and in vitro, as demonstrated by coimmunoprecipitation and affinity chromatography techniques (2, 8). These studies failed to demonstrate an interaction between SpoIIM and either SpoIID or SpoIIP, perhaps because SpoIIM is an integral membrane protein. However, SpoIIM is required for localization of SpoIID and SpoIIP (2, 8), suggesting that all three proteins interact to form a peptidoglycan degradation module that is essential for engulfment.The second system influencing membrane migration is the SpoIIQ/SpoIIIAH zipper, which is required for engulfment only under certain conditions (2, 7, 38). SpoIIQ is produced in the forespore (23) and SpoIIIAH is produced in the mother cell (19). SpoIIQ and SpoIIIAH interact both in vitro and in vivo via their extracellular domains (6, 7, 10). Because these two proteins are produced in separate compartments, the only possible place for an interaction is the intermembrane space between the mother cell and forespore, forming a protein-protein zipper between the two cells. This zipperlike interaction is necessary for septal localization of SpoIIIAH and other mother cell proteins (6, 10, 18) and is capable of holding the two cells together when peptidoglycan is removed with lysozyme (7). Surprisingly, digestion of the peptidoglycan with lysozyme also allows membrane migration in about half of treated cells, in a process requiring the SpoIIQ/SpoIIIAH zipper but not the SpoIIDMP peptidoglycan degradation module. The SpoIIQ-SpoIIIAH zipper also contributes to engulfment in living cells, since strains lacking SpoIIQ or SpoIIIAH complete engulfment more slowly than the wild type and have synergistic engulfment defects when certain secondary mutations are introduced (2, 7, 38). Together, these results strongly support a role for the SpoIIQ/SpoIIIAH module in engulfment, demonstrating that the zipper contributes to the efficiency of membrane migration even when the SpoIIDMP module is present and functional. They also suggest that the engulfment machinery displays functional redundancy and that the zipper module provides a backup machinery for membrane migration.The precise role of the SpoIIDMP module during engulfment remains unclear. One model proposes that SpoIID and SpoIIP act as a burnt-bridge Brownian ratchet (Fig. (Fig.1B)1B) (1, 7). This model asserts that as SpoIID and SpoIIP degrade peptidoglycan, they eliminate their own enzymatic targets, resulting in the absence of substrate in one direction and therefore, overall movement in the opposite direction. As the enzymes move forward toward new targets, the mother cell membranes are dragged along with them because they are anchored in the membrane. This hypothesis predicts that SpoIID and SpoIIP are processive enzymes and that the SpoIIDMP complex could function as a motor, moving along peptidoglycan as a track and pulling the membranes with it (1, 7). A second model predicts that peptidoglycan degradation could simply remove a steric hindrance to membrane migration (such as links between the forespore membrane and the cell wall) and that some other mechanism provides the force required for membrane migration. Although the SpoIIQ-SpoIIIAH module can contribute to membrane migration, these proteins are not always essential for engulfment in intact cells (7, 38), suggesting that another unidentified system must generate the force required for membrane movement if the DMP module does not act as a burnt-bridge Brownian ratchet. Recent evidence suggests that peptidoglycan biosynthesis, which is localized to the leading edge of the engulfing membrane and necessary for membrane migration in the absence of the SpoIIQ-SpoIIIAH proteins, might be this missing force generating mechanism (26).Both models predict that the activities of SpoIID and SpoIIP are essential for membrane migration. This requirement has been demonstrated for SpoIIP (8) and, while this work was under review, for SpoIID. SpoIID shows no sequence similarity to any characterized enzyme that degrades peptidoglycan and thus constitutes the founding member of a new class of enzymes that remodel peptidoglycan (1, 27). However, SpoIID does show some similarity to B. subtilis LytB (24), a protein that enhances the activity of the amidase LytC (5, 20, 34), while SpoIIP is related to LytC (14). A recent study demonstrated that SpoIIP is both an amidase and endopeptidase and that SpoIID both activates SpoIIP and functions as a lytic transglycosylase, cleaving peptidoglycan between NAG and NAM (27). Together, these two enzymes degrade peptidoglycan into its smallest repeating subunits. However, it remains unclear which of the demonstrated or suggested biochemical functions of SpoIID are required for its various in vivo activities (interaction with SpoIIP, localization, septal thinning, and membrane migration), and it is unclear whether peptidoglycan degradation activity is required throughout engulfment or only for the initial stage of septal thinning.We use site-directed mutagenesis to test the role of 56 conserved amino acids in SpoIID, focusing on hydrophilic amino acids that might be involved in protein-protein interactions and peptidoglycan degradation. We identified one mutation (E88A) that eliminates and three others (R106A, K203A, and D210A) that reduce peptidoglycan degradation activity and show that SpoIID activity is required for the earliest stage of engulfment (septal thinning), as well as throughout membrane migration. Our results confirm and extend those of Morlot et al. (27) and also demonstrate that SpoIID activity is required throughout engulfment. Furthermore, our data indicate that the enzymatically inactive mutant protein (E88A) shows increased septal localization compared to the wild-type protein, suggesting that peptidoglycan degradation contributes to the release of SpoIID from the septum. We propose a modified model for the enzymatic cycle of the SpoIID and SpoIIP complex.  相似文献   

17.
To investigate the Na+-driven flagellar motor of Vibrio alginolyticus, we attempted to isolate its C-ring structure. FliG but not FliM copurified with the basal bodies. FliM proteins may be easily dissociated from the basal body. We could detect FliG on the MS ring surface of the basal bodies.The basal body, which is the part of the rotor, is composed of four rings and a rod that penetrates them. Three of these rings, the L, P, and MS rings, are embedded in the outer membrane, peptidoglycan layer and in the inner membrane, respectively (1), while the C-ring of Salmonella species is attached to the cytoplasmic side of the basal body (3). The C-ring is composed of the proteins FliG, FliM, and FliN (25), and genetic evidence indicates that the C-ring is important for flagellar assembly, torque generation, and regulation of rotational direction (33, 34). FliG, 26 molecules of which are incorporated into the motor, appears to be the protein that is most directly involved in torque generation (15). Mutational analysis suggests that electrostatic interactions between conserved charged residues in the C-terminal domain of FliG and the cytoplasmic domain of MotA are important in torque generation (14), although this may not be the case for the Na+-type motor of Vibrio alginolyticus (32, 35, 36). FliM interacts with the chemotactic signaling protein CheY in its phosphorylated form (CheY-P) to regulate rotational direction (30). It has been reported that 33 to 35 copies of FliM assemble into a ring structure (28, 29). FliN contributes mostly to forming the C-ring structure (37). The crystal structure of FliN revealed a hydrophobic patch formed by several well-conserved hydrophobic residues (2). Mutational analysis showed that this patch is important for flagellar assembly and rotational switching (23, 24). The association state of FliN in solution was studied by analytical ultracentrifugation, which provided clues to the higher-level organization of the protein. Thermotoga maritima FliN exists primarily as a dimer in solution, and T. maritima FliN and FliM together formed a stable FliM1-FliN4 complex (2). The spatial distribution of these proteins in the C-ring of Salmonella species was investigated using three-dimensional reconstitution analysis with electron microscopy (28). However, the correct positioning has still not been clarified.The Na+-driven motor requires two additional proteins, MotX and MotY, for torque generation (19-21, 22). These proteins form a unique ring structure, the T ring, located below the LP ring in the polar flagellum of V. alginolyticus (9, 26). It has been suggested that MotX interacts with MotY and PomB (11, 27). Unlike peritrichously flagellated Escherichia coli and Salmonella species, V. alginolyticus has two different flagellar systems adapted for locomotion under different circumstances. A single, sheathed polar flagellum is used for motility in low-viscosity environments such as seawater (18). As described above, it is driven by a Na+-type motor. However, in high-viscosity environments, such as the mucus-coated surfaces of fish bodies, cells induce numerous unsheathed lateral flagella that have H+-driven motors (7, 8). We have been focusing on the Na+-driven polar flagellar motor, since there are certain advantages to studying its mechanism of torque generation over the H+-type motor: sodium motive force can be easily manipulated by controlling the Na+ concentration in the medium, and motor rotation can be specifically inhibited using phenamil (10). Moreover, its rotation rate is surprisingly high, up to 1,700 rps (compared to ∼200 rps and ∼300 rps for Salmonella species flagella and E. coli flagella, respectively) (12, 16, 17).Although understanding the C-ring structure and function is essential for clarifying the mechanism of motor rotation, there is no information about the C-ring of the polar flagellar motor of Vibrio species or the flagella of any genus other than Salmonella. Since Vibrio species have all of the genes coding for C-ring components, we would expect its location to be on the cytoplasmic side of the MS ring, as in Salmonella species. In this study, we attempted to isolate the polar flagellar basal body with the C-ring attached and investigate whether it is organized similarly to the H+-driven flagellar motor of Salmonella enterica serovar Typhimurium.  相似文献   

18.
A conjugative plasmid from the catheter-associated urinary tract infection strain Escherichia coli MS2027 was sequenced and annotated. This 42,644-bp plasmid, designated pMAS2027, contains 58 putative genes and is most closely related to plasmids belonging to incompatibility group X (IncX1). Plasmid pMAS2027 encodes two important virulence factors: type 3 fimbriae and a type IV secretion (T4S) system. Type 3 fimbriae, recently found to be functionally expressed in E. coli, played an important role in biofilm formation. Biofilm formation by E. coli MS2027 was specifically due to expression of type 3 fimbriae and not the T4S system. The T4S system, however, accounted for the conjugative ability of pMAS2027 and enabled a non-biofilm-forming strain to grow as part of a mixed biofilm following acquisition of this plasmid. Thus, the importance of conjugation as a mechanism to spread biofilm determinants was demonstrated. Conjugation may represent an important mechanism by which type 3 fimbria genes are transferred among the Enterobacteriaceae that cause device-related infections in nosocomial settings.Bacterial biofilms are complex communities of bacterial cells living in close association with a surface (17). Bacterial cells in these protected environments are often resistant to multiple factors, including antimicrobials, changes in the pH, oxygen radicals, and host immune defenses (19, 38). Biofilm formation is a property of many bacterial species, and a range of molecular mechanisms that facilitate this process have been described (2, 3, 11, 14, 16, 29, 33, 34). Often, the ability to form a biofilm is dependent on the production of adhesins on the bacterial cell surface. In Escherichia coli, biofilm formation is enhanced by the production of certain types of fimbriae (e.g., type 1 fimbriae, type 3 fimbriae, F1C, F9, curli, and conjugative pili) (14, 23, 25, 29, 33, 39, 46), cell surface adhesins (e.g., autotransporter proteins such as antigen 43, AidA, TibA, EhaA, and UpaG) (21, 34, 35, 40, 43), and flagella (22, 45).The close proximity of bacterial cells in biofilms creates an environment conducive for the exchange of genetic material. Indeed, plasmid-mediated conjugation in monospecific and mixed E. coli biofilms has been demonstrated (6, 18, 24, 31). The F plasmid represents the best-characterized conjugative system for biofilm formation by E. coli. The F pilus mediates adhesion to abiotic surfaces and stabilizes the biofilm structure through cell-cell interactions (16, 30). Many other conjugative plasmids also contribute directly to biofilm formation upon derepression of the conjugative function (16).One example of a conjugative system employed by gram-negative Enterobacteriaceae is the type 4 secretion (T4S) system. The T4S system is a multisubunit structure that spans the cell envelope and contains a secretion channel often linked to a pilus or other surface filament or protein (8). The Agrobacterium tumefaciens VirB-VirD4 system is the archetypical T4S system and is encoded by 11 genes in the virB operon and one gene (virD4) in the virD operon (7, 8). Genes with strong homology to genes in the virB operon have also been identified on other conjugative plasmids. For example, the pilX1 to pilX11 genes on the E. coli R6K IncX plasmid and the virB1 to virB11 genes are highly conserved at the nucleotide level (28).We recently described identification and characterization of the mrk genes encoding type 3 fimbriae in a uropathogenic strain of E. coli isolated from a patient with a nosocomial catheter-associated urinary tract infection (CAUTI) (29). The mrk genes were located on a conjugative plasmid (pMAS2027) and were strongly associated with biofilm formation. In this study we determined the entire sequence of plasmid pMAS2027 and revealed the presence of conjugative transfer genes homologous to the pilX1 to pilX11 genes of E. coli R6K (in addition to the mrk genes). We show here that biofilm formation is driven primarily by type 3 fimbriae and that the T4S apparatus is unable to mediate biofilm growth in the absence of the mrk genes. Finally, we demonstrate that conjugative transfer of pMAS2027 within a mixed biofilm confers biofilm formation properties on recipient cells due to acquisition of the type 3 fimbria-encoding mrk genes.  相似文献   

19.
20.
A family 5 glycoside hydrolase from Clostridium phytofermentans was cloned and engineered through a cellulase cell surface display system in Escherichia coli. The presence of cell surface anchoring, a cellulose binding module, or a His tag greatly influenced the activities of wild-type and mutant enzymes on soluble and solid cellulosic substrates, suggesting the high complexity of cellulase engineering. The best mutant had 92%, 36%, and 46% longer half-lives at 60°C on carboxymethyl cellulose, regenerated amorphous cellulose, and Avicel, respectively.The production of biofuels from nonfood cellulosic biomass would benefit the economy, the environment, and national energy security (17, 32). The largest technological and economical obstacle is the release of soluble fermentable sugars at prices competitive with those from sugarcane or corn kernels (17, 31). One of the approaches is discovering new cellulases from cellulolytic microorganisms, followed by cellulase engineering for enhanced performance on pretreated solid substrates. However, cellulase engineering remains challenging because enzymatic cellulose hydrolysis is complicated, involving heterogeneous substrates (33, 37), different action mode cellulase components (18), synergy and/or competition among cellulase components (36, 37), and declining substrate reactivity over the course of conversion (11, 26). Directed enzyme evolution, independent of knowledge of the protein structure and the enzyme-substrate interactions (6, 34), has been conducted to generate endoglucanase mutants, such as enhanced activities on soluble substrates (14, 16, 22), prolonged thermostability (20), changed optimum pH (24, 28), or improved expression levels (21). Here, we cloned and characterized a family 5 glycoside hydrolase (Cel5A) from a cellulolytic bacterium, Clostridium phytofermentans ISDg (ATCC 700394) (29, 30), and engineered it for enhanced thermostability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号