首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell cycle regulation is a very accurate process that ensures cell viability and the genomic integrity of daughter cells. A fundamental part of this regulation consists in the arrest of the cycle at particular points to ensure the completion of a previous event, to repair cellular damage, or to avoid progression in potentially risky situations. In this work, we demonstrate that a reduction in nucleotide levels or the depletion of RNA polymerase I or III subunits generates a cell cycle delay at the G1/S transition in Saccharomyces cerevisiae. This delay is concomitant with an imbalance between ribosomal RNAs and proteins which, among others, provokes an accumulation of free ribosomal protein L5. Consistently with a direct impact of free L5 on the G1/S transition, rrs1 mutants, which weaken the assembly of L5 and L11 on pre-60S ribosomal particles, enhance both the G1/S delay and the accumulation of free ribosomal protein L5. We propose the existence of a surveillance mechanism that couples the balanced production of yeast ribosomal components and cell cycle progression through the accumulation of free ribosomal proteins. This regulatory pathway resembles the p53-dependent nucleolar-stress checkpoint response described in human cells, which indicates that this is a general control strategy extended throughout eukaryotes.  相似文献   

2.
3.
Ubiquitin (Ub) and ubiquitin-like (UBL) proteins regulate a diverse array of cellular pathways through covalent as well as non-covalent interactions with target proteins. Yeast protein Mdy2 (Get5) and its human homolog GdX (Ubl4a) belong to the class of UBL proteins which do not form conjugates with other proteins. Mdy2 is required for cell survival under heat stress and for efficient mating. As part of a complex with Sgt2 and Get4 it has been implicated in the biogenesis of tail-anchored proteins. Interestingly, in response to heat stress, Mdy2 protein that is predominantly localized in the nucleus co-localized with poly(A)-binding protein Pab1 to cytoplasmic stress granules suggesting that nucleocytoplasmic shuttling is of functional importance. Here we investigate the nuclear import of Mdy2, a process that is independent of the Get4/Sgt2 complex but required for stress response. Nuclear import is mediated by an N-terminal nuclear localization signal (NLS) and this process is essential for the heat stress response. In contrast, cells expressing Mdy2 lacking a nuclear export signal (NES) behave like wild type. Importantly, both Mdy2 and Mdy2-ΔNES, but not Mdy2-ΔNLS, physically interact with Pab1 and this interaction correlates with the accumulation in cytoplasmic stress granules. Thus, the nuclear history of the UBL Mdy2 appears to be essential for its function in cytoplasmic stress granules during the rapid cellular response to heat stress.  相似文献   

4.
5.
6.
7.
N-terminal acetylation has been suggested to play a role in the subcellular targeting of proteins, in particular those acetylated by the N-terminal acetyltransferase complex NatC. Based on previous positional proteomics data revealing N-terminal acetylation status and the predicted NAT substrate classes, we selected 13 suitable NatC substrates for subcellular localization studies in Saccharomyces cerevisiae. Fluorescence microscopy analysis of GFP-tagged candidates in the presence or absence of the NatC catalytic subunit Naa30 (Mak3) revealed unaltered localization patterns for all 13 candidates, thus arguing against a general role for the N-terminal acetyl group as a localization determinant. Furthermore, all organelle-localized substrates indicated undisrupted structures, thus suggesting that absence of NatC acetylation does not have a vast effect on organelle morphology in yeast.  相似文献   

8.
MIR233 is genetically or epigenetically silenced in a subset of acute myeloid leukemia (AML). MIR223 is normally expressed throughout myeloid differentiation and highly expressed in hematopoietic stem cells (HSCs). However, the contribution of MIR223 loss to leukemic transformation and HSC function is largely unknown. Herein, we characterize HSC function and myeloid differentiation in Mir223 deficient mice. We show that Mir223 loss results in a modest expansion of myeloid progenitors, but is not sufficient to induce a myeloproliferative disorder. Loss of Mir223 had no discernible effect on HSC quiescence, long-term repopulating activity, or self-renewal capacity. These results suggest that MIR223 loss is likely not an initiating event in AML but may cooperate with other AML associated oncogenes to induce leukemogenesis.  相似文献   

9.
Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM) in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm ) were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.  相似文献   

10.
Plasmodium Calcium Dependent Protein Kinase (CDPK1) is required for the development of sexual stages in the mosquito. In addition, it is proposed to play an essential role in the parasite’s invasive stages possibly through the regulation of the actinomyosin motor and micronemal secretion. We demonstrate that Plasmodium berghei CDPK1 is dispensable in the parasite’s erythrocytic and pre-erythrocytic stages. We successfully disrupted P. berghei CDPK1 (PbCDPK1) by homologous recombination. The recovery of erythrocytic stage parasites lacking PbCDPK1 (PbCDPK1-) demonstrated that PbCDPK1 is not essential for erythrocytic invasion or intra-erythrocytic development. To study PbCDPK1’s role in sporozoites and liver stage parasites, we generated a conditional mutant (CDPK1 cKO). Phenotypic characterization of CDPK1 cKO sporozoites demonstrated that CDPK1 is redundant or dispensable for the invasion of mammalian hepatocytes, the egress of parasites from infected hepatocytes and through the subsequent erythrocytic cycle. We conclude that P. berghei CDPK1 plays an essential role only in the mosquito sexual stages.  相似文献   

11.
12.
Reactive oxygen species cause damage to all of the major cellular constituents, including peroxidation of lipids. Previous studies have revealed that oxidative stress, including exposure to oxidation products, affects the progression of cells through the cell division cycle. This study examined the effect of linoleic acid hydroperoxide, a lipid peroxidation product, on the yeast cell cycle. Treatment with this peroxide led to accumulation of unbudded cells in asynchronous populations, together with a budding and replication delay in synchronous ones. This observed modulation of G1 progression could be distinguished from the lethal effects of the treatment and may have been due to a checkpoint mechanism, analogous to that known to be involved in effecting cell cycle arrest in response to DNA damage. By examining several mutants sensitive to linoleic acid hydroperoxide, the YNL099c open reading frame was found to be required for the arrest. This gene (designated OCA1) encodes a putative protein tyrosine phosphatase of previously unknown function. Cells lacking OCA1 did not accumulate in G1 on treatment with linoleic acid hydroperoxide, nor did they show a budding, replication, or Start delay in synchronous cultures. Although not essential for adaptation or immediate cellular survival, OCA1 was required for growth in the presence of linoleic acid hydroperoxide, thus indicating that it may function in linking growth, stress responses, and the cell cycle. Identification of OCA1 establishes cell cycle arrest as an actively regulated response to oxidative stress and will enable further elucidation of oxidative stress-responsive signaling pathways in yeast.  相似文献   

13.
The target of rapamycin complex 1 (TORC1) is an evolutionarily conserved sensor of nutrient availability. Genetic and pharmacological studies in the yeast Saccharomyces cerevisiae have provided mechanistic insights on the regulation of TORC1 signaling in response to nutrients. Using a highly specific antibody that recognizes phosphorylation of the bona fide TORC1 target ribosomal protein S6 (Rps6) in yeast, we found that nutrients rapidly induce Rps6 phosphorylation in a TORC1-dependent manner. Moreover, we demonstrate that Ypk3, an AGC kinase which exhibits high homology to human S6 kinase (S6K), is required for the phosphorylation of Rps6 in vivo. Rps6 phosphorylation is completely abolished in cells lacking Ypk3 (ypk3Δ), whereas Sch9, previously reported to be the yeast ortholog of S6K, is dispensable for Rps6 phosphorylation. Phosphorylation-deficient mutations in regulatory motifs of Ypk3 abrogate Rps6 phosphorylation, and complementation of ypk3Δ cells with human S6 kinase restores Rps6 phosphorylation in a rapamycin-sensitive manner. Our findings demonstrate that Ypk3 is a critical component of the TORC1 pathway and that the use of a phospho-S6 specific antibody offers a valuable tool to identify new nutrient-dependent and rapamycin-sensitive targets in vivo.  相似文献   

14.
Many auxin responses are dependent on redistribution and/or polar transport of indoleacetic acid. Polar transport of auxin can be inhibited through the application of phytotropins such as 1-naphthylphthalamic acid (NPA). When Arabidopsis thaliana seedlings were grown in the light on medium containing 1.0 μm NPA, hypocotyl and root elongation and gravitropism were strongly inhibited. When grown in darkness, however, NPA disrupted the gravity response but did not affect elongation. The extent of inhibition of hypocotyl elongation by NPA increased in a fluence-rate-dependent manner to a maximum of about 75% inhibition at 50 μmol m−2 s−1 of white light. Plants grown under continuous blue or far-red light showed NPA-induced hypocotyl inhibition similar to that of white-light-grown plants. Plants grown under continuous red light showed less NPA-induced inhibition. Analysis of photoreceptor mutants indicates the involvement of phytochrome and cryptochrome in mediating this NPA response. Hypocotyls of some auxin-resistant mutants had decreased sensitivity to NPA in the light, but etiolated seedlings of these mutants were similar in length to the wild type. These results indicate that light has a significant effect on NPA-induced inhibition in Arabidopsis, and suggest that auxin has a more important role in elongation responses in light-grown than in dark-grown seedlings.  相似文献   

15.
Saccharomyces cerevisiae proteins Cdc4 and Cdc20 contain WD40 repeats and participate in proteolytic processes. However, they are thought to act at two different stages of the cell cycle: Cdc4 is involved in the proteolysis of the Cdk inhibitor, Sic1, necessary for G(1)/S transition, while Cdc20 mediates anaphase-promoting complex-dependent degradation of anaphase inhibitor Pds1, a process necessary for the onset of chromosome segregation. We have isolated three mutant alleles of CDC4 (cdc4-10, cdc4-11, and cdc4-16) which suppress the nuclear division defect of cdc20-1 cells. However, the previously characterized mutation cdc4-1 and a new allele, cdc4-12, do not alleviate the defect of cdc20-1 cells. This genetic interaction suggests an additional role for Cdc4 in G(2)/M. Reexamination of the cdc4-1 mutant revealed that, in addition to being defective in the onset of S phase, it is also defective in G(2)/M transition when released from hydroxyurea-induced S-phase arrest. A second function for CDC4 in late S or G(2) phase was further confirmed by the observation that cells lacking the CDC4 gene are arrested both at G(1)/S and at G(2)/M. We subsequently isolated additional temperature-sensitive mutations in the CDC4 gene (such as cdc4-12) that render the mutant defective in both G(1)/S and G(2)/M transitions at the restrictive temperature. While the G(1)/S block in both cdc4-12 and cdc4Delta mutants is abolished by the deletion of the SIC1 gene (causing the mutants to be arrested predominantly in G(2)/M), the preanaphase arrest in the cdc4-12 mutant is relieved by the deletion of PDS1. Collectively, these observations suggest that, in addition to its involvement in the initiation of S phase, Cdc4 may also be required for the onset of anaphase.  相似文献   

16.
17.
18.
19.
In Saccharomyces cerevisiae, the unconventional myosin Myo2p is of fundamental importance in polarized growth. We explore the role of the neck region and its associated light chains in regulating Myo2p function. Surprisingly, we find that precise deletion of the six IQ sites in the neck region results in a myosin, Myo2-Δ6IQp, that can support the growth of a yeast strain at 90% the rate of a wild-type isogenic strain. We exploit this mutant in a characterization of the light chains of Myo2p. First, we demonstrate that the localization of calmodulin to sites of polarized growth largely depends on the IQ sites in the neck of Myo2p. Second, we demonstrate that a previously uncharacterized protein, Mlc1p, is a myosin light chain of Myo2p. MLC1 (YGL106w) is an essential gene that exhibits haploinsufficiency. Reduced levels of MYO2 overcome the haploinsufficiency of MLC1. The mutant MYO2-Δ6IQ is able to suppress haploinsufficiency but not deletion of MLC1. We used a modified gel overlay assay to demonstrate a direct interaction between Mlc1p and the neck of Myo2p. Overexpression of MYO2 is toxic, causing a severe decrease in growth rate. When MYO2 is overexpressed, Myo2p is fourfold less stable than in a wild-type strain. High copies of MLC1 completely overcome the growth defects and increase the stability of Myo2p. Our results suggest that Mlc1p is responsible for stabilizing this myosin by binding to the neck region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号