首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Influenza A viruses are enveloped, segmented negative single-stranded RNA viruses, capable of causing severe human respiratory infections. Currently, only two types of drugs are used to treat influenza A infections, the M2 H+ ion channel blockers (amantadine and rimantadine) and the neuraminidase inhibitors (NAI) (oseltamivir and zanamivir). Moreover, the emergence of drug-resistant influenza A virus strains has emphasized the need to develop new antiviral agents to complement or replace the existing drugs. Influenza A virus has on the surface a glycoprotein named hemagglutinin (HA) which due to its important role in the initial stage of infection: receptor binding and fusion activities of viral and endosomal membranes, is a potential target for new antiviral drugs. In this work we designed nine peptides using several bioinformatics tools. These peptides were derived from the HA1 and HA2 subunits of influenza A HA with the aim to inhibit influenza A virus infection. The peptides were synthetized and their antiviral activity was tested in vitro against several influenza A viral strains: Puerto Rico/916/34 (H1N1), (H1N1)pdm09, swine (H1N1) and avian (H5N2). We found these peptides were able to inhibit the influenza A viral strains tested, without showing any cytotoxic effect. By docking studies we found evidence that all the peptides were capable to bind to the viral HA, principally to important regions on the viral HA stalk, thus could prevent the HA conformational changes required to carry out its membranes fusion activity.  相似文献   

2.
3.
Despite the prevalence of H5N1 influenza viruses in global avian populations, comparatively few cases have been diagnosed in humans. Although viral factors almost certainly play a role in limiting human infection and disease, host genetics most likely contribute substantially. To model host factors in the context of influenza virus infection, we determined the lethal dose of a highly pathogenic H5N1 virus (A/Hong Kong/213/03) in C57BL/6J and DBA/2J mice and identified genetic elements associated with survival after infection. The lethal dose in these hosts varied by 4 logs and was associated with differences in replication kinetics and increased production of proinflammatory cytokines CCL2 and tumor necrosis factor alpha in susceptible DBA/2J mice. Gene mapping with recombinant inbred BXD strains revealed five loci or Qivr (quantitative trait loci for influenza virus resistance) located on chromosomes 2, 7, 11, 15, and 17 associated with resistance to H5N1 virus. In conjunction with gene expression profiling, we identified a number of candidate susceptibility genes. One of the validated genes, the hemolytic complement gene, affected virus titer 7 days after infection. We conclude that H5N1 influenza virus-induced pathology is affected by a complex and multigenic host component.The last 10 years have witnessed a spread of highly pathogenic H5N1 avian influenza A virus from Southeast Asia into Europe and Africa, killing millions of chickens and ducks. Mammalian species including tigers, cats, dogs, and humans have also been infected with H5N1 virus, causing severe and often fatal disease. Excess mortality in humans was associated with high pharyngeal viral loads and increased cytokine and chemokine production (12). Some evidence suggests that genetic variation among infected hosts contributes to H5N1 infection and pathogenesis. Compared to the many millions of chickens and ducks that have been infected by H5N1 virus, relatively few humans have been infected. Were these individuals genetically predisposed, and therefore, did they have a greater risk of getting infected by the currently circulating H5N1 influenza viruses? Also, among the identified clusters of human H5N1 virus infections, more than 90% of the cases have occurred in genetically related family members, suggesting a possible genetic susceptibility to infection or severe disease (33). Recently, genetic relatedness was shown to be a significant risk factor for severe disease resulting from H3N2 influenza virus infection (2). However, other recent studies either have been unable to confirm the effect of genetic variation on the outcome and severity of influenza A virus infection (19) or have challenged the role of host genetics in H5N1 virus clusters (36).Genetic polymorphisms in the infected host affect microbial pathogenesis. In some host-pathogen studies, individual genes strongly regulated disease susceptibility or severity. For example, a 32-amino-acid deletion in the CCR5 product has been associated with increased resistance to human immunodeficiency virus infection (26), and more recently, a single amino acid change in the TLR3 product was associated with herpes simplex virus-induced encephalitis (50). Despite these examples, most host-pathogen interactions are more complex and modified by several genetic determinants. In the mouse model, disease severity after infection with viruses, bacteria, or parasites is frequently caused by multiple genetic differences, each affecting the outcome of the disease (3, 7, 8, 17, 47). Genetic modifiers that are associated with increased susceptibility to influenza virus infection or disease are mostly unknown. In humans, the duration of virus shedding was reduced in HLA-A2+ individuals, possibly as a result of a stronger cellular immune response (9). In mice, the resistance to influenza virus infection was mapped to the MX1 protein (39, 44, 46). The human MX1 protein also restricts viral replication, but its efficacy depends on the virus strain (13).Although much work is being done to define the viral factors affecting H5N1 influenza virus pathogenesis, little has been done to elucidate the effect of host genetics on H5N1 disease outcome. This study was initiated to assess the effect of the host''s genetic variation on H5N1 influenza virus pathogenesis and to provide the first clues about which host genes are responsible for the increased pathogenesis of H5N1 virus infection. Genome-wide linkage analysis using BXD recombinant inbred (BXD RI) strains was performed to identify areas on the chromosome that contribute to the difference in susceptibility to H5N1 virus seen between C57BL/6J and DBA/2J mice.  相似文献   

4.
5.
Fereidouni  Sasan  Munoz  Olga  Von Dobschuetz  Sophie  De Nardi  Marco 《EcoHealth》2016,13(1):161-170
EcoHealth - Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens...  相似文献   

6.
Inhibition of Glycosylation of the Influenza Virus Hemagglutinin   总被引:24,自引:16,他引:8       下载免费PDF全文
d-Glucosamine and 2-deoxy-d-glucose interfere with the biosynthesis of the hemagglutinin glycoproteins. With increasing inhibitor concentrations a progressive decrease in size of the precursor HA and the cleavage products, HA(1) and HA(2) can be observed. The shift in molecular weight is paralleled by a decrease of the carbohydrate content. This was shown by labeling studies with radioactive sugars which revealed that the inhibitors block the incorporation into glycoproteins, whereas they have no or only slight effects on the uptake and activation of sugars. Under conditions of maximal inhibition, the hemagglutinin proteins lack all or most of their carbohydrates. These findings indicate that the inhibitory effect of d-glucosamine and 2-deoxy-d-glucose is due to an impairment of glycosylation. When glycosylation is inhibited, the precursor polypeptide is synthesized at normal rates. Its cleavage products, however, are very heterogeneous. This suggests that carbohydrate protects the hemagglutinin from proteolytic degradation.  相似文献   

7.
8.
Xylitol has been used as a substitute for sugar to prevent cavity-causing bacteria, and most studies have focused on its benefits in dental care. Meanwhile, the constituents of red ginseng (RG) are known to be effective in ameliorating the symptoms of influenza virus infection when they are administered orally for 14 days. In this study, we investigated the effect of dietary xylitol on influenza A virus infection (H1N1). We designed regimens containing various fractions of RG (RGs: whole extract, water soluble fraction, saponin and polysaccharide) and xylitol, and combination of xylitol with the RG fractions. Mice received the various combinations orally for 5 days prior to lethal influenza A virus infection. Almost all the mice died post challenge when xylitol or RGs were administered separately. Survival was markedly enhanced when xylitol was administered along with RGs, pointing to a synergistic effect. The effect of xylitol plus RG fractions increased with increasing dose of xylitol. Moreover, dietary xylitol along with the RG water soluble fraction significantly reduced lung virus titers after infection. Therefore, we suggest that dietary xylitol is effective in ameliorating influenza-induced symptoms when it is administered with RG fractions, and this protective effect of xylitol should be considered in relation to other diseases.  相似文献   

9.
10.
A key question in pandemic influenza is the relative roles of innate immunity and target cell depletion in limiting primary infection and modulating pathology. Here, we model these interactions using detailed data from equine influenza virus infection, combining viral and immune (type I interferon) kinetics with estimates of cell depletion. The resulting dynamics indicate a powerful role for innate immunity in controlling the rapid peak in virus shedding. As a corollary, cells are much less depleted than suggested by a model of human influenza based only on virus-shedding data. We then explore how differences in the influence of viral proteins on interferon kinetics can account for the observed spectrum of virus shedding, immune response, and influenza pathology. In particular, induction of high levels of interferon (“cytokine storms”), coupled with evasion of its effects, could lead to severe pathology, as hypothesized for some fatal cases of influenza.Influenza A virus causes an acute respiratory disease in humans and other mammals; in humans, it is particularly important because of the rapidity with which epidemics develop, its widespread morbidity, and the seriousness of complications. Every year, an estimated 500,000 deaths worldwide, primarily of young children and the elderly, are attributed to seasonal influenza virus infections (49). Influenza pandemics may occur when an influenza virus with new surface proteins emerges, against which the majority of the population has no preexisting immunity. Both the emergence of H5N1 virus (34) and the current H1N1 virus pandemic (43) underline the importance of understanding the dynamics of infection and disease. A key question is, what regulates virus abundance in an individual host, causing the characteristic rapid decline in virus shedding following its initial peak? The main contenders in primary influenza virus infection are depletion of susceptible target cells and the impact of the host''s innate immune response (2, 20).On infection, the influenza virus elicits an immune response, including a rapid innate response that is correlated with the observed decline in the virus load after the first 2 days of infection (1). The slower adaptive response, including both humoral and cell-mediated components, takes several days to consolidate but is important for complete virus clearance and establishment of protective immunity. During infection of an immunologically naïve host, the innate immune response is particularly important as the first line of defense against infection. The innate immune response is regulated by chemokines and cytokines, chemical messengers produced by virus-infected epithelial cells and leukocytes (23), and natural interferon-producing cells, such as plasmacytoid dendritic cells (13). Among the key cytokines induced by epithelial cells infected with influenza A virus are type I interferons (IFNs) (IFN-α/β) (23), which directly contribute to the antiviral effect on infected and neighboring cells (38).Like other viruses, influenza A viruses have evolved strategies to limit the induction of innate immune responses (38). The NS1 protein plays a dominant role, and without it, the virus is unable to grow well or to cause pathology in an immunocompetent host (14). NS1 is multifunctional and counteracts both the induction of IFN expression and the function of IFN-activated antiviral effectors via multiple mechanisms (12, 17). Individual strains of influenza A virus possess these activities to various degrees (15, 21, 22, 26), and accordingly, NS1 has been implicated as a virulence factor (3, 17). A striking effect of the failure to control the innate response to virus infection is seen as a “cytokine storm,” which causes severe pathology (8).While there is an extensive literature on modeling influenza virus spread at the population level, the individual-host scale has received much less attention (2, 4, 5, 18, 19, 20, 27, 28). In a recent important paper, Baccam et al. modeled the kinetics of influenza A virus (2). The innate dynamics were included in the form of an IFN response that delayed and reduced virus production but did not prevent it; thus, the infection was resolved primarily through near-total depletion of epithelial cells. Their model was fitted to virus titers from human volunteers exposed to H1N1 influenza virus, but no data were available on the innate immune response or epithelial cell pathology. This has been a general difficulty in developing and validating more refined within-host models; there is a lack of detailed biological data from natural host systems, in particular, measures of immune kinetics and patterns of cellular depletion.The model presented here explicitly includes the ability of IFN to induce a fully antiviral state in order to explore the relative regulatory role of innate immunity and target cell depletion. Data from experimental infections of immunologically naïve horses with an equine influenza virus (36) allowed us to calibrate our model, not only to viral kinetics, but also to IFN dynamics and cell depletion in the context of infection of a naïve natural mammalian host. With our fitted model, we then investigate modulation of the immune response.  相似文献   

11.
L Lin  Q Liu  N Berube  S Detmer  Y Zhou 《Journal of virology》2012,86(19):10359-10369
Limited protection of current vaccines and antiviral drugs against influenza A virus infection underscores the urgent need for development of novel anti-influenza virus interventions. While short interfering RNA (siRNA) has been shown to be able to inhibit influenza virus infection in a gene-specific manner, activation of the retinoic acid-inducible gene I protein (RIG-I) pathway has an antiviral effect in a non-gene-specific mode. In this study, we designed and tested the anti-influenza virus effect of a short double-stranded RNA, designated 3p-mNP1496-siRNA, that possesses dual functions: an siRNA-targeting influenza NP gene and an agonist for RIG-I activation. This double-stranded siRNA possesses a triphosphate group at the 5' end of the sense strand and is blunt ended. Our study showed that 3p-mNP1496-siRNA could potently inhibit influenza A virus infection both in cell culture and in mice. The strong inhibition effect was attributed to its siRNA function as well as its ability to activate the RIG-I pathway. To the best of our knowledge, this is the first report that the combination of siRNA and RIG-I pathway activation can synergistically inhibit influenza A virus infection. The development of such dual functional RNA molecules will greatly contribute to the arsenal of tools to combat not only influenza viruses but also other important viral pathogens.  相似文献   

12.
13.
Highlights? Demonstrates how a bicistronic gene can influence biological circuits ? Characterizes potency of innate immune antagonism in vivo ? Demonstrates how host factors can contribute to the timing of a virus life cycle ? Implicates NEP accumulation in the timing of IAV infection  相似文献   

14.
The emergence of viral infections with potentially devastating consequences for human health is highly dependent on their underlying evolutionary dynamics. One likely scenario for an avian influenza virus, such as A/H5N1, to evolve to one capable of human-to-human transmission is through the acquisition of genetic material from the A/H1N1 or A/H3N2 subtypes already circulating in human populations. This would require that viruses of both subtypes coinfect the same cells, generating a mixed infection, and then reassort. Determining the nature and frequency of mixed infection with influenza virus is therefore central to understanding the emergence of pandemic, antigenic, and drug-resistant strains. To better understand the potential for such events, we explored patterns of intrahost genetic diversity in recently circulating strains of human influenza virus. By analyzing multiple viral genome sequences sampled from individual influenza patients we reveal a high level of mixed infection, including diverse lineages of the same influenza virus subtype, drug-resistant and -sensitive strains, those that are likely to differ in antigenicity, and even viruses of different influenza virus types (A and B). These results reveal that individuals can harbor influenza viruses that differ in major phenotypic properties, including those that are antigenically distinct and those that differ in their sensitivity to antiviral agents.Influenza viruses (family Orthomyxoviridae) possess a negative-strand segmented RNA genome and enveloped virions. Genetic diversity in influenza virus is the result of a high rate of mutation associated with replication using low-fidelity RNA polymerase and of the reshuffling (or reassortment) of segments among coinfecting strains. Although the 13.5-kb genome of influenza A virus is composed of eight segments coding for 11 known proteins, these viruses are typically categorized by their two surface antigens, hemagglutinin (HA), of which there are 16 subtypes (H1 to H16), and neuraminidase (NA), of which there are 9 (N1 to N9) (9). All known subtypes are present in aquatic birds of the orders Anseriformes and Charadriformes, and a smaller number circulate in some mammalian species. The HA plays a major role in the attachment of the virus to the host cell surface by binding to the sialic acid moiety of host receptors and facilitating the fusion of the viral envelope with host cell membranes. It is also the major viral antigen against which neutralizing antibodies are directed. The NA is important for mobility of the virions by cleaving the sialic acid residues from the viral hemagglutinin, which facilitates both entry of the virus into the cell and release of the viruses during budding (11).Most discussions of influenza virus evolution have focused on the process of antigenic drift in which mutations accumulate—most likely by natural selection—in the antigenic sites of the HA and NA, thereby allowing evasion of the host populations’ acquired immunity to previously circulating strains. Such antigenic variation occurs primarily in the HA1 domain and is clustered into five main epitope regions (19, 20, 22). Although antigenic drift clearly plays a key role in the seasonal evolution of influenza A virus, recent studies making use of large data sets generated by the Influenza Genome Sequencing Project (IGSP) suggest that reassortment may also be important in the generation of antigenically novel isolates by placing diverse HAs in compatible genetic backgrounds (6, 8, 10, 14).Segment reassortment is also central to the process of cross-species transmission and emergence of pandemic influenza virus. In particular, the segmented nature of the influenza virus genome allows reassortment of gene segments to occur between diverse influenza A virus strains when they coinfect a single host, including those derived from different species. This can result in subtle changes within a subtype, or dramatic changes that occur when different subtypes mix, leading to the generation of novel viruses expressing surface glycoproteins to which a specific host immune system has little if any serological cross-reactivity. Such antigenic shift is believed to have led to the emergence of global human influenza A virus pandemics in 1957 (A/H2N2) and in 1968 (A/H3N2), with new segments ultimately derived from the avian reservoir pool reassorting into human influenza viruses (17).Given the potential for emerging viruses such as influenza virus to adversely affect the health of human and other animal populations, it is essential to determine the factors that allow viruses to acquire the mutations they need to adapt to new host populations. As a large number of point mutations are thought to be required for an avian influenza virus such as A/H5N1 to evolve sustained transmission in human populations (5), one likely scenario for successful emergence is through the acquisition of genetic material from a viral subtype already adapted to humans, such as A/H1N1 or A/H3N2. This would require that viruses of both subtypes coinfect the same cells, thereby generating a mixed infection, and then exchange genomic segments through reassortment, as was the case in 1957 and 1968. As a consequence, it is crucial to determine the frequency with which mixed infection naturally occurs in influenza A virus as well as its phenotypic consequences. To address these questions we undertook, for the first time, in-depth sequencing of multiple viral genome sequences sampled from individual influenza patients. These studies were performed with approval of the New York State (study numbers 04-103 and 02-054) and University of Pittsburgh (08-110400) institutional review boards.  相似文献   

15.
Influenza A viruses display a broad cellular tropism within the respiratory tracts of mammalian hosts. Uncovering the relationship between tropism and virus immunity, pathogenesis, and transmission will be critical for the development of therapeutic interventions. Here we discuss recent developments of several recombinant strains of influenza A virus. These viruses have inserted reporters to track tropism, microRNA target sites to restrict tropism, or barcodes to assess transmission dynamics, expanding our understanding of pathogen-host interactions.  相似文献   

16.
West Nile virus (WNV) is a neurotropic flavivirus that is now a primary cause of epidemic encephalitis in North America. Studies of mice have demonstrated that the humoral immune response against WNV limits primary infection and protects against a secondary challenge. The most-potent neutralizing mouse monoclonal antibodies (MAbs) recognize an epitope on the lateral ridge of domain III (DIII-lr) of the envelope (E) protein. However, studies with serum from human patients show that antibodies against the DIII-lr epitope comprise, at best, a minor component of the human anti-WNV antibody response. Herein, we characterize in detail two WNV-specific human MAbs, CR4348 and CR4354, that were isolated from B-cell populations of convalescent patients. These MAbs strongly neutralize WNV infection of cultured cells, protect mice against lethal infection in vivo, and yet poorly recognize recombinant forms of the E protein. Instead, CR4348 and CR4354 bind determinants on intact WNV virions and subviral particles in a pH-sensitive manner, and neutralization is altered by mutations at the dimer interface in domain II and the hinge between domains I and II, respectively. CR4348 and CR4354 human MAbs neutralize infection at a postattachment step in the viral life cycle, likely by inhibiting acid-induced fusion within the endosome.West Nile encephalitis virus (WNV) is a positive-polarity, single-stranded RNA virus of the genus Flavivirus within the family Flaviviridae. Other members of this genus that cause significant human disease include dengue virus (DENV), St. Louis encephalitis virus, Japanese encephalitis virus (JEV), yellow fever virus, and tick-borne encephalitis virus (TBEV). Flaviviruses are translated as a single polypeptide, which is then cleaved by host and viral proteases into three structural (capsid [C], premembrane [prM], and envelope [E]) and seven nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins (reviewed in references 42 and 43).WNV cycles in nature between several species of birds and Culex mosquitoes, with humans and other mammals as dead-end hosts (25, 62). Infection causes syndromes ranging from a mild febrile illness to severe encephalitis and death (13, 72). WNV has spread globally and causes outbreaks with thousands of severe human cases annually in the United States. An age of greater than 55 years, a compromised immune status, and a CC5Δ32 genotype have been associated with more-severe disease (15, 20). There is currently no approved vaccine or therapy for WNV infection.The mature WNV virion has a ∼500-Å diameter and consists of a single RNA genome surrounded by the capsid protein, a lipid bilayer, and a shell of the prM/M and E proteins (31, 55). X-ray crystallography studies have elucidated the three-domain structure of the flavivirus E protein (30, 48, 50, 58, 67). Domain I (DI) is a central, eight-stranded β-barrel, which contains the only N-linked glycosylation site in WNV E. Domain II (DII) is a long, finger-like protrusion from DI and contains the highly conserved fusion peptide at its distal end. Domain III (DIII) adopts an immunoglobulin-like fold at the opposite end of DI and is believed to contain a site for receptor attachment (6, 8, 40).Within an infected cell, progeny WNV are assembled initially as immature particles. In immature virions, three pairs of E and prM interact as trimers and form 60 spiked projections with icosahedral symmetry (85, 86). Exposure to mildly acidic conditions in the trans-Golgi secretory pathway promotes virus maturation through a structural rearrangement of the E proteins and cleavage of prM to M by a furin-like protease (41, 83). Mature WNV virions are covered by 90 antiparallel E protein homodimers, which are arranged flat along the surface in a herringbone pattern with quasi-icosahedral symmetry (55).Upon binding to poorly characterized cell surface receptors, internalization of WNV is believed to occur through receptor-mediated, clathrin-dependent endocytosis (1, 79, 80). After trafficking to Rab5- and/or Rab7-positive endosomes (38, 79), the mildly acidic pH within the lumen of the endosome induces structural alterations in the flavivirus E protein (7, 49), which includes changes in its oligomeric state (7, 49, 77). During this process, also known as type II fusion, the hydrophobic peptide on the fusion loop of DII of the E protein inserts into the endosomal membrane, thus physically joining the host and viral membranes, which allows the infectious RNA genome to enter the cytoplasm (32, 33).Humoral immunity is an essential component of the protective host response against flaviviruses including WNV (reviewed in references 64 and 68). Studies by several groups have shown that the neutralization of WNV can occur after antibodies bind to a series of discrete epitopes on all three domains of the E protein (3, 12, 22, 59, 61, 71). To date, the most potently neutralizing monoclonal antibodies (MAbs) localize to an epitope on the lateral ridge of DIII (DIII-lr). One well-characterized strongly neutralizing mouse MAb, E16, blocks infection primarily at a postattachment step (57) and requires the engagement of only a fraction of its epitopes on the surface of the virion (66). Studies of the human antibody response to WNV infection reveal that, in contrast to mice, antibodies that bind the DIII-lr epitope comprise a minor component of the neutralizing humoral response in most individuals (60).In this study, we characterized two strongly neutralizing novel human MAbs (CR4348 and CR4354) that were selected from an antibody phage display library constructed from B cells of subjects that survived WNV infection (78). We demonstrate that both MAbs are WNV specific, bind weakly to recombinant or yeast surface-displayed E proteins, exhibit pH-sensitive binding to viral particles, and protect against lethal infection in mice. Our experiments suggest that these human MAbs map to distinct epitopes and neutralize infection at a postattachment stage, likely by inhibiting the acid-catalyzed viral fusion step.  相似文献   

17.
18.
19.
Replication of human influenza A viruses and proteolytic cleavage of the viral glycoprotein HA0 HA1/2 were studied in passaged cultures of epithelial cells of the serous membrane of human large intestine (CACO-2 line), dog kidney cells (MDCK), and monkey kidney cells (CV-1). Cleavage of the viral glycoprotein HA0, synthesis of activated virions, multicycle virus infection, and effective production of viral foci under an agarose overlayer were found in CACO-2 cells. By pulse–chase labeling of viral glycoproteins, testing the sensitivity to endoglycosidase-H of the viral glycoproteins HA0 and HA1/2 synthesized, and inhibiting the HA0 proteolysis with brefeldin A, the HA0 HA1/2 proteolysis was established to occur in the late stages of intracellular transport in the trans-Golgi and plasma membrane areas of the cells. Proteolysis of the viral glycoprotein HA0 in CACO-2 cells was suppressed by aprotinin, a natural inhibitor of serine proteinases. Unlike MDCK and CV-1 cells resistant to apoptosis induced by influenza virus, CACO-2 cells retained their viability for 2-3 days after infection with human influenza A virus.  相似文献   

20.
炎性体是胞液中感受危险信号、启动介导下游免疫防御或细胞死亡(pyroptosis)的多分子复合物,是细胞内天然免疫的重要受承信号转导的中介体.炎性体识别流感病毒后诱导先天免疫反应甚至pyroptosis样细胞死亡.流感病毒高尔基体表达的M2蛋白和P2X7、ATP、ROS在炎性体的调节过程中发挥了重要作用,微生物也可以通过激活炎性体调节呼吸道粘膜免疫.炎性体的提出为最优疫苗的设计提供了新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号