首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine-to-inosine (A-to-I) RNA editing is an endogenous regulatory mechanism involved in various biological processes. Site-specific, editing-state–dependent degradation of target RNA may be a powerful tool both for analyzing the mechanism of RNA editing and for regulating biological processes. Previously, we designed an artificial hammerhead ribozyme (HHR) for selective, site-specific RNA cleavage dependent on the A-to-I RNA editing state. In the present work, we developed an improved strategy for constructing a trans-acting HHR that specifically cleaves target editing sites in the adenosine but not the inosine state. Specificity for unedited sites was achieved by utilizing a sequence encoding the intrinsic cleavage specificity of a natural HHR. We used in vitro selection methods in an HHR library to select for an extended HHR containing a tertiary stabilization motif that facilitates HHR folding into an active conformation. By using this method, we successfully constructed highly active HHRs with unedited-specific cleavage. Moreover, using HHR cleavage followed by direct sequencing, we demonstrated that this ribozyme could cleave serotonin 2C receptor (HTR2C) mRNA extracted from mouse brain, depending on the site-specific editing state. This unedited-specific cleavage also enabled us to analyze the effect of editing state at the E and C sites on editing at other sites by using direct sequencing for the simultaneous quantification of the editing ratio at multiple sites. Our approach has the potential to elucidate the mechanism underlying the interdependencies of different editing states in substrate RNA with multiple editing sites.  相似文献   

2.
Deep sequencing of viral or bacterial nucleic acids monitors the presence and diversity of microbes in select populations and locations. Metagenomic study of mammalian viromes can help trace paths of viral transmissions within or between species. High throughput sequencing of patient and untreated sewage microbiomes showed many sequences with no similarity to genomic sequences of known function or origin. To estimate the distribution of functional RNAs in these microbiomes, we used the hammerhead ribozyme (HHR) motif to search for sequences capable of assuming its three-way junction fold. Although only two of the three possible natural HHR topologies had been known, our analysis revealed highly active ribozymes that terminated in any of the three stems. The most abundant of these are type II HHRs, one of which is the fastest natural cis-acting HHR yet discovered. Altogether, 13 ribozymes were confirmed in vitro, but only one showed sequence similarity to previously described HHRs. Sequences surrounding the ribozymes do not generally show similarity to known genes, except in one case, where a ribozyme is immediately preceded by a bacterial RadC gene. We demonstrate that a structure-based search for a known functional RNA is a powerful tool for analysis of metagenomic datasets, complementing sequence alignments.  相似文献   

3.
4.
5.
Viral RNA pseudoknots: versatile motifs in gene expression and replication   总被引:1,自引:0,他引:1  
RNA pseudoknots are structural elements found in almost all classes of RNA. First recognized in the genomes of plant viruses, they are now established as a widespread motif with diverse functions in various biological processes. This Review focuses on viral pseudoknots and their role in virus gene expression and genome replication. Although emphasis is placed on those well defined pseudoknots that are involved in unusual mechanisms of viral translational initiation and elongation, the broader roles of pseudoknots are also discussed, including comparisons with relevant cellular counterparts. The relationship between RNA pseudoknot structure and function is also addressed.  相似文献   

6.

Background

The ginseng family (Araliaceae) includes a number of economically important plant species. Previously phylogenetic studies circumscribed three major clades within the core ginseng plant family, yet the internal relationships of each major group have been poorly resolved perhaps due to rapid radiation of these lineages. Recent studies have shown that phyogenomics based on chloroplast genomes provides a viable way to resolve complex relationships.

Methodology/Principal Findings

We report the complete nucleotide sequences of five Araliaceae chloroplast genomes using next-generation sequencing technology. The five chloroplast genomes are 156,333–156,459 bp in length including a pair of inverted repeats (25,551–26,108 bp) separated by the large single-copy (86,028–86,566 bp) and small single-copy (18,021–19,117 bp) regions. Each chloroplast genome contains the same 114 unique genes consisting of 30 transfer RNA genes, four ribosomal RNA genes, and 80 protein coding genes. Gene size, content, and order, AT content, and IR/SC boundary structure are similar among all Araliaceae chloroplast genomes. A total of 140 repeats were identified in the five chloroplast genomes with palindromic repeat as the most common type. Phylogenomic analyses using parsimony, likelihood, and Bayesian inference based on the complete chloroplast genomes strongly supported the monophyly of the Asian Palmate group and the Aralia-Panax group. Furthermore, the relationships among the sampled taxa within the Asian Palmate group were well resolved. Twenty-six DNA markers with the percentage of variable sites higher than 5% were identified, which may be useful for phylogenetic studies of Araliaceae.

Conclusion

The chloroplast genomes of Araliaceae are highly conserved in all aspects of genome features. The large-scale phylogenomic data based on the complete chloroplast DNA sequences is shown to be effective for the phylogenetic reconstruction of Araliaceae.  相似文献   

7.
8.
The hammerhead ribozyme is a small catalytic RNA motif capable of endonucleolytic (self-) cleavage. It is composed of a catalytic core of conserved nucleotides flanked by three helices, two of which form essential tertiary interactions for fast self-scission under physiological conditions. Originally discovered in subviral plant pathogens, its presence in several eukaryotic genomes has been reported since. More recently, this catalytic RNA motif has been shown to reside in a large number of genomes. We review the different approaches in discovering these new hammerhead ribozyme sequences and discuss possible biological functions of the genomic motifs.  相似文献   

9.
Small ribozymes have been regarded as living fossils of a prebiotic RNA world that would have remained in the genomes of modern organisms. In this study, we report the ultraconserved occurrence of hammerhead ribozymes in Amniota genomes (reptiles, birds and mammals, including humans), similar to those described previously in amphibians and platyhelminth parasites. The ribozymes mapped to intronic regions of different genes, such as the tumour suppressor RECK in birds and mammals, a mammalian tumour antigen and the dystrobrevin beta in lizards and birds. In vitro characterization confirmed a high self-cleavage activity, whereas analysis of RECK-expressed sequence tags revealed fusion events between the in vivo self-cleaved intron and U5 or U6 small nuclear RNA fragments. Together, these results suggest a conserved role for these ribozymes in messenger RNA biogenesis.  相似文献   

10.
High throughput sequencing technologies, supported by bioinformatics tools are employed to retrieve small RNA sequence information derived from the nucleic acids of plant infecting viruses. In addition to characterization of the small RNAs to understand the biology of the virus, the small RNA sequence can be assembled to reconstitute viral genome sequence. For the first time the semiconductor based Ion Proton sequencing technology is used to sequence the small RNAs from pigeonpea (Cajanus cajan) plants infected by two distinct viruses with RNA and DNA as their genomes. The reconstitution of the viral genome sequence revealed that the pigeonpea plant from Kalaburagi (erstwhile Gulbarga, Karnataka state) was infected by an emaravirus species Pigeonpea sterility mosaic emaravirus 1 (PPSMV-1) and another plant from New Delhi was infected by a begomovirus species Mungbean yellow mosaic India virus (MYMIV). Characterization and comparison of small RNA sequences derived from both the viruses showed vast differences in their pattern of accumulation and their size classes. In the case of PPSMV-1, the 21 nt sized siRNAs accumulated at far greater levels followed by 22 and 24 nt siRNAs. Whereas in MYMIV, the proportion of accumulation of each size class of siRNAs was similar. Further the distribution of small RNAs across the genomes of PPSMV-1 and MYMIV was mapped and the density of small RNA accumulation showed a positive correlation with the GC content of viral sequence.  相似文献   

11.
12.
13.
The level of sequence heterogeneity among rrn operons within genomes determines the accuracy of diversity estimation by 16S rRNA-based methods. Furthermore, the occurrence of widespread horizontal gene transfer (HGT) between distantly related rrn operons casts doubt on reconstructions of phylogenetic relationships. For this study, patterns of distribution of rrn copy numbers, interoperonic divergence, and redundancy of 16S rRNA sequences were evaluated. Bacterial genomes display up to 15 operons and operon numbers up to 7 are commonly found, but ~40% of the organisms analyzed have either one or two operons. Among the Archaea, a single operon appears to dominate and the highest number of operons is five. About 40% of sequences among 380 operons in 76 bacterial genomes with multiple operons were identical to at least one other 16S rRNA sequence in the same genome, and in 38% of the genomes all 16S rRNAs were invariant. For Archaea, the number of identical operons was only 25%, but only five genomes with 21 operons are currently available. These considerations suggest an upper bound of roughly threefold overestimation of bacterial diversity resulting from cloning and sequencing of 16S rRNA genes from the environment; however, the inclusion of genomes with a single rrn operon may lower this correction factor to ~2.5. Divergence among operons appears to be small overall for both Bacteria and Archaea, with the vast majority of 16S rRNA sequences showing <1% nucleotide differences. Only five genomes with operons with a higher level of nucleotide divergence were detected, and Thermoanaerobacter tengcongensis exhibited the highest level of divergence (11.6%) noted to date. Overall, four of the five extreme cases of operon differences occurred among thermophilic bacteria, suggesting a much higher incidence of HGT in these bacteria than in other groups.  相似文献   

14.
Most angiosperm nuclear DNA is repetitive and derived from silenced transposable elements (TEs). TE silencing requires substantial resources from the plant host, including the production of small interfering RNAs (siRNAs). Thus, the interaction between TEs and siRNAs is a critical aspect of both the function and the evolution of plant genomes. Yet the co-evolutionary dynamics between these two entities remain poorly characterized. Here we studied the organization of TEs within the maize (Zea mays ssp mays) genome, documenting that TEs fall within three groups based on the class and copy numbers. These groups included DNA elements, low copy RNA elements and higher copy RNA elements. The three groups varied statistically in characteristics that included length, location, age, siRNA expression and 24∶22 nucleotide (nt) siRNA targeting ratios. In addition, the low copy retroelements encompassed a set of TEs that had previously been shown to decrease expression within a 24 nt siRNA biogenesis mutant (mop1). To investigate the evolutionary dynamics of the three groups, we estimated their abundance in two landraces, one with a genome similar in size to that of the maize reference and the other with a 30% larger genome. For all three accessions, we assessed TE abundance as well as 22 nt and 24 nt siRNA content within leaves. The high copy number retroelements are under targeted similarly by siRNAs among accessions, appear to be born of a rapid bust of activity, and may be currently transpositionally dead or limited. In contrast, the lower copy number group of retrolements are targeted more dynamically and have had a long and ongoing history of transposition in the maize genome.  相似文献   

15.
RNA recombination in plants was first identified by the repairin vivoof a deleted genomic RNA of brome mosaic virus. Subsequently, evidence of recombination has been detected not only in experimental systems but also among an increasing number of naturally occurring isolates of plant viruses. This article discusses the different recombinants that have been found among viruses in the genusTobravirusand describes other examples of recombination among plant viruses and between the genomes of viruses and their hosts.  相似文献   

16.
Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.  相似文献   

17.
18.
19.
The evolution of RNA editing and pentatricopeptide repeat genes   总被引:1,自引:0,他引:1  
The pentatricopeptide repeat (PPR) is a degenerate 35-amino-acid structural motif identified from analysis of the sequenced genome of the model plant Arabidopsis thaliana. From the wealth of sequence information now available from plant genomes, the PPR protein family is now known to be one of the largest families in angiosperm species, as most genomes encode 400-600 members. As the number of PPR genes is generally only c. 10-20 in other eukaryotic organisms, including green algae, the family has obviously greatly expanded during land plant evolution. This provides a rare opportunity to study selection pressures driving a 50-fold expansion of a single gene family. PPR proteins are sequence-specific RNA-binding proteins involved in many aspects of RNA processing in organelles. In this review, we will summarize our current knowledge about the evolution of PPR genes, and will discuss the relevance of the dramatic expansion in the family to the functional diversification of plant organelles, focusing primarily on RNA editing.  相似文献   

20.
Recently, hammerhead ribozyme (HHR) motifs have been utilized as powerful tools for gene regulation. Here we present a novel design of expanded full-length HHRs that allows attaching additional functionalities to the ribozyme. These features allowed us to construct a very efficient artificial riboswitch in bacteria. Following the design of naturally occurring three-way junctions we attached an additional helix (IV) to stem I of the HHR while maintaining very fast cleavage rates. We found that the cleavage activity strongly depends on the exact design of the junction site. Incorporation of the novel ribozyme scaffold into a bacterial mRNA allowed the control of gene expression mediated by autocatalytic cleavage of the ribozyme. Appending an aptamer to the newly introduced stem enabled the identification of very powerful theophylline-inducible RNA switches by in vivo screening. Further investigations revealed a cascading system operating beyond the ribozyme-dependent mechanism. In conclusion, we extended the hammerhead toolbox for synthetic biology applications by providing an additional position for the attachment of regulatory modules for in vivo control of gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号