首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
Replication of hepatitis C virus (HCV) RNA occurs on intracellular membranes, and the replication complex (RC) contains viral RNA, nonstructural proteins, and cellular cofactors. We previously demonstrated that cyclophilin A (CyPA) is an essential cofactor for HCV infection and the intracellular target of cyclosporine''s anti-HCV effect. Here we investigate the mechanism by which CyPA facilitates HCV replication. Cyclosporine treatment specifically blocked the incorporation of NS5B into the RC without affecting either the total protein level or the membrane association of the protein. Other nonstructural proteins or viral RNAs in the RC were not affected. NS5B from the cyclosporine-resistant replicon was resistant to this disruption of RC incorporation. We also isolated membrane fractions from both naïve and HCV-positive cells and found that CyPA is recruited into membrane fractions in HCV-replicating cells via an interaction with RC-associated NS5B, which is sensitive to cyclosporine treatment. Finally, we introduced point mutations in the prolyl-peptidyl isomerase (PPIase) motif of CyPA and demonstrated a critical role of this motif in HCV replication in cDNA rescue experiments. We propose a model in which the incorporation of the HCV polymerase into the RC depends on its interaction with a cellular chaperone protein and in which cyclosporine inhibits HCV replication by blocking this critical interaction and the PPIase activity of CyPA. Our results provide a mechanism of action for the cyclosporine-mediated inhibition of HCV and identify a critical role of CyPA''s PPIase activity in the proper assembly and function of the HCV RC.Hepatitis C virus (HCV), of the family Flaviviridae, is an enveloped, positive-stranded RNA virus. Spread mostly by blood-borne transmission, HCV infects more than 170 million people worldwide. The viral genome is composed of a single open reading frame (ORF) plus 5′- and 3′-nontranslated regions. The ORF encodes a large polyprotein that is cleaved by cellular and viral proteases into 10 viral proteins. The structural proteins, including the capsid protein (core), two glycoproteins (E1 and E2), and a small ion channel protein (p7), reside in the N-terminal half of the polyprotein. The rest of the ORF encodes six nonstructural (NS) proteins: NS2, NS3, NS4A, NS4B, NS5A, and NS5B. NS3 through NS5B assemble into a replication complex (RC) and are necessary and sufficient for HCV RNA replication in cell culture (8, 42). NS3 is a multifunctional protein with both a serine protease and an RNA helicase activity. The protease activity is responsible for cleavage at the NS3-NS4A, NS4A-NS4B, NS4B-NS5A, and NS5A-NS5B junctions (5), and the helicase activity is probably required to unwind the double-stranded RNA intermediates formed during replication (38). NS4A serves as an essential cofactor for the NS3 protease and anchors the NS3 protein to intracellular membranes (25, 36, 39). NS4B induces the formation of a “membranous web” that is probably the site of HCV replication (16). It also contains a GTP-binding motif that is required for replication (17). The web is derived from the endoplasmic reticulum (ER) compartment, although proteins of early-endosome origin have also been found to locate to the web (62). NS5A is a phosphoprotein and an integral component of the viral RC. The precise function of NS5A in replication is still unknown but appears to be regulated by phosphorylation and its interaction with several cellular proteins (19, 22, 24, 51, 52, 59, 63, 67). In addition, it may be involved in the transition from replication and particle formation (4, 45, 64). NS5B is the RNA-dependent RNA polymerase that is responsible for copying the RNA genome of the virus during replication. Several cellular cofactors interact with NS5B and modulate its activity in the context of the viral RC (22, 24, 35, 69, 71).Positive-stranded RNA viruses alter the intracellular membranes of host cells to form an RC in which RNA replication occurs. Modifications include the proliferation and reorganization of certain cellular membranes (1). HCV forms an RC associated with altered cellular membranes (16, 23), and crude RCs (CRCs) that maintain the replicase activity in vitro can be isolated by membrane sedimentation or flotation techniques (2, 3, 18, 27, 37).Cyclosporine is a widely used immunosuppressive and anti-inflammatory drug for organ transplant patients. It functions by forming an inhibitory complex with cyclophilins (CyPs) that inhibits the phosphatase activity of calcineurin, which is important for T-cell activation. In recent years, cyclosporine and its derivatives have been shown to be highly effective in suppressing HCV replication in vitro (44, 49, 53, 68) and in vivo (30). The mechanism of this inhibition is independent of its immunosuppressive function and distinct from that of interferon (IFN) (44, 53, 56, 68).We recently showed that HCV infection in vitro is inhibited when CyPA, a major intracellular target of cyclosporine, is downregulated by RNA interference, and mutations in NS5B that confer cyclosporine-resistant binding to CyPA contribute to the cyclosporine resistance of the replicons harboring these mutations (56, 71). Here we report that CyPA is recruited into the HCV RC together with NS5B in HCV replicon or in HCV-infected cells. Cyclosporine disrupts the association between RC-incorporated NS5B and CyPA and results in an exclusion of the polymerase from the viral RC. We also show that the prolyl-peptidyl isomerase (PPIase) motif of CyPA is essential for HCV replication.  相似文献   

4.
Recently, claudin-1 (CLDN1) was identified as a host protein essential for hepatitis C virus (HCV) infection. To evaluate CLDN1 function during virus entry, we searched for hepatocyte cell lines permissive for HCV RNA replication but with limiting endogenous CLDN1 expression, thus permitting receptor complementation assays. These criteria were met by the human hepatoblastoma cell line HuH6, which (i) displays low endogenous CLDN1 levels, (ii) efficiently replicates HCV RNA, and (iii) produces HCV particles with properties similar to those of particles generated in Huh-7.5 cells. Importantly, naïve cells are resistant to HCV genotype 2a infection unless CLDN1 is expressed. Interestingly, complementation of HCV entry by human, rat, or hamster CLDN1 was highly efficient, while mouse CLDN1 (mCLDN1) supported HCV genotype 2a infection with only moderate efficiency. These differences were observed irrespective of whether cells were infected with HCV pseudoparticles (HCVpp) or cell culture-derived HCV (HCVcc). Comparatively low entry function of mCLDN1 was observed in HuH6 but not 293T cells, suggesting that species-specific usage of CLDN1 is cell type dependent. Moreover, it was linked to three mouse-specific residues in the second extracellular loop (L152, I155) and the fourth transmembrane helix (V180) of the protein. These determinants could modulate the exposure or affinity of a putative viral binding site on CLDN1 or prevent optimal interaction of CLDN1 with other human cofactors, thus precluding highly efficient infection. HuH6 cells represent a valuable model for analysis of the complete HCV replication cycle in vitro and in particular for analysis of CLDN1 function in HCV cell entry.Hepatitis C virus (HCV) is a liver-tropic plus-strand RNA virus of the family Flaviviridae that has chronically infected about 130 million individuals worldwide. During long-term persistent virus replication, many patients develop significant liver disease which can lead to cirrhosis and hepatocellular carcinoma (54). Current treatment of chronic HCV infection consists of a combination of pegylated alpha interferon and ribavirin. However, this regimen is not curative for all treated patients and is associated with severe side effects (37). Therefore, an improved therapy is needed and numerous HCV-specific drugs targeting viral enzymes are currently being developed (47). These efforts have been slowed down by a lack of small-animal models permissive for HCV replication since HCV infects only humans and chimpanzees. Among small animals, only immunodeficient mice suffering from a transgene-induced disease of endogenous liver cells and repopulated with human primary hepatocytes are susceptible to HCV infection (39).The restricted tropism of HCV likely reflects very specific host factor requirements for entry, RNA replication, assembly, and release of virions. Although HCV RNA replication has been observed in nonhepatic human cells and even nonhuman cells, its efficiency is rather low (2, 11, 59, 67). In addition, so far, efficient production of infectious particles has only been reported with Huh-7 human hepatoma cells, Huh-7-derived cell clones, and LH86 cells (33, 61, 65, 66). Although murine cells sustain HCV RNA replication, they do not produce detectable infectious virions (59). Together, these results suggest that multiple steps of the HCV replication cycle may be blocked or impaired in nonhuman or nonhepatic cells.HCV entry into host cells is complex and involves interactions between viral surface-resident glycoproteins E1 and E2 and multiple host factors. Initial adsorption to the cell surface is likely facilitated by interaction with attachment factors like glycosaminoglycans (4, 31) and lectins (13, 35, 36, 51). Beyond these, additional host proteins have been implicated in HCV entry. Since HCV circulates in the blood associated with lipoproteins (3, 43, 57), it has been postulated that HCV enters hepatocytes via the low-density lipoprotein receptor (LDL-R), and evidence in favor of an involvement of LDL-R has been provided (1, 40, 42, 44). Direct interactions between soluble E2 and scavenger receptor class B type I (SR-BI) (53) and CD81 (49) have been reported, and firm experimental proof has accumulated that these host proteins are essential for HCV infection (5, 6, 16, 26, 28, 33, 41, 61). Finally, more recently, claudin-1 (CLDN1) and occludin, two proteins associated with cellular tight junctions, have been identified as essential host factors for infection (20, 34, 50) and an interaction between E2 and these proteins, as revealed by coimmunoprecipitation assays, was reported (7, 34, 63). Although the precise functions of the individual cellular proteins during HCV infection remain poorly defined, based on kinetic studies with antibodies blocking interactions with SR-BI, CD81, or CLDN1, these factors are likely required subsequent to viral attachment (14, 20, 31, 64). Interestingly, viral resistance to antibodies directed against CLDN1 seems to be slightly delayed compared to resistance to antibodies directed against CD81 and SR-BI (20, 64), suggesting that there may be a sequence of events with the virus encountering first SR-BI and CD81 and subsequently CLDN1. Moreover, in Huh-7 cells, engagement of CD81 by soluble E1/E2 induces Rho GTPase-dependent relocalization of these complexes to areas of cell-to-cell contact, where these colocalized with CLDN1 and occludin (9). Together, these findings are consistent with a model where HCV reaches the basolateral, sinusoid-exposed surface of hepatocytes via the circulation. Upon binding to attachment factors SR-BI and CD81, which are highly expressed in this domain (52), the HCV-receptor complex may be ferried to tight-junction-resident CLDN1 and occludin and finally be endocytosed in a clathrin-dependent fashion (8, 38). Once internalized, the viral genome is ultimately delivered into the cytoplasm through a pH-dependent fusion event (24, 26, 31, 58). Recently, Ploss et al. reported that expression of human SR-BI, CD81, CLDN1, and occludin was sufficient to render human and nonhuman cells permissive for HCV infection (50). These results indicate that these four factors are the minimal cell type-specific set of host proteins essential for HCV entry. Interestingly, HCV seems to usurp at least CD81 and occludin in a very species-specific manner since their murine orthologs permit HCV infection with limited efficiency only (22, 50). Recently, it was shown that expression of mouse SR-BI did not fully restore entry function in Huh-7.5 cells with knockdown of endogenous human SR-BI, suggesting that also SR-BI function in HCV entry is, to some extent, species specific (10).In this study, we have developed a receptor complementation system for CLDN1 that permits the assessment of functional properties of this crucial HCV host factor with cell culture-derived HCV (HCVcc) and a human hepatocyte cell line. This novel model is based on HuH6 cells, which were originally isolated from a male Japanese patient suffering from a hepatoblastoma (15). These cells express little endogenous CLDN1, readily replicate HCV RNA, and produce high numbers of infectious HCVcc particles with properties comparable to those of Huh-7 cell-derived HCV. In addition, we identified three mouse-typic residues of CLDN1 that limit receptor function in HuH6 cells. These results suggest that besides CD81 and occludin, and to a minor degree SR-BI, CLDN1 also contributes to the restricted species tropism of HCV.  相似文献   

5.
6.
Persistent infection with hepatitis C virus (HCV) is a major cause of chronic liver diseases. The aim of this study was to identify host cell factor(s) participating in the HCV replication complex (RC) and to clarify the regulatory mechanisms of viral genome replication dependent on the host-derived factor(s) identified. By comparative proteome analysis of RC-rich membrane fractions and subsequent gene silencing mediated by RNA interference, we identified several candidates for RC components involved in HCV replication. We found that one of these candidates, creatine kinase B (CKB), a key ATP-generating enzyme that regulates ATP in subcellular compartments of nonmuscle cells, is important for efficient replication of the HCV genome and propagation of infectious virus. CKB interacts with HCV NS4A protein and forms a complex with NS3-4A, which possesses multiple enzyme activities. CKB upregulates both NS3-4A-mediated unwinding of RNA and DNA in vitro and replicase activity in permeabilized HCV replicating cells. Our results support a model in which recruitment of CKB to the HCV RC compartment, which has high and fluctuating energy demands, through its interaction with NS4A is important for efficient replication of the viral genome. The CKB-NS4A association is a potential target for the development of a new type of antiviral therapeutic strategy.Hepatitis C virus (HCV) infection represents a significant global healthcare burden, and current estimates suggest that a minimum of 3% of the world''s population is chronically infected (4, 19). The virus is responsible for many cases of severe chronic liver diseases, including cirrhosis and hepatocellular carcinoma (4, 16, 19). HCV is a positive-stranded RNA virus belonging to the family Flaviviridae. Its ∼9.6-kb genome is translated into a single polypeptide of about 3,000 amino acids (aa), in which the nonstructural (NS) proteins NS2, NS3, NS4A, NS4B, NS5A, and NS5B reside in the C-terminal half region (6, 34, 44). NS4A, a small 7-kDa protein, functions as a cofactor for NS3 to enhance NS3 enzyme activities such as serine protease and helicase activities. The hydrophobic N-terminal region of NS4A, which is predicted to form a transmembrane α-helix, is responsible for membrane anchorage of the NS3-4A complex (8, 44, 50), and the central region of NS4A is important for the interaction with NS3 (10, 44). A recent study demonstrated the involvement of the C terminus of NS4A in the regulation of NS5A hyperphosphorylation and viral replication (28).The development of HCV replicon technology several years ago accelerated research on viral RNA replication (7, 44). Furthermore, a robust cell culture system for propagation of infectious HCV particles was developed using a viral genome of HCV genotype 2a, JFH-1 strain, enabling us to study every process in the viral life cycle (27, 47, 54). RNA derived from genotype 1a, HCV H77, containing cell-culture adaptive mutations, also produces infectious viruses (52). Using these systems, it has been reported that the HCV genome replicates in a distinct, subcellular replication complex (RC) compartment, which includes NS3-5B and the viral RNA (2, 14, 33). The RC forms in a distinct compartment with high concentrations of viral and cellular components located on detergent-resistant membrane (DRM) structures, possibly a lipid-raft structure (2, 41), which may protect the RC from external proteases and nucleases. Almost all processes in viral replication are dependent on the host cell''s machinery and involve intimate interaction between viral and host proteins. However, the functional roles of host factors interacting with the HCV RC in viral genome replication remain ambiguous.To gain a better understanding of cellular factors that are components of the HCV RC and that function as regulators of viral replication, a comparative proteomic analysis of DRM fractions from HCV replicon and parental cells and subsequent RNA interference (RNAi) silencing of selected genes were performed. We identified creatine kinase B (CKB) as a key factor for the HCV genome replication. CKB catalyzes the reversible transfer of the phosphate group of phosphocreatine (pCr) to ADP to yield ATP and creatine and is known to play important roles in local delivery and cellular compartmentalization of ATP (48, 51). The findings obtained here suggest that recruitment of CKB to the HCV RC, through CKB interaction with NS4A, is essential for maintenance or enhancement of viral replicase activity.  相似文献   

7.
In infected cells, hepatitis C virus (HCV) induces the formation of membrane alterations referred to as membranous webs, which are sites of RNA replication. In addition, HCV RNA replication also occurs in smaller membrane structures that are associated with the endoplasmic reticulum. However, cellular mechanisms involved in the formation of HCV replication complexes remain largely unknown. Here, we used brefeldin A (BFA) to investigate cellular mechanisms involved in HCV infection. BFA acts on cell membranes by interfering with the activation of several members of the family of ADP-ribosylation factors (ARF), which can lead to a wide range of inhibitory actions on membrane-associated mechanisms of the secretory and endocytic pathways. Our data show that HCV RNA replication is highly sensitive to BFA. Individual knockdown of the cellular targets of BFA using RNA interference and the use of a specific pharmacological inhibitor identified GBF1, a guanine nucleotide exchange factor for small GTPases of the ARF family, as a host factor critically involved in HCV replication. Furthermore, overexpression of a BFA-resistant GBF1 mutant rescued HCV replication in BFA-treated cells, indicating that GBF1 is the BFA-sensitive factor required for HCV replication. Finally, immunofluorescence and electron microscopy analyses indicated that BFA does not block the formation of membranous web-like structures induced by expression of HCV proteins in a nonreplicative context, suggesting that GBF1 is probably involved not in the formation of HCV replication complexes but, rather, in their activity. Altogether, our results highlight a functional connection between the early secretory pathway and HCV RNA replication.Hepatitis C virus (HCV) is an important human pathogen. It mainly infects human hepatocytes, and this often leads to chronic hepatitis, cirrhosis, or hepatocarcinoma. HCV studies have been hampered for many years by the difficulty in propagating this virus in vitro. Things have recently changed with the development of a cell culture model referred to as HCVcc (34, 60, 65), which allows the study of the HCV life cycle in cell culture and facilitates studies of the interactions between HCV and the host cell.HCV is an enveloped positive-strand RNA virus belonging to the family Flaviviridae (35). The viral genome contains a single open reading frame, which is flanked by two noncoding regions that are required for translation and replication. All viral proteins that are produced after proteolytic processing of the initially synthesized polyprotein are membrane associated (15, 43). This reflects the fact that virtually all steps of the viral life cycle occur in close association with cellular membranes.Interactions of HCV with cell membranes begin during entry. Several receptors, coreceptors, and other entry factors have been discovered over the years, which link HCV entry to specialized domains of the plasma membrane, such as tetraspanin-enriched microdomains and tight junctions (8, 16, 59). The internalization of the viral particle occurs by clathrin-mediated endocytosis (5, 40). The fusion of the viral envelope with the membrane of an acidic endosome likely mediates the transfer of the viral genome to the cytosol of the cell (5, 40, 57). However, little is known regarding the pre- and postfusion intracellular transport steps of entering viruses in the endocytic pathway.HCV RNA replication is also associated with cellular membranes. Replication begins with the translation of the genomic RNA of an incoming virus. This leads to the production of viral proteins, which in turn initiate the actual replication of the viral RNA. Mechanisms regulating the transition from the translation of the genomic RNA to its replication are not yet known. All viral proteins are not involved in RNA replication. Studies performed with subgenomic replicons demonstrated that proteins NS3-4A, NS4B, NS5A, and NS5B are necessary and sufficient for replication (6, 27, 37). RNA replication proceeds through the synthesis of a cRNA strand (negative strand), catalyzed by the RNA-dependent RNA polymerase activity of NS5B, which is then used as a template for the synthesis of new positive strands.Electron microscopy studies using a subgenomic replicon model suggested that replication takes place in membrane structures made of small vesicles, referred to as “membranous webs,” which are induced by the virus (26). Membranous webs are detectable not only in cells carrying subgenomic replicons but also in infected cells (50). They appear to be associated with the endoplasmic reticulum (ER) (26). In addition to the membranous webs, a second type of ER-associated replicase that is smaller and more mobile has recently been described (63). Cellular mechanisms leading to these membrane alterations are still poorly understood. In cells replicating and secreting infectious viruses effectively, the situation appears to be even more complex, since replicase components appear to be, at least in part, associated with cytoplasmic lipid droplets (41, 50, 56). This association depends on the capsid protein (41) and may reflect a coupling between replication and assembly. Indeed, HCV assembly and secretion show some similarities with very-low-density lipoprotein (VLDL) maturation and secretion (24, 64).Our knowledge of the cellular membrane mechanisms involved in the HCV life cycle is still limited. The expression of NS4B alone induces membrane alterations that are reminiscent of membranous webs (19). However, cellular factors that participate in this process are still unknown. On the other hand, several cellular proteins potentially involved in the HCV life cycle have been identified through their interactions with viral proteins. For some of these proteins, a functional role in infection was recently confirmed using RNA interference (48). It is very likely that other cellular factors critical to HCV infection have yet to be identified.To gain more insight into cellular mechanisms underlying HCV infection, we made use of brefeldin A (BFA), a macrocyclic lactone of fungal origin that exhibits a wide range of inhibitory actions on membrane-associated mechanisms of the secretory and endocytic pathways (30). BFA acts on cell membranes by interfering with the activation of several members of the family of ADP-ribosylation factors (ARFs). ARFs are small GTP-binding proteins of the Ras superfamily. They function as regulators of vesicular traffic, actin remodeling, and phospholipid metabolism by recruiting effectors to membranes. BFA does not actually interfere directly with ARF GTPases but rather interferes with their activation by regulators known as guanine nucleotide exchange factors (GEFs) (14, 25). We now report the identification of an ARF GEF as a cellular BFA-sensitive factor that is required for HCV replication.  相似文献   

8.
We analyzed the biochemical and ultrastructural properties of hepatitis C virus (HCV) particles produced in cell culture. Negative-stain electron microscopy revealed that the particles were spherical (∼40- to 75-nm diameter) and pleomorphic and that some of them contain HCV E2 protein and apolipoprotein E on their surfaces. Electron cryomicroscopy revealed two major particle populations of ∼60 and ∼45 nm in diameter. The ∼60-nm particles were characterized by a membrane bilayer (presumably an envelope) that is spatially separated from an internal structure (presumably a capsid), and they were enriched in fractions that displayed a high infectivity-to-HCV RNA ratio. The ∼45-nm particles lacked a membrane bilayer and displayed a higher buoyant density and a lower infectivity-to-HCV RNA ratio. We also observed a minor population of very-low-density, >100-nm-diameter vesicular particles that resemble exosomes. This study provides low-resolution ultrastructural information of particle populations displaying differential biophysical properties and specific infectivity. Correlative analysis of the abundance of the different particle populations with infectivity, HCV RNA, and viral antigens suggests that infectious particles are likely to be present in the large ∼60-nm HCV particle populations displaying a visible bilayer. Our study constitutes an initial approach toward understanding the structural characteristics of infectious HCV particles.Hepatitis C virus (HCV) is a major cause of chronic hepatitis worldwide, with approximately 170 million humans chronically infected. Persistent HCV infection often leads to fibrosis, cirrhosis, and hepatocellular carcinoma (27). There is no vaccine against HCV, and the most widely used therapy involves the administration of type I interferon (IFN-α2Α) combined with ribavirin. However, this treatment is often associated with severe adverse effects and is often ineffective (53).HCV is a member of the Flaviviridae family and is the sole member of the genus Hepacivirus (43). HCV is an enveloped virus with a single-strand positive RNA genome that encodes a unique polyprotein of ∼3,000 amino acids (14, 15). A single open reading frame is flanked by untranslated regions (UTRs), the 5′ UTR and 3′ UTR, that contain RNA sequences essential for RNA translation and replication, respectively (17, 18, 26). Translation of the single open reading frame is driven by an internal ribosomal entry site (IRES) sequence residing within the 5′ UTR (26). The resulting polyprotein is processed by cellular and viral proteases into its individual components (reviewed in reference 55). The E1, E2, and core structural proteins are required for particle formation (5, 6) but not for viral RNA replication or translation (7, 40). These processes are mediated by the nonstructural (NS) proteins NS3, NS4A, NS4B, NS5A, and NS5B, which constitute the minimal viral components necessary for efficient viral RNA replication (7, 40).Expression of the viral polyprotein leads to the formation of virus-like particles (VLPs) in HeLa (48) and Huh-7 cells (23). Furthermore, overexpression of core, E1, and E2 is sufficient for the formation of VLPs in insect cells (3, 4). In the context of a viral infection, the viral structural proteins (65), p7 (31, 49, 61), and all of the nonstructural proteins (2, 29, 32, 41, 44, 63, 67) are required for the production of infectious particles, independent of their role in HCV RNA replication. It is not known whether the nonstructural proteins are incorporated into infectious virions.The current model for HCV morphogenesis proposes that the core protein encapsidates the viral genome in areas where endoplasmic reticulum (ER) cisternae are in contact with lipid droplets (47), forming HCV RNA-containing particles that acquire the viral envelope by budding through the ER membrane (59). We along with others showed recently that infectious particle assembly requires microsomal transfer protein (MTP) activity and apolipoprotein B (apoB) (19, 28, 50), suggesting that these two components of the very-low-density lipoprotein (VLDL) biosynthetic machinery are essential for the formation of infectious HCV particles. This idea is supported by the reduced production of infectious HCV particles in cells that express short hairpin RNAs (shRNAs) targeting apolipoprotein E (apoE) (12, 30).HCV RNA displays various density profiles, depending on the stage of the infection at which the sample is obtained (11, 58). The differences in densities and infectivities have been attributed to the presence of host lipoproteins and antibodies bound to the circulating viral particles (24, 58). In patients, HCV immune complexes that have been purified by protein A affinity chromatography contain HCV RNA, core protein, triglycerides, apoB (1), and apoE (51), suggesting that these host factors are components of circulating HCV particles in vivo.Recent studies using infectious molecular clones showed that both host and viral factors can influence the density profile of infectious HCV particles. For example, the mean particle density is reduced by passage of cell culture-grown virus through chimpanzees and chimeric mice whose livers contain human hepatocytes (39). It has also been shown that a point mutation in the viral envelope protein E2 (G451R) increases the mean density and specific infectivity of JFH-1 mutants (70).HCV particles exist as a mixture of infectious and noninfectious particles in ratios ranging from 1:100 to 1:1,000, both in vivo (10) and in cell culture (38, 69). Extracellular infectious HCV particles have a lower average density than their noninfectious counterparts (20, 24, 38). Equilibrium sedimentation analysis indicates that particles with a buoyant density of ∼1.10 to 1.14 g/ml display the highest ratio of infectivity per genome equivalent (GE) both in cell culture (20, 21, 38) and in vivo (8). These results indicate that these samples contain relatively more infectious particles than any other particle population. Interestingly, mutant viruses bearing the G451R E2 mutation display an increased infectivity-HCV RNA ratio only in fractions with a density of ∼1.1 g/ml (21), reinforcing the notion that this population is selectively enriched in infectious particles.The size of infectious HCV particles has been estimated in vivo by filtration (50 to 80 nm) (9, 22) and by rate-zonal centrifugation (54 nm) (51) and in cell culture by calculation of the Stokes radius inferred from the sedimentation velocity of infectious JFH-1 particles (65 to 70 nm) (20). Previous ultrastructural studies using patient-derived material report particles with heterogeneous diameters ranging from 35 to 100 nm (33, 37, 42, 57, 64). Cell culture-derived particles appear to display a diameter within that range (∼55 nm) (65, 68).In this study we exploited the increased growth capacity of a cell culture-adapted virus bearing the G451R mutation in E2 (70) and the enhanced particle production of the hyperpermissive Huh-7 cell subclone Huh-7.5.1 clone 2 (Huh-7.5.1c2) (54) to produce quantities of infectious HCV particles that were sufficient for electron cryomicroscopy (cryoEM) analyses. These studies revealed two major particle populations with diameters of ∼60 and ∼45 nm. The larger-diameter particles were distinguished by the presence of a membrane bilayer, characterized by electron density attributed to the lipid headgroups in its leaflets. Isopycnic ultracentrifugation showed that the ∼60-nm particles are enriched in fractions with a density of ∼1.1 g/ml, where optimal infectivity-HCV RNA ratios are observed. These results indicate that the predominant morphology of the infectious HCV particle is spherical and pleomorphic and surrounded by a membrane envelope.  相似文献   

9.
Studies of the hepatitis C virus (HCV) life cycle have been aided by development of in vitro systems that enable replication of viral RNA and production of infectious virus. However, the functions of the individual proteins, especially those engaged in RNA replication, remain poorly understood. It is considered that NS4B, one of the replicase components, creates sites for genome synthesis, which appear as punctate foci at the endoplasmic reticulum (ER) membrane. In this study, a panel of mutations in NS4B was generated to gain deeper insight into its functions. Our analysis identified five mutants that were incapable of supporting RNA replication, three of which had defects in production of foci at the ER membrane. These mutants also influenced posttranslational modification and intracellular mobility of another replicase protein, NS5A, suggesting that such characteristics are linked to focus formation by NS4B. From previous studies, NS4B could not be trans-complemented in replication assays. Using the mutants that blocked RNA synthesis, defective NS4B expressed from two mutants could be rescued in trans-complementation replication assays by wild-type protein produced by a functional HCV replicon. Moreover, active replication could be reconstituted by combining replicons that were defective in NS4B and NS5A. The ability to restore replication from inactive replicons has implications for our understanding of the mechanisms that direct viral RNA synthesis. Finally, one of the NS4B mutations increased the yield of infectious virus by five- to sixfold. Hence, NS4B not only functions in RNA replication but also contributes to the processes engaged in virus assembly and release.Recent estimates predict that the prevalence of hepatitis C virus (HCV) infection is approximately 2.2% worldwide, equivalent to about 130 million persons (22). The virus typically establishes a chronic infection that frequently leads to serious liver disease (1), and current models indicate that both morbidity and mortality as a consequence of HCV infection will continue to rise for about the next 20 years (10, 11, 29).HCV is the only assigned species of the Hepacivirus genus within the family Flaviviridae. The virus can be classified into six genetic groups or clades (numbered 1 to 6) and then further separated into subtypes (e.g., 1a, 1b, 2a, 2b, etc.) (53, 55). HCV has a single-stranded, positive-sense RNA genome that is approximately 9.6 kb in length (reviewed in reference 46). Genomic RNA carries a single open reading frame flanked by 5′ and 3′ nontranslated regions, which are important for both replication and translation (19, 20, 34, 47, 56). Viral RNA is translated by the host ribosomal machinery, and the resultant polyprotein is co- and posttranslationally cleaved to generate the mature viral proteins. The structural proteins (core, E1, and E2) and a small hydrophobic polypeptide called p7 are produced by the cellular proteases signal peptidase and signal peptide peptidase (28, 45, 54). Two virus-encoded proteases, the NS2-3 autoprotease and the NS3 serine protease (5, 13, 26), are responsible for maturation of the nonstructural (NS) proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B). With the exception of NS2, the NS proteins are necessary for genome replication (8, 40) and form replication complexes (RCs), which are located at the endoplasmic reticulum (ER) membrane (14, 24, 52, 57, 59). The functions of all viral constituents of RCs have not been characterized in detail. It is known that NS5B is the RNA-dependent RNA polymerase (6), while NS3 possesses helicase and nucleoside triphosphatase activities in addition to acting as a protease (32, 58). However, the precise roles of the other proteins remain to be firmly established.Expression of NS4B, one of the replicase proteins, generates rearrangements at the ER membrane that have been termed the “membranous web” (14, 24) and “membrane-associated foci” (MAFs) (25). Detection of viral RNA at such foci suggests that NS4B is involved in creating the sites where genome synthesis occurs (18, 24, 59). It is predicted that NS4B has an amphipathic α-helix within its N-terminal region, which is followed by four transmembrane domains (TMDs) in the central portion of the protein (17, 42). As a result, the majority of NS4B is likely to be tightly anchored to membranes, and experimental evidence indicates that it has characteristics consistent with an integral membrane protein (27). It is thought that after membrane association, NS4B rearranges membranes into a network, thereby generating foci which act as a “scaffold” to facilitate RNA replication. The mechanisms engaged in formation of foci are not known but include the notion that the NS4B N terminus can translocate into the ER lumen, resulting in rearrangement of cellular membranes (41, 42). Alternatively, palmitoylation, a lipid modification, might facilitate polymerization of NS4B, in turn promoting formation of RCs on the ER membrane (68).Apart from inducing membranous changes required for replication, NS4B may perform other tasks in HCV RNA synthesis. For example, studies of cell culture adaptive mutations in subgenomic replicons (SGRs) have identified amino acid changes that can stimulate RNA production (39), suggesting that NS4B may exert a regulatory role in determining replication efficiency. In support of a regulatory function, replacement of NS4B sequences in an SGR from strain H77 (a genotype 1a strain) with those from strain Con-1 (a genotype 1b strain) gave higher levels of replication than for a wild-type (wt) strain H77 SGR (7). The corresponding replacement of strain Con-1 NS4B sequences with those from strain H77 reduced the replication efficiency of a Con-1 SGR (7). Moreover, interactions of NS4B with the RC can affect the behavior of other replicase proteins. For example, NS4B is needed for hyperphosphorylation of NS5A (35, 48) and restricts its intracellular movement (30).To try to gain greater insight into the functional organization of the components that constitute RCs, trans-complementation assays using defective and helper SGRs have been established (2, 64). Such studies reveal that the only protein capable of trans-complementation is NS5A, while active replication cannot be restored for replicons harboring deleterious mutations in NS3, NS4B, and NS5B. These data led to the conclusion that functional NS5A may be able to exchange between RCs (2), whereas, by inference, such exchange would not be possible for other HCV replicase proteins. In transient-replication assays, complementation by NS5A also relied on its expression as part of a polyprotein (minimally NS3-NS5A), and production of the protein alone failed to restore replication for an inactive SGR (2). However, in a separate study, stable expression of wt NS5A was capable of complementing a defective replicon (64). Thus, different assay systems can give dissimilar results for complementation by NS5A.In this study, we have created a series of mutations in the NS4B gene of HCV strain JFH1 (31) to explore the function of the protein in the HCV life cycle. We focused our attention on the C-terminal portion of NS4B, downstream from the predicted TMD regions, since it is relatively well conserved and is predicted to lie on the cytosolic side of the ER membrane (15, 42). Our analysis examines the impact of mutations on replication efficiency and the intracellular characteristics of the mutants compared to the behavior of the wt protein. In addition, we have utilized this series of mutants to reassess trans-complementation of NS4B in replication assays. Finally, we also analyze the impact of mutations which do not affect replication on the production of infectious virus to determine whether NS4B plays a role in virus assembly and release.  相似文献   

10.
Claudin-1, a component of tight junctions between liver hepatocytes, is a hepatitis C virus (HCV) late-stage entry cofactor. To investigate the structural and functional roles of various claudin-1 domains in HCV entry, we applied a mutagenesis strategy. Putative functional intracellular claudin-1 domains were not important. However, we identified seven novel residues in the first extracellular loop that are critical for entry of HCV isolates drawn from six different subtypes. Most of the critical residues belong to the highly conserved claudin motif W30-GLW51-C54-C64. Alanine substitutions of these residues did not impair claudin-1 cell surface expression or lateral protein interactions within the plasma membrane, including claudin-1-claudin-1 and claudin-1-CD81 interactions. However, these mutants no longer localized to cell-cell contacts. Based on our observations, we propose that cell-cell contacts formed by claudin-1 may generate specialized membrane domains that are amenable to HCV entry.Hepatitis C virus (HCV) is a major human pathogen that affects approximately 3% of the global population, leading to cirrhosis and hepatocellular carcinoma in chronically infected individuals (5, 23, 42). Hepatocytes are the major target cells of HCV (11), and entry follows a complex cascade of interactions with several cellular factors (6, 8, 12, 17). Infectious viral particles are associated with lipoproteins and initially attach to target cells via glycosaminoglycans and the low-density lipoprotein receptor (1, 7, 31). These interactions are followed by direct binding of the E2 envelope glycoprotein to the scavenger receptor class B type I (SR-B1) and then to the CD81 tetraspanin (14, 15, 33, 36). Early studies showed that CD81 and SR-B1 were necessary but not sufficient for HCV entry, and claudin-1 was discovered to be a requisite HCV entry cofactor that appears to act at a very late stage of the process (18).Claudin-1 is a member of the claudin protein family that participates in the formation of tight junctions between adjacent cells (25, 30, 37). Tight junctions regulate the paracellular transport of solutes, water, and ions and also generate apical-basal cell polarity (25, 37). In the liver, the apical surfaces of hepatocytes form bile canaliculi, whereas the basolateral surfaces face the underside of the endothelial layer that lines liver sinusoids. Claudin-1 is highly expressed in tight junctions formed by liver hepatocytes as well as on all hepatoma cell lines that are permissive to HCV entry (18, 24, 28). Importantly, nonhepatic cell lines that are engineered to express claudin-1 become permissive to HCV entry (18). Claudin-6 and -9 are two other members of the human claudin family that enable HCV entry into nonpermissive cells (28, 43).The precise role of claudin-1 in HCV entry remains to be determined. A direct interaction between claudins and HCV particles or soluble E2 envelope glycoprotein has not been demonstrated (18; T. Dragic, unpublished data). It is possible that claudin-1 interacts with HCV entry receptors SR-B1 or CD81, thereby modulating their ability to bind to E2. Alternatively, claudin-1 may ferry the receptor-virus complex to fusion-permissive intracellular compartments. Recent studies show that claudin-1 colocalizes with the CD81 tetraspanin at the cell surface of permissive cell lines (22, 34, 41). With respect to nonpermissive cells, one group observed that claudin-1 was predominantly intracellular (41), whereas another reported associations of claudin-1 and CD81 at the cell surface, similar to what is observed in permissive cells (22).Claudins comprise four transmembrane domains along with two extracellular loops and two cytoplasmic domains (19, 20, 25, 30, 37). The first extracellular loop (ECL1) participates in pore formation and influences paracellular charge selectivity (25, 37). It has been shown that the ECL1 of claudin-1 is required for HCV entry (18). All human claudins comprise a highly conserved motif, W30-GLW51-C54-C64, in the crown of ECL1 (25, 37). The exact function of this domain is unknown, and we hypothesized that it is important for HCV entry. The second extracellular loop is required for the holding function and oligomerization of the protein (25). Claudin-1 also comprises various signaling domains and a PDZ binding motif in the intracellular C terminus that binds ZO-1, another major component of tight junctions (30, 32, 37). We further hypothesized that some of these domains may play a role in HCV entry.To understand the role of claudin-1 in HCV infection, we developed a mutagenesis strategy targeting the putative sites for internalization, glycosylation, palmitoylation, and phosphorylation. The functionality of these domains has been described by others (4, 16, 25, 35, 37, 40). We also mutagenized charged and bulky residues in ECL1, including all six residues within the highly conserved motif W30-GLW51-C54-C64. None of the intracellular domains were found to affect HCV entry. However, we identified seven residues in ECL1 that are critical for entry mediated by envelope glycoproteins derived from several HCV subtypes, including all six residues of the conserved motif. These mutants were still expressed at the cell surface and able to form lateral homophilic interactions within the plasma membrane as well as to engage in lateral interactions with CD81. In contrast, they no longer engaged in homophilic trans interactions at cell-cell contacts. We conclude that the highly conserved motif W30-GLW51-C54-C64 of claudin-1 is important for HCV entry into target cells and participates in the formation of cell-cell contacts.  相似文献   

11.
12.
Hepatitis C virus (HCV) RNA genome replicates within the ribonucleoprotein (RNP) complex in the modified membranous structures extended from endoplasmic reticulum. A proteomic analysis of HCV RNP complexes revealed the association of oxysterol binding protein (OSBP) as one of the components of these complexes. OSBP interacted with the N-terminal domain I of the HCV NS5A protein and colocalized to the Golgi compartment with NS5A. An OSBP-specific short hairpin RNA that partially downregulated OSBP expression resulted in a decrease of the HCV particle release in culture supernatant with little effect on viral RNA replication. The pleckstrin homology (PH) domain located in the N-terminal region of OSBP targeted this protein to the Golgi apparatus. OSBP deletion mutation in the PH (ΔPH) domain failed to localize to the Golgi apparatus and inhibited the HCV particle release. These studies suggest a possible functional role of OSBP in the HCV maturation process.Hepatitis C virus (HCV) infection is one of the leading causes of chronic hepatitis. HCV infection is associated with cirrhosis, steatosis, and hepatocellular carcinoma (33). The HCV RNA genome of ∼9.6 kb is translated via an internal ribosome entry site element on the rough endoplasmic reticulum (ER) as a polyprotein precursor of about 3,010 amino acids that is co- and posttranslationally processed by cellular and viral proteases into mature structural and nonstructural (NS) proteins (33). HCV replicates within ribonucleoprotein (RNP) complexes associated with modified ER membranous structures (15). Recent work implicated lipid droplets that emanate from the ER as sites of RNA replication (28, 44). Almost all of the HCV NS proteins along with a variety of cellular factors are associated with the RNP complexes engaged in viral RNA replication (37). It is likely that these NS proteins not only participate in replication process but also are involved in the various steps of virion morphogenesis and assembly. Membrane-associated RNP complexes are generally composed of viral proteins, replicating RNA, host proteins, and altered cellular membranes (1). In this respect, a growing body of evidence implicates the functional role of NS5A in early steps of virion assembly and morphogenesis (3, 27, 45). NS5A is a phosphoprotein that migrates in sodium dodecyl sulfate gels as 56-kDa (basally phosphorylated) and 58-kDa (hyperphosphorylated) forms of proteins. The C-terminal domain III region of NS5A and the phosphorylated residue (Ser457) are important for virion maturation (3, 27, 45). NS5A domain III contains the binding site for viral core protein, indicating the possible involvement of NS5A protein in virus assembly (27). NS5A anchors to the ER membrane by an N-terminal hydrophobic α-helix, and this attachment is needed for its key role(s) in viral replication (10). Studies suggest that phosphorylation of NS5A plays a functional role in viral replication (12). The hyperphosphorylated NS5A reduces its interaction with the human vesicle-associated membrane protein-associated protein A (VAP-A) (12). VAP-A binds both NS5A and NS5B (13, 17). These associations are important for RNA replication (13, 17).HCV alters lipid homeostasis to benefit its infectious processes. Host lipids and their synthesis affect viral infectious process (21, 40, 51, 57). HCV RNA replication can be induced by saturated and monounsaturated fatty acids and inhibited by polyunsaturated fatty acids (18, 21). HCV gene expression induces lipogenesis by stimulating the activation of the sterol regulatory element binding proteins, the master regulators of lipid/fatty acid biosynthetic pathways (51). Reagents that interfere with host lipid biosynthetic pathways abrogate viral replication (21, 57). It has been suggested that HCV utilizes the very-low-density lipoprotein (VLDL) secretion pathway for its viral particle release (14, 19). These studies collectively suggest that host lipid metabolism plays a key role in the viral life cycle including replication, virion assembly, and secretion (56).In the present study, we focus on the functional role of oxysterol binding protein (OSBP) that was identified by proteomic analysis as one of the host factors associated with the HCV RNP complexes. OSBP belongs to a family of the OSBP-related proteins. Originally discovered as a major cytosolic receptor for oxidized cholesterols, it undergoes translocation from the cytosolic/vesicular compartment to the Golgi apparatus upon ligand (hydroxycholesterol) binding (38). OSBP also binds to VAP-A via its FFAT motif (53). Golgi apparatus translocation of OSBP is regulated by the pleckstrin homology (PH) domain. This domain also harbors binding sites for phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-biphosphate (PI4,5P2) (25). OSBP and OSBP-related proteins are implicated in cholesterol homeostasis, phospholipid metabolism, vesicular transport, and cell signaling (55). OSBP functions as sterol sensor that regulates the transport of ceramide from the ER to the Golgi apparatus for de novo synthesis of sphingomyelin by coordinated action with ceramide transport protein (CERT) (36). OSBP also functions as a scaffolding protein for two phosphatases (phosphatase 2A/HePTP) (49). This complex regulates the activity of extracellular signal-regulate kinase. This cytosolic 440-kDa complex disassembles by the addition of 25-hydroxycholesterol (25-HC) or depletion of cholesterol, both of which cause OSBP translocation to the Golgi compartment (49). Thus, in addition to its role in intracellular trafficking, OSBP appears to regulate cell signaling. We investigated the functional significance of OSBP association with HCV RNP complexes. RNA interference studies support a functional role of OSBP in virion morphogenesis and release process. The OSBP PH domain deletion mutant (ΔPH) failed to localize to the Golgi apparatus and caused an inhibition of the HCV particle release. Our work described herein also demonstrates that the association of OSBP with NS5A may also contribute to the overall HCV maturation process.  相似文献   

13.
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. As HCV infects only human and chimpanzee cells, antiviral therapy and vaccine development have been hampered by the lack of a convenient small-animal model. In this study we further investigate how the species tropism of HCV is modulated at the level of cell entry. It has been previously determined that the tight junction protein occludin (OCLN) is essential for HCV host cell entry and that human OCLN is more efficient than the mouse ortholog at mediating HCV cell entry. To further investigate the relationship between OCLN sequence and HCV species tropism, we compared OCLN proteins from a range of species for their ability to mediate infection of naturally OCLN-deficient 786-O cells with lentiviral pseudoparticles bearing the HCV glycoproteins. While primate sequences function equivalently to human OCLN, canine, hamster, and rat OCLN had intermediate activities, and guinea pig OCLN was completely nonfunctional. Through analysis of chimeras between these OCLN proteins and alanine scanning mutagenesis of the extracellular domains of OCLN, we identified the second half of the second extracellular loop (EC2) and specific amino acids within this domain to be critical for modulating the HCV cell entry factor activity of this protein. Furthermore, this critical region of EC2 is flanked by two conserved cysteine residues that are essential for HCV cell entry, suggesting that a subdomain of EC2 may be defined by a disulfide bond.Hepatitis C virus (HCV), a member of the family Flaviviridae, is the causative agent of classically defined non-A, non-B hepatitis and is highly prevalent, with approximately 3% of the worldwide population infected (48). HCV infection often results in a chronic, life-long infection that can have severe health consequences, including hepatitis, cirrhosis, hepatocellular carcinoma, and liver failure. There is no HCV vaccine available, and the currently employed interferon-based treatment is inadequate as it has severe side effects and is effective only in half of the major genotype-infected individuals (22, 32). Specific anti-HCV inhibitors targeting the viral proteases and polymerase are currently being developed and will likely improve therapeutic options substantially. Undoubtedly, however, the emergence of viral resistance to such inhibitors will be a problem facing future HCV treatment options. As such, developing a spectrum of inhibitors targeting diverse steps in the virus life cycle, including HCV cell entry, is a priority for HCV research. Such inhibitors may be particularly useful following liver transplantation. Although HCV is the leading cause of liver transplants worldwide (10), the usefulness of such procedures is limited by subsequent universal graft reinfection and often accelerated disease progression (21). Even transiently inhibiting graft reinfection with HCV cell entry inhibitors could greatly improve the effectiveness of this procedure. Therefore, a greater understanding of HCV cell entry is required for the development of therapies targeting this stage of the viral life cycle.HCV host cell entry is a complex process that culminates in the clathrin-dependent endocytosis of the virion and low-pH-mediated fusion of viral and cellular lipid membranes in an early endosome (9, 12, 26, 27, 36, 51). The entry process requires the two viral envelope glycoproteins, E1 and E2, and many cellular factors, including glycosaminoglycans (GAGs) (3, 27), lipoproteins, the low-density lipoprotein receptor (LDL-R) (1, 38-40), tetraspanin CD81 (43), scavenger receptor class B type I (SR-BI) (47), and two tight junction proteins, claudin-1 (CLDN1) (17) and occludin (OCLN) (31, 44). The polarized nature of hepatocytes and the tight junction roles of OCLN and CLDN1 suggest an entry pathway similar to that of the group B coxsackieviruses, where the virion initially binds readily accessible factors that then provide a mechanism for migration of the virion into the tight junction region, just prior to internalization (14). Indeed, cellular factors are utilized by the incoming HCV virion in a temporal manner. At least GAGs and LDL-R appear to mediate virion binding (1, 3, 27, 38-40). Conflicting evidence has shown that SR-BI acts as either a binding (11) or postbinding entry factor (53), while CD81 (7, 13, 17, 27) and CLDN1 (17, 29) play postbinding roles in the HCV cell entry process. Although the kinetics of OCLN usage have not been clearly defined, this protein does not appear to play a role in virion binding (6). However, recent data showing that CD81 and CLDN1 may form complexes prior to infection (15, 24, 25, 28, 29, 35, 52) and imaging of the cell entry process (12) may contradict such a model.Human hepatocytes are the major target for HCV infection. While multiple blocks at a number of viral life cycle stages likely exist in other cell types, cell entry is one of the events limiting HCV tropism (45). Although species differences in SR-BI and CLDN1 may exert some influence on this selectivity (11, 23), CD81 and OCLN appear to be largely responsible for the restriction of HCV entry to cells from human and chimpanzee origin (7, 8, 20, 44). In fact, overexpression of the human versions of CD81 and OCLN, along with either mouse or human SR-BI and CLDN1, renders a mouse cell able to support HCV cell entry (44).We sought to provide greater insight into the species-specific restrictions of HCV cell entry and to elucidate the mechanism by which OCLN acts to mediate HCV cell entry. We examined the ability of OCLN proteins from a range of species to mediate HCV cell entry and how this function correlated with the degree of similarity to the human protein. A six-amino-acid portion of the second extracellular loop (EC2) of human OCLN was found to be responsible for the species-specific differences in entry factor function. OCLN proteins that were less functional than the human protein could be rendered fully functional by adding the human residues at these positions. Conversely, the ability of the human OCLN protein to mediate HCV cell entry was impaired by swapping this region with the corresponding sequence from species with less functional OCLN proteins. Comprehensive alanine scanning of the extracellular loops of human OCLN confirmed that the second half of EC2 was most important for the HCV cell entry process. Two cysteine residues that flank this region were found to be essential for HCV cell entry, suggesting that these residues may define a disulfide-linked subdomain of EC2. None of these amino acid changes influenced OCLN expression or localization, implying that they may serve to modulate an interaction with either another host protein or the incoming HCV virion.  相似文献   

14.
Hepatitis C virus (HCV) entry occurs via a pH- and clathrin-dependent endocytic pathway and requires a number of cellular factors, including CD81, the tight-junction proteins claudin 1 (CLDN1) and occludin, and scavenger receptor class B member I (SR-BI). HCV tropism is restricted to the liver, where hepatocytes are tightly packed. Here, we demonstrate that SR-BI and CLDN1 expression is modulated in confluent human hepatoma cells, with both receptors being enriched at cell-cell junctions. Cellular contact increased HCV pseudoparticle (HCVpp) and HCV particle (HCVcc) infection and accelerated the internalization of cell-bound HCVcc, suggesting that the cell contact modulation of receptor levels may facilitate the assembly of receptor complexes required for virus internalization. CLDN1 overexpression in subconfluent cells was unable to recapitulate this effect, whereas increased SR-BI expression enhanced HCVpp entry and HCVcc internalization, demonstrating a rate-limiting role for SR-BI in HCV internalization.Hepatitis C virus (HCV) is an enveloped positive-strand RNA virus, classified in the genus Hepacivirus of the family Flaviviridae. Worldwide, approximately 170 million individuals are persistently infected with HCV, and the majority are at risk of developing chronic liver disease. Hepatocytes in the liver are thought to be the principal reservoir of HCV replication. HCV pseudoparticles (HCVpp) demonstrate a restricted tropism for hepatocyte-derived cells, suggesting that virus-encoded glycoprotein-receptor interactions play an important role in defining HCV tissue specificity.Recent evidence suggests that a number of host cell molecules are important for HCV entry: the tetraspanin CD81; scavenger receptor class B member I (SR-BI) (reviewed in reference 11); members of the tight-junction protein family claudin 1 (CLDN1), CLDN6, and CLDN9 (12, 34, 48, 52); and occludin (OCLN) (2, 33, 40). HCV enters cells via a pH- and clathrin-dependent endocytic pathway; however, the exact role(s) played by each of the host cell molecules in this process is unclear (4, 8, 21, 34, 45).CD81 and SR-BI interact with HCV-encoded E1E2 glycoproteins, suggesting a role in mediating virus attachment to the cell (reviewed in reference 44). In contrast, there is minimal evidence to support direct interaction of CLDN1 or OCLN with HCV particles (12). Evans and colleagues proposed that CLDN1 acts at a late stage in the entry process and facilitates fusion between the virus and host cell membranes (12). We (13, 19) and others (9, 48) have reported that CLDN1 associates with CD81, suggesting a role for CLDN1-CD81 complexes in viral entry. Cukierman et al. recently reported that CLDN1 enrichment at cell-cell contacts may generate specialized membrane domains that promote HCV internalization (9). In this study, we demonstrate that cellular contact modulates SR-BI and CLDN1 expression levels and promotes HCV internalization. CLDN1 overexpression in subconfluent cells was unable to recapitulate this effect, whereas increased SR-BI expression enhanced HCVpp entry and HCVcc internalization rates, demonstrating a critical and rate-limiting role for SR-BI in HCV internalization.  相似文献   

15.
Hepatitis C virus (HCV) is an important human pathogen affecting 170 million chronically infected individuals. In search for cellular proteins involved in HCV replication, we have developed a purification strategy for viral replication complexes and identified annexin A2 (ANXA2) as an associated host factor. ANXA2 colocalized with viral nonstructural proteins in cells harboring genotype 1 or 2 replicons as well as in infected cells. In contrast, we found no obvious colocalization of ANXA2 with replication sites of other positive-strand RNA viruses. The silencing of ANXA2 expression showed no effect on viral RNA replication but resulted in a significant reduction of extra- and intracellular virus titers. Therefore, it seems likely that ANXA2 plays a role in HCV assembly rather than in genome replication or virion release. Colocalization studies with individually expressed HCV nonstructural proteins indicated that NS5A specifically recruits ANXA2, probably by an indirect mechanism. By the deletion of individual NS5A subdomains, we identified domain III (DIII) as being responsible for ANXA2 recruitment. These data identify ANXA2 as a novel host factor contributing, with NS5A, to the formation of infectious HCV particles.Hepatitis C virus (HCV) infections are characterized by a mostly unapparent acute phase leading to persistence in ca. 70% of all infected individuals. Currently, 170 million people suffer from chronic hepatitis C, and they have a high risk to develop severe liver disease. It has been estimated that HCV accounts for 27% of cirrhosis and 25% of hepatocellular carcinoma cases worldwide (2).HCV is an enveloped positive-strand RNA virus belonging to the genus Hepacivirus in the family Flaviviridae. The genome of HCV encompasses a single ∼9,600-nucleotide (nt)-long RNA molecule containing one large open reading frame (ORF) that is flanked by nontranslated regions (NTRs), which are important for viral translation and replication. HCV proteins generated from the polyprotein precursor are cleaved by cellular and viral proteases into at least 10 different products (for a review of polyprotein cleavage and the function of the individual proteins, see reference 4). The structural proteins Core, E1, and E2 are located in the amino-terminal portion of the polyprotein, followed by p7, a hydrophobic peptide that is supposed to be a viroporin, and the nonstructural proteins (NS) NS2, NS3, NS4A, NS4B, NS5A, and NS5B. Only the nonstructural proteins NS3 to NS5B are involved in viral RNA replication. NS3 is a multifunctional protein, consisting of an amino-terminal protease domain required for the processing of the NS3 to NS5B region and a carboxyterminal helicase/nucleoside triphosphatase domain. NS4A is a cofactor that activates the NS3 protease function by forming a heterodimer. The hydrophobic protein NS4B induces vesicular membrane alterations involved in RNA replication. NS5A is a phosphoprotein that seems to play an important role in viral replication and assembly (3, 35, 58). NS5B is the RNA-dependent RNA polymerase of HCV.Positive-strand RNA viruses replicate their RNA in vesicular structures originating from different cellular organelles (36). In the case of HCV, particular membrane alterations have been identified by electron microscopy, designated the membranous web, consisting of accumulations of vesicles primarily derived from the endoplasmic reticulum (17). Important insights into the organization of HCV replication complexes were obtained by the in vitro analysis of viral RNA synthesis in membrane preparations of cells harboring subgenomic HCV replicons, so-called crude replication complexes (CRCs) (1, 20). A current model based on a stoichiometric analysis of CRCs suggests that each vesicular structure contains multiple copies of viral nonstructural proteins and has a connection to the cytoplasm, allowing the constant supply of nucleotides for RNA synthesis (45), presumably analogously to the replication complex of the closely related dengue virus (DV) (64). Viral RNA synthesis in CRCs is highly resistant to proteinases and nucleases (39), and the membranes are detergent resistant at 4°C, resembling features of lipid rafts (54).Several purification techniques have been established to identify relevant HCV host factors by proteomics, based on either the extraction of detergent-resistant membranes (19, 34) or the immunoprecipitation of vesicles (24), revealing different sets of cellular proteins potentially involved in viral replication. In most of these studies, cell lines harboring persistent subgenomic replicons were utilized (33); however, with the availability of a fully permissive cell culture system supporting the complete HCV replication cycle (31, 63, 66), it became evident that viral RNA replication and assembly are closely linked. Recent work revealed an intimate connection of viral replication complexes and assembly sites in close proximity to cytoplasmic lipid droplets (38), with Core and especially NS5A functioning as central regulators by a poorly defined mechanism. NS5A is phosphorylated at multiple serine and threonine residues, binds RNA, and is composed of three domains, which are separated by trypsin-sensitive low-complexity regions (LCS I and II) (59). An N-terminal amphipathic alpha helix tightly associates NS5A with intracellular membranes. Domain I and LCS1 most likely are involved in viral RNA replication, since replication-enhancing mutations primarily mapped to this region (8, 32). The role of domain II is unknown, while domain III recently has been shown to be dispensable for RNA replication but essential for viral particle assembly (3, 35, 58). One of the proposed mechanisms points to a critical interaction with the Core protein, for which phosphorylation in the C-terminal part of domain III of NS5A appears to be required (35). The interaction of Core and NS5A has been proposed to be important for the recruitment of the replication complexes to lipid droplets (3), thereby allowing a coordinated packaging of the newly synthesized RNA.In this study, we identified annexin A2 (also called annexin II, calpactin 1, and ANXA2) as an HCV host factor by a proteomic analysis. ANXA2 belongs to a family of proteins characterized by their Ca2+-dependent binding to negatively charged phospholipids. The annexin proteins consist of two principle domains, a variable N-terminal and a conserved C-terminal domain, which harbors the Ca2+ and membrane binding sites (for a review, see references 14 and 15). All annexins show cytosolic and membrane localizations. Membrane recruitment probably is regulated by intracellular Ca2+ fluctuations, and target membrane selection differs for different annexins.In addition to showing a cytosolic distribution, ANXA2 can associate with the plasma membrane and the membrane of early endosomes. Plasma membrane-associated ANXA2 typically is found in a tight heterotetrameric complex with the S100 protein S100A10 (p11). ANXA2 specifically interacts with phosphatidylinositol(4,5)bisphosphate (PIP2) (22, 48) and binds to membranes enriched in cholesterol, supporting a role in the organization of lipid raft-like membrane microdomains. Due to the direct binding of ANXA2 to F-actin, the protein has been proposed to provide a direct link between cytoskeletal elements and PIP2/cholesterol-rich membrane domains (47).ANXA2 has been implicated in several cellular transport processes, including the internalization and transport of cholesteryl esters, the biogenesis of multivesicular bodies, the recycling of plasma membrane receptors, and the Ca2+-induced exocytosis of certain secretory granules (14). Here, we show that ANXA2 is present at HCV replication sites within the membranous web. The recruitment of ANXA2 is mediated by domain III of NS5A and probably is required for efficient virus assembly.  相似文献   

16.
Hepatitis B and C viruses (HBV and HCV, respectively) are different and distinct viruses, but there are striking similarities in their disease potential. Infection by either virus can cause chronic hepatitis, liver cirrhosis, and ultimately, liver cancer, despite the fact that no pathogenetic mechanisms are known which are shared by the two viruses. Our recent studies have suggested that replication of either of these viruses upregulates a cellular protein called serine protease inhibitor Kazal (SPIK). Furthermore, the data have shown that cells containing HBV and HCV are more resistant to serine protease-dependent apoptotic death. Since our previous studies have shown that SPIK is an inhibitor of serine protease-dependent apoptosis, it is hypothesized that the upregulation of SPIK caused by HBV and HCV replication leads to cell resistance to apoptosis. The evasion of apoptotic death by infected cells results in persistent viral replication and constant liver inflammation, which leads to gradual accumulation of genetic changes and eventual development of cancer. These findings suggest a possibility by which HBV and HCV, two very different viruses, can share a common mechanism in provoking liver disease and cancer.Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are serious worldwide health problems, with more than 500 million people believed to be chronically infected with at least one of these viruses (36). HBV is a DNA virus belonging to the Hepadnaviridae family (21), while HCV is an RNA virus belonging to the Flaviviridae family (7). Despite the fact that they are two very different viruses, they share a common pathology in the ability to cause chronic hepatitis, liver cirrhosis, and ultimately, hepatocellular carcinoma (HCC) (34). It remains unclear why these two viruses, which are fundamentally so different, can both lead to similar disease states and the development of HCC.Numerous studies suggest that in chronic viral hepatitis, the host''s immune system is unable to clear infected cells (34). The persistent viral replication further stimulates liver inflammation, and prolonged inflammation and viral persistence result in a gradual accumulation of genetic changes which can subsequently lead to transformation and development of HCC (3, 13). It is possible that part of this failure of the host to clear infected cells results from an inability to induce apoptosis in these cells. For example, persistent HBV/HCV infection suppresses cytotoxic-T-lymphocyte (CTL)-induced apoptosis (3, 4). Apoptosis, or programmed cell death, plays a critical role in embryonic development, immune system function, and the overall maintenance of tissue homeostasis in multicellular organisms. It is also important in the host''s control of viral infection (4). The execution of the apoptotic program has traditionally been considered the result of the activation of a family of proteases known as caspases. Caspase-dependent cell apoptosis (CDCA) usually initiates by activating caspases 8 and 10 through proteolysis of their proenzymes, which further activates the executioner caspases, such as caspase 3 and caspase 7, resulting in the degradation of chromosomal DNA and cell death (28, 29). Recent evidence, however, has suggested that apoptotic cell death can also be promoted and triggered by serine proteases in a caspase-independent manner (5, 6, 39). Serine protease-dependent cell apoptosis (SPDCA) differs from CDCA in that serine proteases, not caspases, are critical to the apoptotic process (1, 6, 39). Interestingly, certain viral infections have been shown to induce SPDCA (27, 39).Failure of the immune-mediated removal of malignant cells through apoptosis may be due to the upregulation of apoptosis inhibitors in these cells (12, 18). We recently demonstrated that SPDCA can be inhibited by a small, 79-amino-acid protein called serine protease inhibitor Kazal (SPIK) (22). SPIK, which is also known as SPINK1, TATI (tumor-associated trypsin inhibitor), and PSTI (pancreas secretory trypsin inhibitor) (8, 24, 38), was first discovered in the pancreas as an inhibitor of autoactivation of trypsinogen (9). The expression of SPIK in normal tissue is limited or inactivated outside the pancreas, but expression of SPIK is elevated in numerous cancers, such as colorectal tumors, renal cell carcinoma, gastric carcinoma, and intrahepatic cholangiocarcinoma (ICC) (16, 19, 24, 31, 40, 41). It remains unknown, however, what role SPIK may play in cancer formation and development. Additionally, overexpression of SPIK was also found in HBV/HCV-infected human livers (32), and an even higher level of expression of SPIK was found in HBV/HCV-associated HCC tissue (19, 31). This implies that SPIK may be closely associated with hepatitis virus infection and development of HCC.Here we show direct evidence that HBV/HCV replication does in fact upregulate expression of the apoptosis inhibitor SPIK, resulting in resistance to SPDCA, which could ultimately lead to the development of chronic hepatitis and liver cancer.  相似文献   

17.
18.
19.
Cell culture-adaptive mutations within the hepatitis C virus (HCV) E2 glycoprotein have been widely reported. We identify here a single mutation (N415D) in E2 that arose during long-term passaging of HCV strain JFH1-infected cells. This mutation was located within E2 residues 412 to 423, a highly conserved region that is recognized by several broadly neutralizing antibodies, including the mouse monoclonal antibody (MAb) AP33. Introduction of N415D into the wild-type (WT) JFH1 genome increased the affinity of E2 to the CD81 receptor and made the virus less sensitive to neutralization by an antiserum to another essential entry factor, SR-BI. Unlike JFH1WT, the JFH1N415D was not neutralized by AP33. In contrast, it was highly sensitive to neutralization by patient-derived antibodies, suggesting an increased availability of other neutralizing epitopes on the virus particle. We included in this analysis viruses carrying four other single mutations located within this conserved E2 region: T416A, N417S, and I422L were cell culture-adaptive mutations reported previously, while G418D was generated here by growing JFH1WT under MAb AP33 selective pressure. MAb AP33 neutralized JFH1T416A and JFH1I422L more efficiently than the WT virus, while neutralization of JFH1N417S and JFH1G418D was abrogated. The properties of all of these viruses in terms of receptor reactivity and neutralization by human antibodies were similar to JFH1N415D, highlighting the importance of the E2 412-423 region in virus entry.Hepatitis C virus (HCV), which belongs to the Flaviviridae family, has a positive-sense single-stranded RNA genome encoding a polyprotein that is cleaved by cellular and viral proteases to yield mature structural and nonstructural proteins. The structural proteins consist of core, E1 and E2, while the nonstructural proteins are p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B (42). The hepatitis C virion comprises the RNA genome surrounded by the structural proteins core (nucleocapsid) and E1 and E2 (envelope glycoproteins). The HCV glycoproteins lie within a lipid envelope surrounding the nucleocapsid and play a major role in HCV entry into host cells (21). The development of retrovirus-based HCV pseudoparticles (HCVpp) (3) and the cell culture infectious clone JFH1 (HCVcc) (61) has provided powerful tools to study HCV entry.HCV entry is initiated by the binding of virus particles to attachment factors which are believed to be glycosaminoglycans (2), low-density lipoprotein receptor (41), and C-type lectins such as DC-SIGN and L-SIGN (12, 37, 38). Upon attachment at least four entry factors are important for particle internalization. These include CD81 (50), SR-BI (53) and the tight junction proteins claudin-1 (15) and occludin (6, 36, 51).CD81, a member of the tetraspanin family, is a cell surface protein with various functions including tissue differentiation, cell-cell adhesion and immune cell maturation (34). It consists of a small and a large extracellular loop (LEL) with four transmembrane domains. Viral entry is dependent on HCV E2 binding to the LEL of CD81 (3, 50). The importance of HCV glycoprotein interaction with CD81 is underlined by the fact that many neutralizing antibodies compete with CD81 and act in a CD81-blocking manner (1, 5, 20, 45).SR-BI is a multiligand receptor expressed on liver cells and on steroidogenic tissue. It binds to high-density lipoproteins (HDL), low-density lipoproteins (LDL), and very low-density lipoproteins (VLDL) (31). The SR-BI binding site is mapped to the hypervariable region 1 (HVR-1) of HCV E2 (53). SR-BI ligands, such as HDL and oxidized LDL have been found to affect HCV infectivity (4, 14, 58-60). Indeed, HDL has been shown to enhance HCV infection in an SR-BI-dependent manner (4, 14, 58, 59). Antibodies against SR-BI and knockdown of SR-BI in cells result in a significant inhibition of viral infection in both the HCVpp and the HCVcc systems (5, 25, 32).Although clearly involved in entry and immune recognition, the more downstream function(s) of HCV glycoproteins are poorly understood, as their structure has not yet been solved. Nonetheless, mutational analysis and mapping of neutralizing antibody epitopes have delineated several discontinuous regions of E2 that are essential for HCV particle binding and entry (24, 33, 45, 47). One of these is a highly conserved sequence spanning E2 residues 412 to 423 (QLINTNGSWHIN). Several broadly neutralizing monoclonal antibodies (MAbs) bind to this epitope. These include mouse monoclonal antibody (MAb) AP33, rat MAb 3/11, and the human MAbs e137, HCV1, and 95-2 (8, 16, 44, 45, 49). Of these, MAbs AP33, 3/11, and e137 are known to block the binding of E2 to CD81.Cell culture-adaptive mutations within the HCV glycoproteins are valuable for investigating the virus interaction(s) with cellular receptors (18). In the present study, we characterize an asparagine-to-aspartic acid mutation at residue 415 (N415D) in HCV strain JFH1 E2 that arose during the long-term passaging of infected human hepatoma Huh-7 cells. Alongside N415D, we also characterize three adjacent cell culture adaptive mutations reported previously and a novel substitution generated in the present study by propagating virus under MAb AP33 selective pressure to gain further insight into the function of this region of E2 in viral infection.  相似文献   

20.
Hepatitis C virus (HCV) replication involves many viral and host factors. Here, we employed a lentivirus-based RNA interference (RNAi) screening approach to search for possible cellular factors. By using a kinase-phosphatase RNAi library and an HCV replicon reporter system, we identified a serine-threonine kinase, Polo-like kinase 1 (Plk1), as a potential host factor regulating HCV replication. Knockdown of Plk1 reduced both HCV RNA replication and nonstructural (NS) protein production in both HCV replicon cells and HCV-infected cells while it did not significantly affect host cellular growth or cell cycle. Overexpression of Plk1 in the knockdown cells rescued HCV replication. Interestingly, the ratio between the hyperphosphorylated form (p58) and the basal phosphorylated form (p56) of NS5A was lower in the Plk1 knockdown cells and Plk1 kinase inhibitor-treated cells than in the control groups. Further studies showed that Plk1 could be immunoprecipitated together with NS5A. Both proteins partially colocalized in the perinuclear region. Furthermore, Plk1 could phosphorylate NS5A to both the p58 and p56 forms in an in vitro assay system; the phosphorylation efficiency was comparable to that of the reported casein kinase. Taken together, this study shows that Plk1 is an NS5A phosphokinase and thereby indirectly regulates HCV RNA replication. Because of the differential effects of Plk1 on HCV replication and host cell growth, Plk1 could potentially serve as a target for anti-HCV therapy.Hepatitis C virus (HCV) is the major causative agent of non-A/non-B hepatitis (26). More than 170 million people, or 3% of the population in the world, are infected with HCV (29). It establishes chronic infection in at least 85% of infected individuals and is associated with liver cirrhosis and hepatocellular carcinoma. Current treatment, which combines polyethylene glycol-interferon (PEG-IFN) and ribavirin, is ineffective in 22% of patients with non-genotype 1 and in 45% of patients with genotype 1 HCV (1, 16, 23, 55). Therefore, identification of new targets for HCV therapy is an important issue, and cellular genes involved in the HCV life cycle may serve as good candidates.HCV is a positive-strand RNA virus and the only known member of Hepacivirus genus in the family Flaviviridae. Its genome has a length of about 9,600 nucleotides coding for a single polyprotein. The long polyprotein is further processed into at least 10 different products, including four structural proteins (core, E1, E2, and p7) and six nonstructural (NS) proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B). Nonstructural proteins NS3-NS5B are components of the membrane-associated HCV replication complex (8, 13, 36, 45). NS3 is a bifunctional protein containing an N-terminal protease domain and a C-terminal helicase/NTPase domain, and NS4A serves as a cofactor for NS3 protease. NS4B protein is known to induce intracellular membrane changes that probably serve as the site for viral RNA replication (8). NS5A is required for RNA replication, but little is known about its function. NS5B is the RNA-dependent RNA polymerase (reviewed in reference 47).NS5A is phosphorylated on multiple serine and threonine residues and exists in basal phosphorylated (p56) and hyperphosphorylated (p58) forms (49). Increasing evidence suggests that the regulation of NS5A phosphorylation is important for HCV RNA replication. Adaptive mutations or kinase inhibitors, which reduce NS5A hyperphosphorylation, increased the replication of an HCV replicon in cell culture (HCVcc) systems (2, 4, 38). However, when an adaptive replicon with reduced p58 was further treated with the same kinase inhibitor or introduced with a second adaptive mutation, RNA replication was completely blocked (32, 38). Furthermore, the mutations that reduce NS5A hyperphosphorylation and promote RNA replication in cell culture, paradoxically, prevented productive replication in the chimpanzee model (6). These results imply that the tight control of the p58/p56 ratio is important for HCV replication. The detailed mechanism is still not clear, but a clue was provided by the finding of differential association of NS5A phospho-forms with the host vesicle-associated membrane protein-associated protein A (VAP-A) protein, which is an essential molecule for HCV replicase (9, 12). On the other hand, NS5A phosphorylation was recently found to regulate the production of infectious virus (34, 50). Alanine substitutions in the C-terminal domain III of NS5A impaired NS5A phosphorylation, leading to a decrease in NS5A-core protein interaction, disturbance of subcellular localization of NS5A, and disruption of virion production (3, 34, 50). In summary, phosphorylation on NS5A is not only important for HCV RNA replication but also critical for infectious virus production.Since the phosphorylation state of NS5A is correlated with HCV RNA replication and virion production, cellular kinases responsible for NS5A phosphorylation may serve as good candidates for drug targets. Several kinases have been shown to target NS5A in vitro, including casein kinase I (CKI), CKII, MEK1, MKK6, MKK7, AKT, and p70S6K (7, 24). Among these proteins, CKI and CKII are better characterized for NS5A phosphorylation. CKIα has been identified as the target of kinase inhibitors which decrease the hyperphosphorylation of NS5A and was further confirmed as a direct kinase of NS5A (41, 42). CKI requires prephosphorylation of residues near the predicted phosphorylation site in NS5A for effective modification, suggesting that other kinases are also involved in this process (42). CKII has been shown to bind to the C-terminal domain of NS5A and phosphorylate NS5A in vitro (24). Inhibition of CKII with chemical compounds or small interfering RNA (siRNA) did not significantly affect HCV RNA replication but severely disrupted virus production (50).In this study, using lentivirus-based RNA interference (RNAi) screening, we identified a serine/threonine kinase, Polo-like kinase 1 (Plk1), which is involved in HCV replication. Expression of short hairpin RNAs (shRNAs) targeting Plk1 decreased HCV replication and virus production. Moreover, silencing of Plk1 decreased the hyperphosphorylated form of NS5A. In cells treated with a Plk1-specific kinase inhibitor, HCV replication and NS5A hyperphosphorylation were significantly reduced, indicating that Plk1 kinase activity is required for this process. Further studies showed that Plk1 was coimmunoprecipitated and partially colocalized with NS5A, suggesting NS5A as a possible substrate for Plk1. Finally, NS5A is hyperphosphorylated by Plk1 in vitro, supporting the proposition that Plk1 regulates HCV replication through hyperphosphorylation of NS5A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号