首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the relative degradation and fragmentation pattern of the recombinant Cry1Ab protein from genetically modified (GM) maize MON810 throughout the gastrointestinal tract (GIT) of dairy cows, a 25 months GM maize feeding study was conducted on 36 lactating Bavarian Fleckvieh cows allocated into two groups (18 cows per group) fed diets containing either GM maize MON810 or nearly isogenic non-GM maize as the respective diet components. All cows were fed a partial total mixed ration (pTMR). During the feeding trial, 8 feed (4 transgenic (T) and 4 non-transgenic (NT) pTMR) and 42 feces (26 T and 18 NT) samples from the subset of cows fed T and NT diets, and at the end of the feeding trial, digesta contents of rumen, abomasum, small intestine, large intestine and cecum were collected after the slaughter of six cows of each feeding group. Samples were analyzed for Cry1Ab protein and total protein using Cry1Ab specific ELISA and bicinchoninic acid assay, respectively. Immunoblot analyses were performed to evaluate the integrity of Cry1Ab protein in feed, digesta and feces samples. A decrease to 44% in Cry1Ab protein concentration from T pTMR to the voided feces (9.40 versus 4.18 μg/g of total proteins) was recorded. Concentrations of Cry1Ab protein in GIT digesta of cows fed T diets varied between the lowest 0.38 μg/g of total proteins in abomasum to the highest 3.84 μg/g of total proteins in rumen. Immunoblot analysis revealed the extensive degradation of recombinant Cry1Ab protein into a smaller fragment of around 34 kDa in GIT. The results of the present study indicate that the recombinant Cry1Ab protein from MON810 is increasingly degraded into a small fragment during dairy cow digestion.  相似文献   

2.
转Bt基因玉米对甜菜夜蛾幼虫存活和发育的影响   总被引:5,自引:0,他引:5  
在室内测定了2种转Cry1Ab基因的Bt玉米MON810和Bt11不同组织对甜菜夜蛾 Spodoptera exigua (Hübner)初孵幼虫以及心叶对4龄幼虫存活和发育的影响,在田间比较了甜菜夜蛾幼虫取食Bt 和非Bt玉米雌穗的存活和为害情况。结果表明,转Cry1Ab基因的Bt玉米的不同组织对甜菜夜蛾初孵幼虫都具有明显的杀虫活性,取食Bt玉米心叶、苞叶、籽粒时甜菜夜蛾均在幼虫期死亡; 取食MON810和Bt11雄穗的初孵幼虫化蛹率分别为5.2%和2.1%,羽化率为2.1%和1.0%;取食MON810和Bt11花丝的初孵幼虫化蛹率分别为1.0%和2.1%,但不能羽化。4龄幼虫取食MON810玉米心叶的化蛹率与对照差异不显著,而取食Bt11的化蛹率与对照差异显著; 取食两种Bt玉米心叶的4龄幼虫化蛹后的雌、雄蛹重和羽化率与对照组差异显著,但蛹期和平均单雌产卵量差异不显著,虽然对照组羽化的成虫平均产卵量高于Bt玉米组。田间接种初孵幼虫10 天后的调查结果表明,在MON810和Bt11玉米花丝上幼虫存活率分别为1.3%和0.3%, 而对照组分别为12.9%和16.2%;MON810和Bt11玉米雌穗被害率分别为18.3%和5.0%,而对照组分别为93.3%和95.0%,均显著低于对照组。  相似文献   

3.
The survival of KS-SC DiPel-resistant and -susceptible European corn borer, Ostrinia nubilalis (Hübner), was evaluated on different tissues from corn, Zea mays L., hybrids, including a nontransgenic and two transgenic corn plants (events MON810 and Bt11) expressing high doses of Bacillus thuringiensis (Bt) Cry1Ab. The survival of Bt-resistant and -susceptible third instars was similar after a 5-d exposure to transgenic plant tissues. Survivors eventually died when returned to Bt corn tissues, but many were able to continue development when transferred to non-Bt corn tissues. Survival of resistant and susceptible larvae also was evaluated in bioassays with dilutions of leaf extracts from the three corn hybrids incorporated in an artificial diet. In these assays, survival was significantly higher for resistant O. nubilalis neonates at three of the five dilutions compared with the susceptible strain, but the resistance ratio was only 2.2- and 2.4-fold for MON810 and Bt11, respectively. The data demonstrate that Bt-resistant and unselected control O. nubilalis larvae were similar in susceptibility to MON810 and Bt11 event corn hybrids. Although we were unable to evaluate the Cry1Ab protein that larvae were exposed to in the transgenic tissue because of company restrictions, Cry1Ab protoxin produced in Escherichia coli was incubated with extracts from non-Bt corn leaves to simulate the in planta effect on the transgenic protein. Cry1Ab protoxin was hydrolyzed rapidly by enzymes in the corn extract into peptide fragments with molecular masses ranging from 132 to 74 kDa, and eventually 58 kDa. Overall, these data suggest that plant enzymes hydrolyze transgenic toxin to one that is functionally activated. Therefore, resistant insect populations with reduced proteinase activity do not seem to pose a threat to the efficacy of commercial MON810 and Bt11 corn hybrids.  相似文献   

4.
Transgenic corn (MON 810), expressing the Bacillus thuringiensis (Bt) protein, Cry1Ab, was evaluated under greenhouse conditions for its tolerance to the maize stem borer, Chilo partellus. Bt corn (MON 810) provided effective protection against the stem borer even under a high level of larval infestation in the greenhouse. The observed tolerance is examined and discussed in the light of the susceptibility of C. partellus to the Cry1Ab protein in laboratory bioassays. The implications of the tissue concentrations of Cry1Ab in MON 810, and baseline susceptibility recorded in the current study, for insect-resistance management are discussed.  相似文献   

5.
We have investigated the immunological and metabolomic impacts of Cry1Ab administration to mice, either as a purified protein or as the Cry1Ab-expressing genetically modified (GM) MON810 maize. Humoral and cellular specific immune responses induced in BALB/cJ mice after intra-gastric (i.g.) or intra-peritoneal (i.p.) administration of purified Cry1Ab were analyzed and compared with those induced by proteins of various immunogenic and allergic potencies. Possible unintended effects of the genetic modification on the pattern of expression of maize natural allergens were studied using IgE-immunoblot and sera from maize-allergic patients. Mice were experimentally sensitized (i.g. or i.p. route) with protein extracts from GM or non-GM maize, and then anti-maize proteins and anti-Cry1Ab-induced immune responses were analyzed. In parallel, longitudinal metabolomic studies were performed on the urine of mice treated via the i.g. route. Weak immune responses were observed after i.g. administration of the different proteins. Using the i.p. route, a clear Th2 response was observed with the known allergenic proteins, whereas a mixed Th1/Th2 immune response was observed with immunogenic protein not known to be allergenic and with Cry1Ab. This then reflects protein immunogenicity in the BALB/c Th2-biased mouse strain rather than allergenicity. No difference in natural maize allergen profiles was evidenced between MON810 and its non-GM comparator. Immune responses against maize proteins were quantitatively equivalent in mice treated with MON810 vs the non-GM counterpart and no anti-Cry1Ab-specific immune response was detected in mice that received MON810. Metabolomic studies showed a slight "cultivar" effect, which represented less than 1% of the initial metabolic information. Our results confirm the immunogenicity of purified Cry1Ab without evidence of allergenic potential. Immunological and metabolomic studies revealed slight differences in mouse metabolic profiles after i.g. administration of MON810 vs its non-GM counterpart, but no significant unintended effect of the genetic modification on immune responses was seen.  相似文献   

6.
A transgenic corn event (MON 863) has been recently developed by Monsanto Company for control of corn rootworms, Diabrotica spp. (Coleoptera: Chrysomelidae). This transgenic corn event expresses the cry3Bb1 gene derived from Bacillus thuringiensis (Berliner), which encodes the insecticidal Cry3Bb1 protein for corn rootworm control. A continuous feeding study was conducted in the laboratory to evaluate the dietary effect of MON 863 pollen expressing the Cry3Bb1 protein on the survival, larval development, and reproductive capacity of the non-target species, Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae). First instar C. maculata (less than 24 h old) and newly emerging adults (less than 72 h old) were fed individually on a diet mixture containing 50% of MON 863 pollen, non-transgenic (control) corn pollen, bee pollen (a component of normal rearing diet), or potassium arsenate-treated control corn pollen. In the larval tests, 96.7%, 90.0%, and 93.3% of C. maculata larvae successfully pupated and then emerged as adults when fed on MON 863 pollen, non-transgenic corn pollen, and bee pollen (normal rearing) diets, respectively. Among the larvae completing their development, there were no significant differences in the developmental time to pupation and adult emergence among the transgenic corn pollen, non-transgenic corn pollen, and bee pollen diet treatments. All larvae fed on arsenate treated corn pollen diet died as larvae. For tests with adults, 83.3%, 80.0%, and 100% of adult C. maculata survived for the 30 days of the test period when reared on diets containing 50% of MON 863 pollen, non-transgenic corn pollen, and bee pollen respectively. While the adult survival rate on MON 863 pollen diet was significantly less than that on the bee pollen diet, there was no significant difference between the MON 863 and non-transgenic corn pollen treatments. During the period of adult testing, an average of 77, 80, and 89 eggs per female were laid by females fed on the MON 863 pollen, control corn pollen, and bee pollen, respectively; no significant differences were detected in the number of eggs laid among these treatments. These results demonstrate that when offered at 50% by weight of the dietary component, transgenic corn (MON 863) pollen expressing Cry3Bb1 protein had no measurable negative effect on the survival and development of C. maculata larvae to pupation and adulthood nor any adverse effect on adult survival and reproductive capacity. Relevance of these findings to ecological impacts of transgenic Bt crops on non-target beneficial insects is discussed.  相似文献   

7.
Sugarcane borer, Diatraea saccharalis (F.), is a primary corn stalk borer pest targeted by transgenic corn expressing Bacillus thuringiensis (Bt) proteins in many areas of the mid-southern region of the United States. Recently, genes encoding for Cry1A.105 and Cry2Ab2 Bt proteins were transferred into corn plants (event MON 89034) for controlling lepidopteran pests. This new generation of Bt corn with stacked-genes of Cry1A.105 and Cry2Ab2 will become commercially available in 2009. Susceptibility of Cry1Ab-susceptible and -resistant strains of D. saccharalis were evaluated on four selected Bt proteins including Cry1Aa, Cry1Ac, Cry1A.105, and Cry2Ab2. The Cry1Ab-resistant strain is capable of completing its larval development on commercial Cry1Ab-expressing corn plants. Neonates of D. saccharalis were assayed on a meridic diet containing one of the four Cry proteins. Larval mortality, body weight, and number of surviving larvae that did not gain significant weight (<0.1 mg per larva) were recorded after 7 days. Cry1Aa was the most toxic protein against both insect strains, followed in decreasing potency by Cry1A.105, Cry1Ac, and Cry2Ab2. Using practical mortality (larvae either died or no significant weight gain after 7 days), the median lethal concentration (LC50) of the Cry1Ab-resistant strain was estimated to be >80-, 45-, 4.1-, and −0.5-fold greater than that of the susceptible strain to Cry1Aa, Cry1Ac, Cry1A.105 and Cry2Ab2 proteins, respectively. This information should be useful to support the commercialization of the new Bt corn event MON 89034 for managing D. saccharalis in the mid-southern region of the United States.  相似文献   

8.
The objective of this study was to investigate if feeding genetically modified (GM) MON810 maize expressing the Bacillus thuringiensis insecticidal protein (Bt maize) had any effects on the porcine intestinal microbiota. Eighteen pigs were weaned at ~28 days and, following a 6-day acclimatization period, were assigned to diets containing either GM (Bt MON810) maize or non-GM isogenic parent line maize for 31 days (n = 9/treatment). Effects on the porcine intestinal microbiota were assessed through culture-dependent and -independent approaches. Fecal, cecal, and ileal counts of total anaerobes, Enterobacteriaceae, and Lactobacillus were not significantly different between pigs fed the isogenic or Bt maize-based diets. Furthermore, high-throughput 16S rRNA gene sequencing revealed few differences in the compositions of the cecal microbiotas. The only differences were that pigs fed the Bt maize diet had higher cecal abundance of Enterococcaceae (0.06 versus 0%; P < 0.05), Erysipelotrichaceae (1.28 versus 1.17%; P < 0.05), and Bifidobacterium (0.04 versus 0%; P < 0.05) and lower abundance of Blautia (0.23 versus 0.40%; P < 0.05) than pigs fed the isogenic maize diet. A lower enzyme-resistant starch content in the Bt maize, which is most likely a result of normal variation and not due to the genetic modification, may account for some of the differences observed within the cecal microbiotas. These results indicate that Bt maize is well tolerated by the porcine intestinal microbiota and provide additional data for safety assessment of Bt maize. Furthermore, these data can potentially be extrapolated to humans, considering the suitability of pigs as a human model.  相似文献   

9.
Scientific studies are frequently used to support policy decisions related to transgenic crops. Schmidt et al., Arch Environ Contam Toxicol 56:221–228 (2009) recently reported that Cry1Ab and Cry3Bb were toxic to larvae of Adalia bipunctata in direct feeding studies. This study was quoted, among others, to justify the ban of Bt maize (MON 810) in Germany. The study has subsequently been criticized because of methodological shortcomings that make it questionable whether the observed effects were due to direct toxicity of the two Cry proteins. We therefore conducted tritrophic studies assessing whether an effect of the two proteins on A. bipunctata could be detected under more realistic routes of exposure. Spider mites that had fed on Bt maize (events MON810 and MON88017) were used as carriers to expose young A. bipunctata larvae to high doses of biologically active Cry1Ab and Cry3Bb1. Ingestion of the two Cry proteins by A. bipunctata did not affect larval mortality, weight, or development time. These results were confirmed in a subsequent experiment in which A. bipunctata were directly fed with a sucrose solution containing dissolved purified proteins at concentrations approximately 10 times higher than measured in Bt maize-fed spider mites. Hence, our study does not provide any evidence that larvae of A. bipunctata are sensitive to Cry1Ab and Cry3Bb1 or that Bt maize expressing these proteins would adversely affect this predator. The results suggest that the apparent harmful effects of Cry1Ab and Cry3Bb1 reported by Schmidt et al., Arch Environ Contam Toxicol 56:221–228 (2009) were artifacts of poor study design and procedures. It is thus important that decision-makers evaluate the quality of individual scientific studies and do not view all as equally rigorous and relevant.  相似文献   

10.
11.
Laboratory bioassays were conducted to evaluate the response of first instar larvae of the monarch butterfly, Danaus plexippus L. (Lepidoptera: Danaidae), a non‐target species, to pollen from corn, Zea mays L. (Commelinales: Poaceae), from two new corn hybrids genetically modified to express different types of insecticidal proteins derived from the bacterium Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt). One hybrid expresses both Cry1Ab and Cry2Ab2 proteins (MON 810 × MON 84006), active against lepidopteran pests, and the other expresses Cry3Bb1 protein (MON 863), targeted against coleopteran pests. First instar larvae were placed on milkweed leaves (Asclepias syriaca L.) (Gentianales: Asclepiadaceae) dusted with doses of either Bt pollen or its nonexpressing (isoline) pollen counterpart ranging from 50 to 3200 grains cm?2 of milkweed leaves, or no pollen at all. Larvae were exposed to pollen for 4 days, then moved to pollen‐free leaves and observed for another 6 days. Survival was observed after 2, 4, and 10 days. Weight gain was estimated after 4 and 10 days, leaf consumption after 2 and 4 days, and larval development after 10 days. Exposure to pollen of the Cry1Ab/Cry2Ab2‐Bt expressing hybrid reduced larval survival approximately 7.5–23.5% at the dose ranges tested relative to a no pollen control. Larval weight gain and consumption were reduced for larvae exposed to pollen of this hybrid and a small minority of larvae (3.1%) never developed past the third instar after 10 days of observation. Exposure to pollen of the Cry3Bb1‐Bt expressing hybrid had no negative effects on larval mortality, weight gain, consumption, or development relative to the consumption of Bt‐free corn pollen. The relevance of these findings to the risk that these Bt corn hybrids pose to monarch populations is discussed.  相似文献   

12.
采用ELISA法研究了田间种植条件下转Bt基因玉米MON810生育期根际土壤及还田秸秆中Cry1Ab蛋白的田间残留降解动态,并分别用移动对数模型、指数模型和双指数模型对秸秆分解释放Cry1Ab蛋白的田间降解动态进行拟合,估算了DT50和DT90值. 结果表明: Bt玉米不同生育期根际土壤中Cry1Ab蛋白含量差异较大,但总体随生育期的延长而显著降低. 收获后地表覆盖和埋入土壤两种秸秆还田方式下,秸秆中Cry1Ab蛋白在土壤中的降解规律基本一致,均呈现前期大量快速降解,中后期极少量稳定降解两个阶段. 秸秆还田7 d内,地表覆盖处理的Cry1Ab蛋白降解率均极显著高于埋入土壤处理;10 d时两处理的降解率基本一致,分别为88.8%和88.6%;20 d后,两处理秸秆中Cry1Ab蛋白的降解日趋缓慢;至180 d时仍能检测到少量的Cry1Ab蛋白. 3种模型均能较好地反映秸秆中Cry1Ab蛋白的田间降解规律,从相关系数(R)及DT90值与实测值的吻合程度来看,双指数模型最优.  相似文献   

13.
Field studies were conducted in 1996 and 1997 to determine injury by and survival of late-instar European corn borer, Ostrinia nubilalis (Hübner), on genetically altered Bacillus thuringiensis Berliner corn, Zea mays L. Cry1Ab events 176, Bt11, MON810, and MON802; Cry1Ac event DBT418; and Cry9C event CBH351 were evaluated. Plants of each corn hybrid were manually infested with two third-, fourth-, or fifth-instar O. nubilalis. Larvae were held in proximity to the internode of the plant above the ear with a mesh sleeve. Larvae were put on the plants during corn developmental stages V8, V16, R1, R3, R4, R5, and R6. This study shows that not all B. thuringiensis hybrids provide the same protection against O. nubilalis injury. Hybrids with B. thuringiensis events Bt11, MON810, MON802, and CHB351 effectively protected the corn against tunneling by late-instar O. nubilalis. Event 176 was effective in controlling late-instar O. nubilalis during V12 and V16 corn developmental stages; however, significant tunneling occurred by fourth instars during R3 and R5. Event DBT418 was not effective in controlling late-instar O. nubilalis during corn vegetative or reproductive stages of development. Whether the B. thuringiensis hybrids satisfied high- and ultra-high-dose requirements is discussed.  相似文献   

14.
粘虫高龄幼虫对转Bt基因玉米的消化和利用   总被引:3,自引:0,他引:3  
在室内用重量法研究了粘虫Mythimna separata (Walker)高龄幼虫对转Bt基因玉米MON810和Bt11叶片的消化和利用,以明确Bt玉米对暴食期幼虫取食的影响。结果表明,在连续测定的5天中,取食MON810和Bt11两种Bt玉米叶片时,幼虫存活率和取食量均显著低于各自的对照组幼虫,取食Bt玉米叶片的幼虫体重呈下降趋势,第3 天时分别比第2 天减少12.2 mg 和7.4 mg,而取食对照玉米叶片时的幼虫日增重显著的高于处理组的幼虫,第3 天的日增重分别为100.4 mg 和119.9 mg。取食Bt玉米叶片的幼虫对食物的转化率(ECI和ECD)均为负值,在最初4 天的ECI和ECD都显著低于对照组幼虫,但取食两种非Bt玉米叶片的幼虫的近似消化率(AD) 随取食时间的延长而逐渐下降,取食第5 天分别为20.6 %和15.1 %;而取食MON810和Bt11叶片时幼虫的AD均显著地高于对照组幼虫。  相似文献   

15.
转Bt基因抗虫玉米对亚洲玉米螟幼虫取食行为的影响   总被引:9,自引:0,他引:9  
室内研究了转cry1Ab杀虫蛋白基因的Bt抗虫玉米MON81 0和Bt1 1对亚洲玉米螟Ostriniafurnacalis初孵幼虫和3龄幼虫的取食行为、取食选择性和存活率的影响。在48h的非选择性试验中玉米螟初孵幼虫在MON81 0和Bt1 1玉米心叶组织上的幼虫取食率随时间的增加而下降,在对照玉米上的幼虫取食率随时间的增加而上升,两者间差异极显著。初孵幼虫接虫到MON81 0和Bt1 1玉米叶片48h的累计死亡率分别为67 .5 %和47 .5 % ,而在对照玉米上死亡率均为0. 3龄幼虫在Bt和非Bt玉米穗轴组织上的幼虫取食率随时间的增加呈上升趋势,第48h时在Bt和非Bt玉米上的幼虫取食率分别达到77 5 %和1 0 0 % ,差异极显著。选择性试验中,第4~48h内,初孵幼虫在Bt玉米上的幼虫取食率呈下降趋势,第48h时MON81 0和Bt1 1与各自非Bt对照的组合中初孵幼虫的累计死亡率分别为2 5 .0 %和1 7. 5 % ,二者差异不显著。3龄幼虫在Bt玉米和非Bt玉米上的幼虫取食率均随时间的延长而增加,但在非Bt玉米的幼虫取食率增加速度快,与Bt玉米差异极显著。Bt玉米对玉米螟幼虫取食有抑制和忌避作用。  相似文献   

16.
Pairs of Helicoverpa zea (Boddie) larvae reared on diet-incorporated MON810 transgenic leaf tissue of field corn (Zea mays L.) were observed in the laboratory to characterize effects of sublethal levels of Bacillus thuringiensis variety kurstaki (Bt) Cry1Ab endotoxins on cannibalistic behavior and mortality. Feeding on sublethal levels of Bt corn reduced the frequency of cannibalistic behaviors exhibited by H. zea when uneven instars were paired together. Exposure to the Bt endotoxin had no significant effect on when cannibalistic mortality occurred or the level of mortality as a result of cannibalism. Assuming that H. zea larvae reared on nonBt corn tissue behaved in a similar way that resistant larvae would if feeding on Bt tissue, sublethal effects of Cry1Ab intoxication may reduce the chances of successful cannibalism by susceptible larvae and thus play a disproportionate role in the survival of multiple ear infestations. Furthermore, cannibalistic encounters could result in partially resistant larvae feeding on nontoxic food, thus temporarily providing an escape from exposure to the Bt endotoxin. These behavior alterations could increase the selective differential between susceptible individuals and those carrying resistance genes.  相似文献   

17.
Performance of experimental Bacillus thuringiensis (Bt) MON events alone and pyramided with MON810 were evaluated over 3 yr in Georgia and Alabama. Ability of events to prevent whorl defoliation by the fall armyworm, Spodoptera frugiperda (J. E. Smith), and natural ear feeding damage by the corn earworm, Helicoverpa zea (Boddie) was assessed. In each year, near-isogenic hybrids with novel single transformation events and crosses pyramided with the MON810 event were compared with the standard single MON810 event and nontransformed susceptible control. Events were tested for resistance to whorl damage by manual infestations of fall armyworm and ear damage by natural infestations of corn earworm. All Bt events tested reduced fall armyworm whorl damage ratings per plant compared with the susceptible hybrid. All Bt treatments also had considerably less ear infestation and damage by corn earworm compared with the nontransgenic isoline. The MON841, MION849, and MON851 events reduced ear damage by H. zea but were not as effective as other novel events and were not advanced for further testing after the 1999 season. Pyramiding events compared with single events did not improve control of fall armyworm whorl damage, but they generally did prevent more ear damage by corn earworm. The MON84006 event singly and pyramided with MON810 had superior control of whorl-stage damage by S. frugiperda and ear damage by H. zea compared with MON810. Deployment of new events and genes could provide additional tools for managing the potential for insect resistance to Bt toxins. Furthermore, improved control of whorl and ear infestations by H. zea and S. frugiperda would increase the flexibility of planting corn, Zea mays L., and permit double cropping of corn in areas where these pests perennially reach damaging levels.  相似文献   

18.
Fall armyworm, Spodoptera frugiperda (J.E. Smith), and corn earworm, Helicoverpa zea (Boddie), perennially cause leaf and ear damage to corn, Zea mays L., in the southeastern United States. Transgenic Bacillus thuringiensis (Bt) hybrids with the Bt11, MON810, or 176 events expressing the Cry1Ab insecticidal endotoxin from were evaluated for control fall armyworm and corn earworm at seven locations in Georgia during 1999 and 2000. Corn was planted at the recommended time for each location and 1 and 2 mo later in the southern locations. All Bt events consistently reduced whorl infestation and damage, although event 176 did not prevent whorl damage in the later plantings in the southern locations in both years. All events also reduced seedling damage by the lesser cornstalk borer, Elasmopalpus lignosellus (Zeller), in one trial and stalk infestations and tunnel length by southwestern corn borers, Diatraea grandiosella Dyar, in another trial. Hybrids containing Bt11 and MON810 events reduced ear infestations in all trials, although reductions were small in later plantings. Nevertheless, both events reduced grain damage from earworms and armyworms by an average +/- SE of 52.5 +/- 5.1% in all trials. The hybrid containing event 176 did not reduce ear infestations and damage. Total grain aflatoxin concentrations were not significantly affected by Bt resistance in any trial (N = 17). Yield responses were variable with the prevention of yield loss being proportional to the severity of insect damage. Although plantings made after the recommended time did not consistently benefit from Bt resistance, Bt11 and MON810 events were effective in reducing damage to field corn when large infestations occurred. The Bt11 and MON810 events mitigated the risk of severe lepidopteran damage to corn, thereby making later plantings of corn feasible in double-cropping systems.  相似文献   

19.
We present for the first time a comparative analysis of blood and organ system data from trials with rats fed three main commercialized genetically modified (GM) maize (NK 603, MON 810, MON 863), which are present in food and feed in the world. NK 603 has been modified to be tolerant to the broad spectrum herbicide Roundup and thus contains residues of this formulation. MON 810 and MON 863 are engineered to synthesize two different Bt toxins used as insecticides. Approximately 60 different biochemical parameters were classified per organ and measured in serum and urine after 5 and 14 weeks of feeding. GM maize-fed rats were compared first to their respective isogenic or parental non-GM equivalent control groups. This was followed by comparison to six reference groups, which had consumed various other non-GM maize varieties. We applied nonparametric methods, including multiple pairwise comparisons with a False Discovery Rate approach. Principal Component Analysis allowed the investigation of scattering of different factors (sex, weeks of feeding, diet, dose and group). Our analysis clearly reveals for the 3 GMOs new side effects linked with GM maize consumption, which were sex- and often dose-dependent. Effects were mostly associated with the kidney and liver, the dietary detoxifying organs, although different between the 3 GMOs. Other effects were also noticed in the heart, adrenal glands, spleen and haematopoietic system. We conclude that these data highlight signs of hepatorenal toxicity, possibly due to the new pesticides specific to each GM corn. In addition, unintended direct or indirect metabolic consequences of the genetic modification cannot be excluded.  相似文献   

20.
Helicoverpa zea (Boddie) development, survival, and feeding injury in MON810 transgenic ears of field corn (Zea mays L.) expressing Bacillus thuringiensis variety kurstaki (Bt) Cry1Ab endotoxins were compared with non-Bt ears at four geographic locations over two growing seasons. Expression of Cry1Ab endotoxin resulted in overall reductions in the percentage of damaged ears by 33% and in the amount of kernels consumed by 60%. Bt-induced effects varied significantly among locations, partly because of the overall level and timing of H. zea infestations, condition of silk tissue at the time of egg hatch, and the possible effects of plant stress. Larvae feeding on Bt ears produced scattered, discontinuous patches of partially consumed kernels, which were arranged more linearly than the compact feeding patterns in non-Bt ears. The feeding patterns suggest that larvae in Bt ears are moving about sampling kernels more frequently than larvae in non-Bt ears. Because not all kernels express the same level of endotoxin, the spatial heterogeneity of toxin distribution within Bt ears may provide an opportunity for development of behavioral responses in H. zea to avoid toxin. MON810 corn suppressed the establishment and development of H. zea to late instars by at least 75%. This level of control is considered a moderate dose, which may increase the risk of resistance development in areas where MON810 corn is widely adopted and H. zea overwinters successfully. Sublethal effects of MON810 corn resulted in prolonged larval and prepupal development, smaller pupae, and reduced fecundity of H. zea. The moderate dose effects and the spatial heterogeneity of toxin distribution among kernels could increase the additive genetic variance for both physiological and behavioral resistance in H. zea populations. Implications of localized population suppression are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号