共查询到20条相似文献,搜索用时 0 毫秒
1.
The mRNA levels of neuropoietic cytokines, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), and interleukin-6 (IL-6), and their receptor components (CNTFR, LIFR, IL-6R, and gp130) were examined in seventy-six patients with various peripheral neuropathies to determine the extent of expression of these cytokines and receptors, and their relationship to nerve fiber pathology and cell infiltration in the diseased nerves. The CNTF mRNA levels were significantly decreased in the diseased nerves and were correlated to residual myelinated fiber population. In contrast, the mRNA levels of LIF, IL-6 and the ligand-binding receptor components (CNTFR, LIFR and IL-6R) were elevated to variable extent in the diseased nerves. The CNTFR, LIFR, and IL-6R mRNA levels showed a weak positive correlation with the extent of demyelinating pathology and their levels were related to each other. Moreover, the CNTF and LIF mRNA levels were inversely proportional to the extent of macrophage invasion, whereas the CNTFR and IL-6R mRNA expressions were correlated to the increase in macrophage infiltration. The neuropoietic cytokine family and its receptor expressions in the diseased human nerves are regulated by an underlying pathology-related process rather than type of diseases, and could play a role in peripheral nerve regeneration and repair. 相似文献
2.
Sheng Liu Thao Nheu Rodney Luwor Sandra E. Nicholson Hong-Jian Zhu 《The Journal of biological chemistry》2015,290(29):17894-17908
Appropriate cellular signaling is essential to control cell proliferation, differentiation, and cell death. Aberrant signaling can have devastating consequences and lead to disease states, including cancer. The transforming growth factor-β (TGF-β) signaling pathway is a prominent signaling pathway that has been tightly regulated in normal cells, whereas its deregulation strongly correlates with the progression of human cancers. The regulation of the TGF-β signaling pathway involves a variety of physiological regulators. Many of these molecules act to alter the activity of Smad proteins. In contrast, the number of molecules known to affect the TGF-β signaling pathway at the receptor level is relatively low, and there are no known direct modulators for the TGF-β type II receptor (TβRII). Here we identify SPSB1 (a Spry domain-containing Socs box protein) as a novel regulator of the TGF-β signaling pathway. SPSB1 negatively regulates the TGF-β signaling pathway through its interaction with both endogenous and overexpressed TβRII (and not TβRI) via its Spry domain. As such, TβRII and SPSB1 co-localize on the cell membrane. SPSB1 maintains TβRII at a low level by enhancing the ubiquitination levels and degradation rates of TβRII through its Socs box. More importantly, silencing SPSB1 by siRNA results in enhanced TGF-β signaling and migration and invasion of tumor cells. 相似文献
3.
Helena Porsch Merima Mehi? Berit Olofsson Paraskevi Heldin Carl-Henrik Heldin 《The Journal of biological chemistry》2014,289(28):19747-19757
Growth factors, such as platelet-derived growth factor BB (PDGF-BB) and transforming growth factor β (TGFβ), are key regulators of cellular functions, including proliferation, migration, and differentiation. Growth factor signaling is modulated by context-dependent cross-talk between different signaling pathways. We demonstrate in this study that PDGF-BB induces phosphorylation of Smad2, a downstream mediator of the canonical TGFβ pathway, in primary dermal fibroblasts. The PDGF-BB-mediated Smad2 phosphorylation was dependent on the kinase activities of both TGFβ type I receptor (TβRI) and PDGF β-receptor (PDGFRβ), and it was prevented by inhibitory antibodies against TGFβ. Inhibition of the activity of the TβRI kinase greatly reduced the PDGF-BB-dependent migration in dermal fibroblasts. Moreover, we demonstrate that the receptors for PDGF-BB and TGFβ interact physically in primary dermal fibroblasts and that stimulation with PDGF-BB induces internalization not only of PDGFRβ but also of TβRI. In addition, silencing of PDGFRβ by siRNA decreased the stability of TβRI and delayed TGFβ-induced signaling. We further show that the hyaluronan receptor CD44 interacts with both PDGFRβ and TβRI. Depletion of CD44 by siRNA increased signaling via PDGFRβ and TβRI by stabilizing the receptor proteins. Our data suggest that cross-talk between PDGFRβ and TβRI occurs in dermal fibroblasts and that CD44 negatively modulates signaling via these receptors. 相似文献
4.
Karen Mendelson Steven Swendeman Paul Saftig Carl P. Blobel 《The Journal of biological chemistry》2010,285(32):25024-25032
Binding of the platelet-derived growth factor (PDGF)-B to its receptor PDGFRβ promotes proliferation, migration, and recruitment of pericytes and smooth muscle cells to endothelial cells, serving to stabilize developing blood vessels. The main goals of this study were to determine whether the extracellular domain of the PDGFRβ can be proteolytically released from cell membranes and, if so, to identify the responsible sheddase and determine whether activation of the PDGFRβ stimulates its shedding and potentially that of other membrane proteins. We found that the PDGFRβ is shed from cells by a metalloproteinase and used loss-of-function experiments to identify ADAM10 as the sheddase responsible for constitutive and ionomycin-stimulated processing of the PDGFRβ. Moreover, we showed that ligand-dependent activation of the PDGFRβ does not trigger its own shedding by ADAM10, but instead it stimulates ADAM17 and shedding of substrates of ADAM17, including tumor necrosis factor α and transforming growth factor α. Finally, we demonstrated that treatment of mouse embryonic fibroblasts with PDGF-B triggers a metalloproteinase-dependent cross-talk between the PDGFRβ and the epidermal growth factor receptor (EGFR)/ERK1/2 signaling axis that is also critical for PDGF-B-stimulated cell migration, most likely via ADAM17-dependent release and activation of ligands of the EGFR. This study identifies the principal sheddase for the PDGFRβ and provides new insights into the mechanism of PDGFRβ-dependent signal transduction and cross-talk with the EGFR. 相似文献
5.
6.
Xinchun Shen Gang Xi Laura A. Maile Christine Wai Clifford J. Rosen David R. Clemmons 《Molecular and cellular biology》2012,32(20):4116-4130
Insulin-like growth factor I (IGF-I) is a mitogen for vascular smooth muscle cells (VSMC) and has been implicated in the development and progression of atherosclerosis. IGF binding proteins (IGFBPs) modify IGF-I actions independently of IGF binding, but a receptor-based mechanism by which they function has not been elucidated. We investigated the role of IGFBP-2 and receptor protein tyrosine phosphatase β (RPTPβ) in regulating IGF-I signaling and cellular proliferation. IGFBP-2 bound RPTPβ, which led to its dimerization and inactivation. This enhanced PTEN tyrosine phosphorylation and inhibited PTEN activity. Utilization of substrate trapping and phosphatase-dead mutants showed that RPTPβ bound specifically to PTEN and dephosphorylated it. IGFBP-2 knockdown led to decreased PTEN tyrosine phosphorylation and decreased AKT Ser473 activation. IGFBP-2 enhanced IGF-I-stimulated VSMC migration and proliferation. Analysis of aortas obtained from IGFBP-2−/− mice showed that RPTPβ was activated, and this was associated with inhibition of IGF-I stimulated AKT Ser473 phosphorylation and VSMC proliferation. These changes were rescued following administration of IGFBP-2. These findings present a novel mechanism for coordinate regulation of IGFBP-2 and IGF-I signaling functions that lead to stimulation of VSMC proliferation. The results have important implications for understanding how IGFBPs modulate the cellular response to IGF-I. 相似文献
7.
Aung Than Melvin Khee-Shing Leow Peng Chen 《The Journal of biological chemistry》2013,288(22):15520-15531
Angiotensin II (AngII), a peptide hormone released by adipocytes, can be catabolized by adipose angiotensin-converting enzyme 2 (ACE2) to form Ang(1–7). Co-expression of AngII receptors (AT1 and AT2) and Ang(1–7) receptors (Mas) in adipocytes implies the autocrine regulation of the local angiotensin system upon adipocyte functions, through yet unknown interactive mechanisms. In the present study, we reveal the adipogenic effects of Ang(1–7) through activation of Mas receptor and its subtle interplays with the antiadipogenic AngII-AT1 signaling pathways. Specifically, in human and 3T3-L1 preadipocytes, Ang(1–7)-Mas signaling promotes adipogenesis via activation of PI3K/Akt and inhibition of MAPK kinase/ERK pathways, and Ang(1–7)-Mas antagonizes the antiadipogenic effect of AngII-AT1 by inhibiting the AngII-AT1-triggered MAPK kinase/ERK pathway. The autocrine regulation of the AngII/AT1-ACE2-Ang(1–7)/Mas axis upon adipogenesis has also been revealed. This study suggests the importance of the local regulation of the delicately balanced angiotensin system upon adipogenesis and its potential as a novel therapeutic target for obesity and related metabolic disorders. 相似文献
8.
9.
10.
11.
12.
13.
José J. García-Trejo Mariel Zarco-Zavala Francisco Mendoza-Hoffmann Eduardo Hernández-Luna Raquel Ortega Guillermo Mendoza-Hernández 《The Journal of biological chemistry》2016,291(2):538-546
The ζ subunit is a novel inhibitor of the F1FO-ATPase of Paracoccus denitrificans and related α-proteobacteria. It is different from the bacterial (ϵ) and mitochondrial (IF1) inhibitors. The N terminus of ζ blocks rotation of the γ subunit of the F1-ATPase of P. denitrificans (Zarco-Zavala, M., Morales-Ríos, E., Mendoza-Hernández, G., Ramírez-Silva, L., Pérez-Hernández, G., and García-Trejo, J. J. (2014) FASEB J. 24, 599–608) by a hitherto unknown quaternary structure that was first modeled here by structural homology and protein docking. The F1-ATPase and F1-ζ models of P. denitrificans were supported by cross-linking, limited proteolysis, mass spectrometry, and functional data. The final models show that ζ enters into F1-ATPase at the open catalytic αE/βE interface, and two partial γ rotations lock the N terminus of ζ in an “inhibition-general core region,” blocking further γ rotation, while the ζ globular domain anchors it to the closed αDP/βDP interface. Heterologous inhibition of the F1-ATPase of P. denitrificans by the mitochondrial IF1 supported both the modeled ζ binding site at the αDP/βDP/γ interface and the endosymbiotic α-proteobacterial origin of mitochondria. In summary, the ζ subunit blocks the intrinsic rotation of the nanomotor by inserting its N-terminal inhibitory domain at the same rotor/stator interface where the mitochondrial IF1 or the bacterial ϵ binds. The proposed pawl mechanism is coupled to the rotation of the central γ subunit working as a ratchet but with structural differences that make it a unique control mechanism of the nanomotor to favor the ATP synthase activity over the ATPase turnover in the α-proteobacteria. 相似文献
14.
Zhaoqing Zheng Boris Sabirzhanov Joyce Keifer 《The Journal of biological chemistry》2010,285(45):34708-34717
Amyloid-β (Aβ) peptide is thought to have a significant role in the progressive memory loss observed in patients with Alzheimer disease and inhibits synaptic plasticity in animal models of learning. We previously demonstrated that brain-derived neurotrophic factor (BDNF) is critical for synaptic AMPA receptor delivery in an in vitro model of eyeblink classical conditioning. Here, we report that acquisition of conditioned responses was significantly attenuated by bath application of oligomeric (200 nm), but not fibrillar, Aβ peptide. Western blotting revealed that BDNF protein expression during conditioning is significantly reduced by treatment with oligomeric Aβ, as were phosphorylation levels of cAMP-response element-binding protein (CREB), Ca2+/calmodulin-dependent protein kinase II (CaMKII), Ca2+/calmodulin-dependent protein kinase IV (CaMKIV), and ERK. However, levels of PKA and PKCζ/λ were unaffected, as was PDK-1. Protein localization studies using confocal imaging indicate that oligomeric Aβ, but not fibrillar or scrambled forms, suppresses colocalization of GluR1 and GluR4 AMPA receptor subunits with synaptophysin, indicating that trafficking of these subunits to synapses during the conditioning procedure is blocked. In contrast, coapplication of BDNF with oligomeric Aβ significantly reversed these findings. Interestingly, a tolloid-like metalloproteinase in turtle, tTLLs (turtle tolloid-like protein), which normally processes the precursor proBDNF into mature BDNF, was found to degrade oligomeric Aβ into small fragments. These data suggest that an Aβ-induced reduction in BDNF, perhaps due to interference in the proteolytic conversion of proBDNF to BDNF, results in inhibition of synaptic AMPA receptor delivery and suppression of the acquisition of conditioning. 相似文献
15.
Luiz F. Rezende Gustavo J. Santos Everardo M. Carneiro Antonio C. Boschero 《The Journal of biological chemistry》2012,287(50):41628-41639
Type 1 diabetes is characterized by a loss of islet β-cells. Ciliary neurotrophic factor (CNTF) protects pancreatic islets against cytokine-induced apoptosis. For this reason, we assessed whether CNTF protects mice against streptozotocin-induced diabetes (a model of type 1 diabetes) and the mechanism for this protection. WT and SOCS3 knockdown C57BL6 mice were treated for 5 days with citrate buffer or 0.1 mg/kg CNTF before receiving 80 mg/kg streptozotocin. Glycemia in non-fasted mice was measured weekly from days 0–28 after streptozotocin administration. Diabetes was defined as a blood glucose > 11.2 mmol/liter. Wild-type (WT) and SOCS3 knockdown MIN6 cells were cultured with CNTF, IL1β, or both. CNTF reduced diabetes incidence and islet apoptosis in WT but not in SOCS3kd mice. Likewise, CNTF inhibited apoptosis in WT but not in SOCS3kd MIN6 cells. CNTF increased STAT3 phosphorylation in WT and SOCS3kd mice and MIN6 cells but reduced STAT1 phosphorylation only in WT mice, in contrast to streptozotocin and IL1β. Moreover, CNTF reduced NFκB activation and required down-regulation of inducible NO synthase expression to exert its protective effects. In conclusion, CNTF protects mice against streptozotocin-induced diabetes by increasing pancreatic islet survival, and this protection depends on SOCS3. In addition, SOCS3 expression and β-cell fate are dependent on STAT1/STAT3 ratio. 相似文献
16.
Richard Berry Stephen J. Headey Melissa J. Call James McCluskey Clive A. Tregaskes Jim Kaufman Ruide Koh Martin J. Scanlon Matthew E. Call Jamie Rossjohn 《The Journal of biological chemistry》2014,289(12):8240-8251
In mammals, the αβT cell receptor (TCR) signaling complex is composed of a TCRαβ heterodimer that is noncovalently coupled to three dimeric signaling molecules, CD3ϵδ, CD3ϵγ, and CD3ζζ. The nature of the TCR signaling complex and subunit arrangement in different species remains unclear however. Here we present a structural and biochemical analysis of the more primitive ancestral form of the TCR signaling complex found in chickens. In contrast to mammals, chickens do not express separate CD3δ and CD3γ chains but instead encode a single hybrid chain, termed CD3δ/γ, that is capable of pairing with CD3ϵ. The NMR structure of the chicken CD3ϵδ/γ heterodimer revealed a unique dimer interface that results in a heterodimer with considerable deviation from the distinct side-by-side architecture found in human and murine CD3ϵδ and CD3ϵγ. The chicken CD3ϵδ/γ heterodimer also contains a unique molecular surface, with the vast majority of surface-exposed, nonconserved residues being clustered to a single face of the heterodimer. Using an in vitro biochemical assay, we demonstrate that CD3ϵδ/γ can assemble with both chicken TCRα and TCRβ via conserved polar transmembrane sites. Moreover, analogous to the human TCR signaling complex, the presence of two copies of CD3ϵδ/γ is required for ζζ assembly. These data provide insight into the evolution of this critical receptor signaling apparatus. 相似文献
17.
Anne P. B. Edwards Yanhua Xie Lara Bowers Daniel DiMaio 《Journal of virology》2013,87(20):10936-10945
The 44-amino-acid E5 protein of bovine papillomavirus is a dimeric transmembrane protein that exists in a stable complex with the platelet-derived growth factor (PDGF) β receptor, causing receptor activation and cell transformation. The transmembrane domain of the PDGF β receptor is required for complex formation, but it is not known if the two proteins contact one another directly. Here, we studied a PDGF β receptor mutant containing a leucine-to-isoleucine substitution in its transmembrane domain, which prevents complex formation with the wild-type E5 protein in mouse BaF3 cells and inhibits receptor activation by the E5 protein. We selected E5 mutants containing either a small deletion or multiple substitution mutations that restored binding to the mutant PDGF β receptor, resulting in receptor activation and growth factor independence. These E5 mutants displayed lower activity with PDGF β receptor mutants containing other transmembrane substitutions in the vicinity of the original mutation, and one of them cooperated with a receptor mutant containing a distal mutation in the juxtamembrane domain. These results provide strong genetic evidence that the transmembrane domains of the E5 protein and the PDGF β receptor contact one another directly. They also demonstrate that different mutations in the E5 protein allow it to tolerate the same mutation in the PDGF β receptor transmembrane domain and that a mutation in the E5 protein can allow it to tolerate different mutations in the PDGF β receptor. Thus, the rules governing direct interactions between transmembrane helices are complex and not restricted to local interactions. 相似文献
18.
Raffaella Scaringi Marco Piccoli Nadia Papini Federica Cirillo Erika Conforti Sonia Bergante Cristina Tringali Andrea Garatti Cecilia Gelfi Bruno Venerando Lorenzo Menicanti Guido Tettamanti Luigi Anastasia 《The Journal of biological chemistry》2013,288(5):3153-3162
NEU3 sialidase, a key enzyme in ganglioside metabolism, is activated under hypoxic conditions in cultured skeletal muscle cells (C2C12). NEU3 up-regulation stimulates the EGF receptor signaling pathway, which in turn activates the hypoxia-inducible factor (HIF-1α), resulting in a final increase of cell survival and proliferation. In the same cells, stable overexpression of sialidase NEU3 significantly enhances cell resistance to hypoxia, whereas stable silencing of the enzyme renders cells more susceptible to apoptosis. These data support the working hypothesis of a physiological role played by NEU3 sialidase in protecting cells from hypoxic stress and may suggest new directions in the development of therapeutic strategies against ischemic diseases, particularly of the cerebro-cardiovascular system. 相似文献
19.