首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Lupus nephritis is characterized by deposition of chromatin fragment-IgG complexes in the mesangial matrix and glomerular basement membranes (GBM). The latter defines end-stage disease.

Methodology/Principals

In the present study we determined the impact of antibodies to dsDNA, renal Dnase1 and matrix metalloprotease (MMP) mRNA levels and enzyme activities on early and late events in murine lupus nephritis. The major focus was to analyse if these factors were interrelated, and if changes in their expression explain basic processes accounting for lupus nephritis.

Findings

Early phases of nephritis were associated with chromatin-IgG complex deposition in the mesangial matrix. A striking observation was that this event correlated with appearance of anti-dsDNA antibodies and mild or clinically silent nephritis. These events preceded down-regulation of renal Dnase1. Later, renal Dnase1 mRNA level and enzyme activity were reduced, while MMP2 mRNA level and enzyme activity increased. Reduced levels of renal Dnase1 were associated in time with deficient fragmentation of chromatin from dead cells. Large fragments were retained and accumulated in GBM. Also, since chromatin fragments are prone to stimulate Toll-like receptors in e.g. dendritic cells, this may in fact explain increased expression of MMPs.

Significance

These scenarios may explain the basis for deposition of chromatin-IgG complexes in glomeruli in early and late stages of nephritis, loss of glomerular integrity and finally renal failure.  相似文献   

2.

Introduction

Among various lupus renal vascular changes, thrombotic microangiopathy (TMA) presented with the most severe clinical manifestations and high mortality. The pathogenesis of TMA in systemic lupus erythematosus (SLE) was complicated. The aim of this study was to assess clinical manifestations, laboratory characteristics, pathological features and risk factors for clinical outcomes of lupus nephritis patients co-existing with renal TMA in a large cohort in China.

Methods

Clinical and renal histopathological data of 148 patients with biopsy-proven lupus nephritis were retrospectively analyzed. Serum complement factor H, A Disintegrin and Metalloprotease with Thrombospondin type I repeats 13 (ADAMTS-13) activity, antiphospholipid antibodies and C4d deposition on renal vessels were further detected and analyzed.

Results

In the 148 patients with lupus nephritis, 36 patients were diagnosed as co-existing with renal TMA based on pathological diagnosis. Among the 36 TMA patients, their clinical diagnoses of renal TMA were as followings: 2 patients combining with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome, 2 patients combining with anti-phospholipid syndrome, 2 patients with malignant hypertension, 1 patient with scleroderma and the other 29 patients presenting with isolated renal TMA. Compared with the non-renal TMA group, patients with renal TMA had significantly higher urine protein (7.09 ± 4.64 vs. 4.75 ± 3.13 g/24h, P = 0.007) and serum creatinine (159, 86 to 215 vs. 81, 68 to 112 μmol/l, P <0.001), higher scores of total activity indices (AI) (P <0.001), endocapillary hypercellularity (P <0.001), subendothelial hyaline deposits (P = 0.003), interstitial inflammation (P = 0.005), glomerular leukocyte infiltration (P = 0.006), total chronicity indices (CI) (P = 0.033), tubular atrophy (P = 0.004) and interstitial fibrosis (P = 0.018). Patients with renal TMA presented with poorer renal outcome (P = 0.005) compared with the non-TMA group. Renal TMA (hazard ratio (HR): 2.772, 95% confidence interval: 1.009 to 7.617, P = 0.048) was an independent risk factor for renal outcome in patients with lupus nephritis. The renal outcome was poorer for those with both C4d deposition and decreased serum complement factor H in the TMA group (P = 0.007).

Conclusions

There were various causes of renal TMA in lupus nephritis. Complement over-activation via both classical and alternative pathways might play an important role in the pathogenesis of renal TMA in lupus nephritis.  相似文献   

3.

Objective

The canonical WNT pathway has been implicated as playing important roles in the pathogenesis of a variety of kidney diseases. Recently, WNT pathway activity was reported to be elevated in the renal tissue of a lupus mouse model. This study aimed to evaluate the potential role of the WNT pathway in the pathogenesis of human lupus nephritis.

Methods

The expression of β-catenin was evaluated in renal biopsy specimens from lupus nephritis patients and control kidney tissues by immunohistochemistry and western blotting. Real-time polymerase chain reaction (RT-PCR) was used to detect RNA expression of β-catenin, Dkk-1 and Axin2. Plasma concentrations of Dkk-1 were measured by ELISA.

Results

Immunohistochemistry and western blotting revealed increased expression of β-catenin in the kidneys of patients with lupus nephritis compared with control kidney tissues (p<0.05), accompanied by an increase in mRNA expression of β-catenin (p<0.01) and axin2 (p<0.05).β-catenin was significantly greater in LN patients without renal interstitial fibrosis compared with those with renal interstitial fibrosis (p<0.01) at the mRNA expression level; the increase in β-catenin mRNA positively correlated with the creatinine clearance rate (Ccr) and negatively correlated with chronicity indices of renal tissue injury. Greater plasma Dkk-1 concentrations were found in LN patients compared with controls (p<0.05). Plasma Dkk-1 concentrations also correlated negatively with anti-dsDNA antibody levels and positively with serum C3 levels.

Conclusions

The canonical WNT/β-catenin signaling pathway was activated in lupus nephritis patients, accompanied by an increase in plasma levels of Dkk-1. Altered WNT/β-catenin signaling was related to the pathogenesis of lupus nephritis and might play a role in renal fibrosis.  相似文献   

4.

Introduction

Although renal pathology is highly predictive of the disease course in lupus nephritis, it cannot be performed serially because of its invasive nature and associated morbidity. The goal of this study is to investigate whether urinary levels of CXC ligand 16 (CXCL16), monocyte chemotactic protein-1 (MCP-1) or vascular cell adhesion molecule-1 (VCAM-1) in patients with lupus nephritis are predictive of particular features of renal pathology in renal biopsies obtained on the day of urine procurement.

Methods

CXCL16, MCP-1, and VCAM-1 levels were measured in urine samples from 74 lupus nephritis patients and 13 healthy volunteers. Of the patients enrolled, 24 patients had a concomitant kidney biopsy performed at the time of urine collection. In addition, patients with other renal diatheses were also included as controls.

Results

All three molecules were elevated in the urine of systemic lupus erythematosus patients, although VCAM-1 (area under curve = 0.92) and MCP-1 (area under curve = 0.87) were best at distinguishing the systemic lupus erythematosus samples from the healthy controls, and were also most strongly associated with clinical disease severity and active renal disease. For patients in whom concurrent renal biopsies had also been performed, urine VCAM-1 exhibited the strongest association with the renal pathology activity index and glomerulonephritis class IV, although it correlated negatively with the chronicity index. Interestingly, urinary VCAM-1 was also elevated in anti-neutrophil cytoplasmic antibodies-associated glomerulonephritis, focal segmental glomerulosclerosis and membranous nephropathy but not in minimal-change disease.

Conclusion

Urinary VCAM-1 emerges as a reliable indicator of the activity:chronicity ratios that mark the underlying renal pathology in lupus nephritis. Since VCAM-1 is involved in the acute phase of inflammation when leukocytic infiltration is ongoing, longitudinal studies are warranted to establish whether tracking urine VCAM-1 levels may help monitor clinical and pathological disease activity over time.  相似文献   

5.
Autoantibodies to components of chromatin, which include double-stranded DNA (dsDNA), histones and nucleosomes, are central in the pathogenesis of lupus nephritis. How anti-chromatin autoantibodies exert their nephritogenic activity, however, is controversial. One model assumes that autoantibodies initiate inflammation when they cross-react with intrinsic glomerular structures such as components of membranes, matrices or exposed nonchromatin ligands released from cells. Another model suggests glomerular deposition of autoantibodies in complex with chromatin, thereby inducing classic immune complex–mediated tissue damage. Recent data suggest acquired error of renal chromatin degradation due to the loss of renal DNaseI enzyme activity is an important contributing factor to the development of lupus nephritis in lupus-prone (NZBxNZW)F1 mice and in patients with lupus nephritis. Down-regulation of DNaseI expression results in reduced chromatin fragmentation and in deposition of extracellular chromatin–IgG complexes in glomerular basement membranes in individuals who produce IgG anti-chromatin autoantibodies. The main focus of the present review is to discuss whether exposed chromatin fragments in glomeruli are targeted by potentially nephritogenic anti-dsDNA autoantibodies or if the nephritogenic activity of these autoantibodies is explained by cross-reaction with intrinsic glomerular constituents or if both models coexist in diseased kidneys. In addition, the role of silencing of the renal DNaseI gene and the biological consequences of reduced chromatin fragmentation in nephritic kidneys are discussed.  相似文献   

6.
7.

Background

Deficiency in clearance of self nuclear antigens, including DNA, is the hallmark of systemic lupus erythematosus (SLE), a chronic autoimmnue disease characterized by the production of various autoantibodies, immune complex deposition and severe organ damage. Our previous studies revealed that administration of syngeneic BALB/c mice with activated lymphocyte-derived DNA (ALD-DNA) could induce SLE disease. Mannose-binding lectin (MBL), a secreted pattern recognition receptor with binding activity to DNA, has been proved to be a modulator of inflammation, but whether MBL takes responsibility for DNA clearance, modulates the DNA-mediated immune responses, and is involved in the development of DNA-induced SLE disease remain poorly understood.

Methodology/Principal Findings

The levels of serum MBL significantly decreased in lupus mice induced by ALD-DNA and were negatively correlated with SLE disease. MBL blunted macrophage M2b polarization by inhibiting the MAPK and NF-κB signaling while enhancing the activation of CREB. Furthermore, MBL suppressed the ability of ALD-DNA–stimulated macrophages to polarize T cells toward Th1 cells and Th17 cells. Importantly, MBL supplement in vivo could ameliorate lupus nephritis.

Conclusion/Significance

These results suggest MBL supplement could alleviate SLE disease and might imply a potential therapeutic strategy for DNA-induced SLE, which would further our understanding of the protective role of MBL in SLE disease.  相似文献   

8.

Background

Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Rodents carry L. interrogans asymptomatically in their kidneys and excrete bacteria in the urine, contaminating the environment. Humans get infected through skin contact and develop a mild or severe leptospirosis that may lead to renal failure and fibrosis. L. interrogans provoke an interstitial nephritis, but the induction of fibrosis caused by L. interrogans has not been studied in murine models. Innate immune receptors from the TLR and NLR families have recently been shown to play a role in the development and progression of tissue fibrosis in the lung, liver and kidneys under different pathophysiological situations. We recently showed that TLR2, TLR4, and NLRP3 receptors were crucial in the defense against leptospirosis. Moreover, infection of a human cell line with L. interrogans was shown to induce TLR2-dependent production of fibronectin, a component of the extracellular matrix. Therefore, we thought to assess the presence of renal fibrosis in L. interrogans infected mice and to analyze the contribution of some innate immune pathways in this process.

Methodology/principal findings

Here, we characterized by immunohistochemical studies and quantitative real-time PCR, a model of Leptospira-infected C57BL/6J mice, with chronic carriage of L. interrogans inducing mild renal fibrosis. Using various strains of transgenic mice, we determined that the renal infiltrates of T cells and, unexpectedly, TLR and NLR receptors, are not required to generate Leptospira-induced renal fibrosis. We also show that the iNOS enzyme, known to play a role in Leptospira-induced interstitial nephritis, also plays a role in the induction of renal fibrosis.

Conclusion/significance

To our knowledge, this work provides the first experimental murine model of sustained renal fibrosis induced by a chronic bacterial infection that may be peculiar, since it does not rely on TLR or NLR receptors. This model may prove useful to test future therapeutic strategies to combat Leptospira-induced renal lesions.  相似文献   

9.

Introduction

Microthrombosis is often observed in lupus nephritis (LN) lesions, but its clinical significance is unknown. We evaluated the clinicopathologic correlations of renal microthrombosis and inflammatory markers in LN.

Methods

Kidney biopsies from 58 patients with systemic lupus erythematosus (SLE) proliferative nephritis were analyzed with immunohistochemistry (IHC) for intravascular platelet aggregates (CD61), macrophagic infiltration (CD68), and activated complement deposition (C4d). Clinical data at the time of kidney biopsy and follow-up were analyzed with regard to pathologic IHC data.

Results

Microthrombosis was present in 52% of the tissues. It was significantly more prevalent in patients with antiphospholipid antibodies (aPLs) (62% versus 42%). The presence of microthrombosis significantly correlated with higher macrophagic infiltration. Macrophagic infiltration but not microthrombosis was significantly correlated with C4d deposition. Only macrophagic infiltration showed a correlation with SLE and renal activity (proteinuria and active sediment), whereas neither the presence of CD61+ microthrombi nor the extent of C4d deposition correlated with LN severity or outcome.

Conclusions

Microthrombosis is associated with higher macrophagic infiltration in LN but does not seem to increase independently the severity of renal damage. Macrophagic infiltration was the best marker of SLE and renal activity in this LN series.  相似文献   

10.
11.

Background

Lipid accumulation has been shown to accelerate renal injury, and the intracellular accumulation of lipids may be caused by alterations in synthesis as well as lipid uptake and efflux. We have investigated the role of cellular cholesterol transport proteins including adenosine triphosphate binding cassette transporter A1 (ABCA1), G1 (ABCG1) and scavenger receptor class B type I (SR-BI) in diabetic nephropathy.

Methods

Protein expression and the ability to mediate cholesterol efflux of ABCA1, ABCG1 and SR-BI was determined in human renal mesangial cells and proximal tubular epithelial cells cultured under normal or high glucose conditions. Renal expression of these cholesterol transporters was examined in a murine model of streptozotocin-induced type 1 diabetes.

Results

ABCA1, ABCG1 and SR-BI were expressed in both human renal mesangial cells and proximal tubular epithelial cells, and mediated cholesterol efflux to apolipoprotein AI and HDL. In vitro, hyperglycemia reduced the expression and the ability to mediate cholesterol efflux of all three cholesterol transporters (p<0.05). In vivo studies showed that intra-renal accumulation of lipids was increased in diabetic mice, particularly in mice with nephropathy. This was associated with a significant reduction in the expression of ABCA1, ABCG1 and SR-BI in the kidneys. These changes were already seen in diabetic mice without nephropathy and preceded the development of nephropathy. Diabetic mice with nephropathy had the lowest level of these cholesterol transporters.

Conclusion

Inducing diabetes with streptozotocin significantly reduced renal expression of ABCA1, ABCG1 and SR-BI. Defects in cholesterol export pathway in renal cells could therefore promote cholesterol accumulation and might contribute to the development of diabetic nephropathy.  相似文献   

12.

Background

Non-invasive monitoring of disease progression in kidney disease is still a major challenge in clinical practice. In vivo near-infrared (NIR) imaging provides a new tool for studying disease mechanisms and non-invasive monitoring of disease development, even in deep organs. The LI-COR IRDye® 800CW RGD optical probe (RGD probe) is a NIR fluorophore, that can target integrin alpha v beta 3 (αvβ3) in tissues.

Objective

This study aims to monitor renal disease progression in an anti-glomerular basement membrane (GBM) nephritis mouse model.

Methods

Anti-GBM nephritis was induced in 129x1/svJ mice by anti-GBM serum challenge. The expression of integrin αvβ3 in the diseased kidney was examined by immunohistochemistry and quantitative polymerase chain reaction. The RGD probe and control fluorophores, the 800CW dye, and the BSA-conjugated 800CW dye, were administered into anti-GBM nephritic mice. LI-COR Pearl® Impulse imaging system was used for in vivo imaging; while ex vivo organ imaging was acquired using the MaestroTM imaging system.

Results

Kidney tissue from anti-GBM nephritic mice showed higher levels of integrin αvβ3 expression at both the protein and the mRNA level compared to normal mice. The RGD probe allowed in vivo renal imaging and the fluorescent signal could be specifically captured in the diseased kidneys up to 14 days, reflecting longitudinal changes in renal function.

Conclusion

The infrared RGD molecular probe that tracks integrin expression can be successfully used to monitor renal disease progression following immune-mediated nephritis.  相似文献   

13.

Objective

This study was performed to investigate the therapeutic effects of iguratimod in a lupus mouse model.

Methods

Female MRL/lpr mice were treated with iguratimod, vehicle solution or cyclophosphamide. Proteinuria was monitored and kidney injury was blindly scored by a renal pathologist. Serum anti-double-stranded DNA antibodies were monitored by radioimmunoassay. Kidney IgG and CD20 were stained by immunohistochemistry. Splenic lymphocyte phenotypes were analyzed by flow cytometry. BAFF, IL-17A, IL-6, and IL-21 levels in serum and splenic lymphocytes were detected by ELISA or quantitative PCR.

Results

Compared with the vehicle-treated controls, MRL/lpr mice treated with iguratimod showed less protenuria, less acute pathological lesions and no chronic changes in the kidneys. There were significant differences in glomerular injury and vasculitis scores, as well as in the semi-quantitave analysis of immune complex deposition between the two groups. Disease activity markers in sera (anti-dsDNA antibodies and immunoglobulin levels) were reduced and hypocomplementemia was attenuated. Lymphocyte expression of BAFF, IL-6, IL-17A and IL-21 was decreased. The abnormal splenic B220+ T cell and plasma cell populations in MRL/lpr mice were reduced by iguratimod treatment, with recovery of the total B cell population and inhibition of B cell infiltration of the kidney tissue. The dosage of iguratimod used in this study showed no significant cytotoxic effects in vivo and no overt side-effects were observed.

Conclusion

Iguratimod ameliorates immune nephritis in MRL/lpr mice via a non-antiproliferative mechanism. Our data suggest a potential therapeutic role of iguratimod in lupus.  相似文献   

14.

Introduction

TNF-like weak inducer of apoptosis (TWEAK) has been implicated as a mediator of chronic inflammatory processes via prolonged activation of the NF-κB pathway in several tissues, including the kidney. Evidence for the importance of TWEAK in the pathogenesis of lupus nephritis (LN) has been recently introduced. Thus, TWEAK levels may serve as an indication of LN presence and activity.

Methods

Multicenter cohorts of systemic lupus erythematosus (SLE) patients and controls were recruited for cross-sectional and longitudinal analysis of urinary TWEAK (uTWEAK) and/or serum TWEAK (sTWEAK) levels as potential biomarkers of LN. The performance of TWEAK as a biomarker for nephritis was compared with routinely used laboratory tests in lupus patients, including anti-double stranded DNA antibodies and levels of C3 and C4.

Results

uTWEAK levels were significantly higher in LN patients than in non-LN SLE patients and other disease control groups (P = 0.039). Furthermore, uTWEAK was better at distinguishing between LN and non-LN SLE patients than anti-DNA antibodies and complement levels, while high uTWEAK levels predicted LN in SLE patients with an odds ratio of 7.36 (95% confidence interval = 2.25 to 24.07; P = 0.001). uTWEAK levels peaked during LN flares, and were significantly higher during the flare than at 4 and 6 months prior to or following the flare event. A linear mixed-effects model showed a significant association between uTWEAK levels in SLE patients and their disease activity over time (P = 0.008). sTWEAK levels, however, were not found to correlate with the presence of LN or the degree of nephritis activity.

Conclusions

High uTWEAK levels are indicative of LN, as opposed to non-LN SLE and other healthy and disease control populations, and reflect renal disease activity in longitudinal follow-up. Thus, our study further supports a role for TWEAK in the pathogenesis of LN, and provides strong evidence for uTWEAK as a candidate clinical biomarker for LN.  相似文献   

15.
Previously we have shown that kallikreins (klks) play a renoprotective role in nephrotoxic serum induced nephritis. In this study, we have used mesenchymal stem cells (MSCs) as vehicles to deliver klks into the injured kidneys and have measured their therapeutic effect on experimental antibody induced nephritis and lupus nephritis. Human KLK-1 (hKLK1) gene was transduced into murine MSCs using a retroviral vector to generate a stable cell line, hKLK1-MSC, expressing high levels of hKLK1. 129/svj mice subjected to anti-GBM induced nephritis were transplanted with 106 hKLK1-MSCs and hKLK1 expression was confirmed in the kidneys. Compared with vector-MSCs injected mice, the hKLK1-MSCs treated mice showed significantly reduced proteinuria, blood urea nitrogen (BUN) and ameliorated renal pathology. Using the same strategy, we treated lupus-prone B6.Sle1.Sle3 bicongenic mice with hKLK1-MSCs and demonstrated that hKLK1-MSCs delivery also attenuated lupus nephritis. Mechanistically, hKLK1-MSCs reduced macrophage and T-lymphocyte infiltration into the kidney by suppressing the expression of inflammation cytokines. Moreover, hKLK1 transduced MSCs were more resistant to oxidative stress-induced apoptosis. These findings advance genetically modified MSCs as potential gene delivery tools for targeting therapeutic agents to the kidneys in order to modulate inflammation and oxidative stress in lupus nephritis.  相似文献   

16.

Introduction

Autoantibodies against C1q correlate with lupus nephritis. We compared titers of anti-C1q and anti-dsDNA in 70 systemic lupus erythematosus patients with (n = 15) or without (n = 55) subsequent biopsy-proven lupus nephritis.

Methods

The 15 patients with subsequent lupus nephritis had anti-C1q assays during clinical flares (mean Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), 10.0 ± 4.7; range, 3 to 22) before the diagnosis of lupus nephritis (median, 24 months; range 3 to 192). Among the 55 others, 33 patients had active lupus (mean SLEDAI, 10.3 ± 6.2; range, 4 to 30) without renal disease during follow-up (median 13 years; range 2 to 17 years) and 22 had inactive lupus (mean SLEDAI, 0; range, 0 to 3).

Results

Anti-C1q titers were elevated in 15/15 (100%) patients who subsequently developed nephritis (class IV, n = 14; class V, n = 1) and in 15/33 (45%) patients without renal disease (P < 0.001). The median anti-C1q titer differed significantly between the groups (P = 0.003). Anti-C1q titers were persistently positive at the time of glomerulonephritis diagnosis in 70% (7/10) of patients, with no difference in titers compared with pre-nephritis values (median, 147 U/ml; interquartile range (IQR), 69 to 213 versus 116 U/ml; 50 to 284, respectively). Titers decreased after 6 months'' treatment with immunosuppressive drugs and corticosteroids (median, 76 U/ml; IQR, 33 to 106) but remained above normal in 6/8 (75%) patients. Anti-dsDNA antibodies were increased in 14/15 (93.3%) patients with subsequent nephritis and 24/33 (72.7%) patients without nephritis (P = ns). Anti-C1q did not correlate with anti-dsDNA or the SLEDAI in either group.

Conclusions

Anti-C1q elevation had 50% positive predictive value (15/30) and 100% (18/18) negative predictive value for subsequent class IV or V lupus nephritis.  相似文献   

17.

Background

Systemic lupus erythematosus (SLE) is a multisystemic autoimmune disease characterized by the production of autoantibodies. To date, no therapy has been found to satisfactorily treat SLE. SIRT1 deficiency results in the development of an autoimmune syndrome in mice, including a high titer of anti-nuclear antibody in serum, immunoglobulin deposition in the kidney, and immune complex glomerulonephritis. Resveratrol is an activator of SIRT1 and possesses anti-inflammation and immune-regulatory properties.

Objective

To evaluate the preventative effects of resveratrol on a pristane-induced lupus animal model and assess its putative immune modulation effects.

Methods

BALB/c mice received a single intraperitoneal injection of 0.5 ml of pristane on day 1 and then various doses of resveratrol were given to the mice daily starting on day 2 and continuing for seven months. The autoantibodies in serum and supernatants were measured. Single cells isolated from spleen, isolated CD4+ T cells, and CD19+ B cells were cultured with or without resveratrol in vitro and assessed by flow cytometry.

Results

Resveratrol attenuated proteinuria, immunoglobuin depositon in kidney, and glomerulonephritis as well as IgG1 and IgG2a in serum in pristane-induced lupus mice. Resveratrol also suppressed CD69 and CD71 expression on CD4+ T cells as well as CD4+ T cell proliferation, induced CD4+ T cell apoptosis, and decreased CD4 IFNγ+ Th1 cells and the ratio of Th1/Th2 cells in vitro. In vitro antibody production and proliferation of B cells were also inhibited.

Conclusion

Resveratrol possesses protective effects in pristane-induced lupus mice and may represent a novel approach for the management of SLE.  相似文献   

18.
Zhang W  Wu J  Qiao B  Xu W  Xiong S 《PloS one》2011,6(7):e22659

Background

Our previous study revealed that administration of syngeneic female BALB/c mice with excessive self activated lymphocyte-derived DNA (ALD-DNA) could induce systemic lupus erythematosus (SLE) disease, indicating that overload of self-DNA might exceed normal clearance ability and comprise the major source of autoantigens in lupus mice. Serum amyloid P component (SAP), an acute-phase serum protein with binding reactivity to DNA in mice, was proved to promote the clearance of free DNA and prevent mice against self-antigen induced autoimmune response. It is reasonable to hypothesize that SAP treatment might contribute to alleviation of SLE disease, whereas its role in ALD-DNA-induced lupus nephritis is not fully understood.

Methodology/Principal Findings

The ratios of SAP to DNA significantly decreased and were negatively correlated with the titers of anti-dsDNA antibodies in ALD-DNA-induced lupus mice, indicating SAP was relatively insufficient in lupus mice. Herein a pcDNA3-SAP plasmid (pSAP) was genetically constructed and intramuscularly injected into BALB/c mice. It was found that SAP protein purified from the serum of pSAP-treated mice bound efficiently to ALD-DNA and inhibited ALD-DNA-mediated innate immune response in vitro. Treatment of ALD-DNA-induced lupus mice with pSAP in the early stage of SLE disease with the onset of proteinuria reversed lupus nephritis via decreasing anti-dsDNA autoantibody production and immune complex (IC) deposition. Further administration of pSAP in the late stage of SLE disease that had established lupus nephritis alleviated proteinuria and ameliorated lupus nephritis. This therapeutic effect of SAP was not only attributable to the decreased levels of anti-dsDNA autoantibodies, but also associated with the decreased infiltration of lymphocytes and the reduced production of inflammatory markers.

Conclusion/Significance

These results suggest that SAP administration could effectively alleviated lupus nephritis via modulating anti-dsDNA antibody production and the inflammation followed IC deposition, and SAP-based intervening strategy may provide new approaches for treating SLE disease.  相似文献   

19.

Background and Aims

Lupus nephritis (LN), with considerable morbidity and mortality, is one of the most severe manifestations of systemic lupus erythematosus (SLE). Yet, the pathogenic mechanisms of LN have not been clearly elucidated, and efficient therapies are still in great need. Granulin (GRN), a multifunctional protein linked to inflammatory diseases, has recently been reported to correlate with the disease activity of autoimmune diseases. However, the role of GRN in the pathogenic process of LN still remains obscure. In this study, we explored its potential role and underlying mechanism in the pathogenesis of LN.

Methodology/Principal Findings

We found that serum GRN levels were significantly up-regulated and were positively correlated with the severity of LN. Overexpression of GRN in vivo by transgenic injection remarkably exacerbated LN, whereas down-regulation of GRN with shRNA ameliorated LN, firmly demonstrating the critical role of GRN in the pathogenesis of LN. Notably, macrophage phenotype analysis revealed that overexpression of GRN could enhance macrophage polarization to M2b, a key mediator of the initiation and progression of LN. On the contrary, down-regulation of GRN resulted in impaired M2b differentiation, thus ameliorating LN. Moreover, we found that MAPK signals were necessary for the effect of GRN on macrophage M2b polarization.

Conclusion/Significance

We first demonstrated that GRN could aggravate lupus nephritis (LN) via promoting macrophage M2b polarization, which might provide insights into the pathogenesis of LN as well as potential therapeutic strategies against LN.  相似文献   

20.

Introduction

The ability to ameliorate murine lupus renders regulatory T cells (Treg) a promising tool for the treatment of systemic lupus erythematosus (SLE). In consideration to the clinical translation of a Treg-based immunotherapy of SLE, we explored the potential of CD4+Foxp3+ Treg to maintain disease remission after induction of remission with an established cyclophosphamide (CTX) regimen in lupus-prone (NZBxNZW) F1 mice. As a prerequisite for this combined therapy, we also investigated the impact of CTX on the biology of endogenous Treg and conventional CD4+ T cells (Tcon).

Methods

Remission of disease was induced in diseased (NZBxNZW) F1 mice with an established CTX regimen consisting of a single dose of glucocorticosteroids followed by five day course with daily injections of CTX. Five days after the last CTX injection, differing amounts of purified CD4+Foxp3+CD25+ Treg were adoptively transferred and clinical parameters, autoantibody titers, the survival and changes in peripheral blood lymphocyte subsets were determined at different time points during the study. The influence of CTX on the numbers, frequencies and proliferation of endogenous Treg and Tcon was analyzed in lymphoid organs by flow cytometry.

Results

Apart from abrogating the proliferation of Tcon, we found that treatment with CTX induced also a significant inhibition of Treg proliferation and a decline in Treg numbers in lymphoid organs. Additional adoptive transfer of 1.5 × 106 purified Treg after the CTX regimen significantly increased the survival and prolonged the interval of remission by approximately five weeks compared to mice that received only the CTX regimen. The additional clinical amelioration was associated with an increase in the Treg frequency in the peripheral blood indicating a compensation of CTX-induced Treg deficiency by the Treg transfer.

Conclusions

Treg were capable to prolong the interval of remission induced by conventional cytostatic drugs. This study provides valuable information and a first proof-of-concept for the feasibility of a Treg-based immunotherapy in the maintenance of disease remission in SLE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号