首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA structure formation is hierarchical and, therefore, secondary structure, the sum of canonical base-pairs, can generally be predicted without knowledge of the three-dimensional structure. Secondary structure prediction algorithms evolved from predicting a single, lowest free energy structure to their current state where statistics can be determined from the thermodynamic ensemble. This article reviews the free energy minimization technique and the salient revolutions in the dynamic programming algorithm methods for secondary structure prediction. Emphasis is placed on highlighting the recently developed method, which statistically samples structures from the complete Boltzmann ensemble.  相似文献   

2.
RNA二级结构的预测算法研究已有近40年的发展历程,研究假结也将近30年的历史。在此期间,RNA二级结构的预测算法取得了很大进步,但假结预测的正确率依然偏低。其中启发式算法能较好地处理复杂假结,使其成为率先解决假结预测难题可能性最大的算法。迄今为止,未见系统地专门总结预测假结的各种启发式算法及其优点与缺点的报道。本文详细介绍了近年来国际上流行的贪婪算法、遗传算法、ILM算法、HotKnots算法以及FlexStem算法等五种算法,并总结分析了每种算法的优点与不足,最后提出在未来一段时期内,利用启发式算法提高假结预测准确度应从建立更完善的假结模型、加入更多影响因素、借鉴不同算法的优势等方面入手。为含假结RNA二级结构预测的研究提供参考。  相似文献   

3.
We present HotKnots, a new heuristic algorithm for the prediction of RNA secondary structures including pseudoknots. Based on the simple idea of iteratively forming stable stems, our algorithm explores many alternative secondary structures, using a free energy minimization algorithm for pseudoknot free secondary structures to identify promising candidate stems. In an empirical evaluation of the algorithm with 43 sequences taken from the Pseudobase database and from the literature on pseudoknotted structures, we found that overall, in terms of the sensitivity and specificity of predictions, HotKnots outperforms the well-known Pseudoknots algorithm of Rivas and Eddy and the NUPACK algorithm of Dirks and Pierce, both based on dynamic programming approaches for limited classes of pseudoknotted structures. It also outperforms the heuristic Iterated Loop Matching algorithm of Ruan and colleagues, and in many cases gives better results than the genetic algorithm from the STAR package of van Batenburg and colleagues and the recent pknotsRG-mfe algorithm of Reeder and Giegerich. The HotKnots algorithm has been implemented in C/C++ and is available from http://www.cs.ubc.ca/labs/beta/Software/HotKnots.  相似文献   

4.
RNA molecules with novel functions have revived interest in the accurate prediction of RNA three-dimensional (3D) structure and folding dynamics. However, existing methods are inefficient in automated 3D structure prediction. Here, we report a robust computational approach for rapid folding of RNA molecules. We develop a simplified RNA model for discrete molecular dynamics (DMD) simulations, incorporating base-pairing and base-stacking interactions. We demonstrate correct folding of 150 structurally diverse RNA sequences. The majority of DMD-predicted 3D structures have <4 A deviations from experimental structures. The secondary structures corresponding to the predicted 3D structures consist of 94% native base-pair interactions. Folding thermodynamics and kinetics of tRNA(Phe), pseudoknots, and mRNA fragments in DMD simulations are in agreement with previous experimental findings. Folding of RNA molecules features transient, non-native conformations, suggesting non-hierarchical RNA folding. Our method allows rapid conformational sampling of RNA folding, with computational time increasing linearly with RNA length. We envision this approach as a promising tool for RNA structural and functional analyses.  相似文献   

5.
Accurate prediction of RNA pseudoknotted secondary structures from the base sequence is a challenging computational problem. Since prediction algorithms rely on thermodynamic energy models to identify low-energy structures, prediction accuracy relies in large part on the quality of free energy change parameters. In this work, we use our earlier constraint generation and Boltzmann likelihood parameter estimation methods to obtain new energy parameters for two energy models for secondary structures with pseudoknots, namely, the Dirks–Pierce (DP) and the Cao–Chen (CC) models. To train our parameters, and also to test their accuracy, we create a large data set of both pseudoknotted and pseudoknot-free secondary structures. In addition to structural data our training data set also includes thermodynamic data, for which experimentally determined free energy changes are available for sequences and their reference structures. When incorporated into the HotKnots prediction algorithm, our new parameters result in significantly improved secondary structure prediction on our test data set. Specifically, the prediction accuracy when using our new parameters improves from 68% to 79% for the DP model, and from 70% to 77% for the CC model.  相似文献   

6.
The function of many RNAs depends crucially on their structure. Therefore, the design of RNA molecules with specific structural properties has many potential applications, e.g. in the context of investigating the function of biological RNAs, of creating new ribozymes, or of designing artificial RNA nanostructures. Here, we present a new algorithm for solving the following RNA secondary structure design problem: given a secondary structure, find an RNA sequence (if any) that is predicted to fold to that structure. Unlike the (pseudoknot-free) secondary structure prediction problem, this problem appears to be hard computationally. Our new algorithm, "RNA Secondary Structure Designer (RNA-SSD)", is based on stochastic local search, a prominent general approach for solving hard combinatorial problems. A thorough empirical evaluation on computationally predicted structures of biological sequences and artificially generated RNA structures as well as on empirically modelled structures from the biological literature shows that RNA-SSD substantially out-performs the best known algorithm for this problem, RNAinverse from the Vienna RNA Package. In particular, the new algorithm is able to solve structures, consistently, for which RNAinverse is unable to find solutions. The RNA-SSD software is publically available under the name of RNA Designer at the RNASoft website (www.rnasoft.ca).  相似文献   

7.
Owing to their structural diversity, RNAs perform many diverse biological functions in the cell. RNA secondary structure is thus important for predicting RNA function. Here, we propose a new combinatorial optimization algorithm, named RGRNA, to improve the accuracy of predicting RNA secondary structure. Following the establishment of a stempool, the stems are sorted by length, and chosen from largest to smallest. If the stem selected is the true stem, the secondary structure of this stem when combined with another stem selected at random will have low free energy, and the free energy will tend to gradually diminish. The free energy is considered as a parameter and the structure is converted into binary numbers to determine stem compatibility, for step-by-step prediction of the secondary structure for all combinations of stems. The RNA secondary structure can be predicted by the RGRNA method. Our experimental results show that the proposed algorithm outperforms RNAfold in terms of sensitivity, specificity, and Matthews correlation coefficient value.  相似文献   

8.
9.
The prediction of RNA secondary structure including pseudoknots remains a challenge due to the intractable computation of the sequence conformation from nucleotide interactions under free energy models. Optimal algorithms often assume a restricted class for the predicted RNA structures and yet still require a high-degree polynomial time complexity, which is too expensive to use. Heuristic methods may yield time-efficient algorithms but they do not guarantee optimality of the predicted structure. This paper introduces a new and efficient algorithm for the prediction of RNA structure with pseudoknots for which the structure is not restricted. Novel prediction techniques are developed based on graph tree decomposition. In particular, based on a simplified energy model, stem overlapping relationships are defined with a graph, in which a specialized maximum independent set corresponds to the desired optimal structure. Such a graph is tree decomposable; dynamic programming over a tree decomposition of the graph leads to an efficient optimal algorithm. The final structure predictions are then based on re-ranking a list of suboptimal structures under a more comprehensive free energy model. The new algorithm is evaluated on a large number of RNA sequence sets taken from diverse resources. It demonstrates overall sensitivity and specificity that outperforms or is comparable with those of previous optimal and heuristic algorithms yet it requires significantly less time than the compared optimal algorithms. The preliminary version of this paper appeared in the proceedings of the 6th Workshop on Algorithms for Bioinformatics (WABI 2006).  相似文献   

10.
The total number of RNA secondary structures of a given length with minimal hairpin loop length m(m>0) and with minimal stack length l(l>0) is computed, under the assumption that all base pairs can occur. Asymptotics are derived from the determination of recurrence relations of decomposition properties.  相似文献   

11.
Secondary structure prediction of the catalytic domain of matrix metalloproteinases is evaluated in the light of recently published experimentally determined structures. The prediction was made by combining conformational propensity, surface probability, and residue conservation calculated for an alignment of 19 sequences. The position of each observed secondary structure element was correctly predicted with a high degree of accuracy, with a single beta-strand falsely predicted. The domain fold was also anticipated from the prediction by analogy with the structural elements found in the distantly related metalloproteinases thermolysin, astacin, and adamalysin.  相似文献   

12.
Most functional RNA molecules have characteristic structures that are highly conserved in evolution. Many of them contain pseudoknots. Here, we present a method for computing the consensus structures including pseudoknots based on alignments of a few sequences. The algorithm combines thermodynamic and covariation information to assign scores to all possible base pairs, the base pairs are chosen with the help of the maximum weighted matching algorithm. We applied our algorithm to a number of different types of RNA known to contain pseudoknots. All pseudoknots were predicted correctly and more than 85 percent of the base pairs were identified.  相似文献   

13.
Secondary structure prediction for aligned RNA sequences   总被引:19,自引:0,他引:19  
Most functional RNA molecules have characteristic secondary structures that are highly conserved in evolution. Here we present a method for computing the consensus structure of a set aligned RNA sequences taking into account both thermodynamic stability and sequence covariation. Comparison with phylogenetic structures of rRNAs shows that a reliability of prediction of more than 80% is achieved for only five related sequences. As an application we show that the Early Noduline mRNA contains significant secondary structure that is supported by sequence covariation.  相似文献   

14.
Computational tools for prediction of the secondary structure of two or more interacting nucleic acid molecules are useful for understanding mechanisms for ribozyme function, determining the affinity of an oligonucleotide primer to its target, and designing good antisense oligonucleotides, novel ribozymes, DNA code words, or nanostructures. Here, we introduce new algorithms for prediction of the minimum free energy pseudoknot-free secondary structure of two or more nucleic acid molecules, and for prediction of alternative low-energy (sub-optimal) secondary structures for two nucleic acid molecules. We provide a comprehensive analysis of our predictions against secondary structures of interacting RNA molecules drawn from the literature. Analysis of our tools on 17 sequences of up to 200 nucleotides that do not form pseudoknots shows that they have 79% accuracy, on average, for the minimum free energy predictions. When the best of 100 sub-optimal foldings is taken, the average accuracy increases to 91%. The accuracy decreases as the sequences increase in length and as the number of pseudoknots and tertiary interactions increases. Our algorithms extend the free energy minimization algorithm of Zuker and Stiegler for secondary structure prediction, and the sub-optimal folding algorithm by Wuchty et al. Implementations of our algorithms are freely available in the package MultiRNAFold.  相似文献   

15.
The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.  相似文献   

16.
Protein structure prediction in genomics   总被引:1,自引:0,他引:1  
As the number of completely sequenced genomes rapidly increases, including now the complete Human Genome sequence, the post-genomic problems of genome-scale protein structure determination and the issue of gene function identification become ever more pressing. In fact, these problems can be seen as interrelated in that experimentally determining or predicting or the structure of proteins encoded by genes of interest is one possible means to glean subtle hints as to the functions of these genes. The applicability of this approach to gene characterisation is reviewed, along with a brief survey of the reliability of large-scale protein structure prediction methods and the prospects for the development of new prediction methods.  相似文献   

17.
MOTIVATION: RNA structure motifs contained in mRNAs have been found to play important roles in regulating gene expression. However, identification of novel RNA regulatory motifs using computational methods has not been widely explored. Effective tools for predicting novel RNA regulatory motifs based on genomic sequences are needed. RESULTS: We present a new method for predicting common RNA secondary structure motifs in a set of functionally or evolutionarily related RNA sequences. This method is based on comparison of stems (palindromic helices) between sequences and is implemented by applying graph-theoretical approaches. It first finds all possible stable stems in each sequence and compares stems pairwise between sequences by some defined features to find stems conserved across any two sequences. Then by applying a maximum clique finding algorithm, it finds all significant stems conserved across at least k sequences. Finally, it assembles in topological order all possible compatible conserved stems shared by at least k sequences and reports a number of the best assembled stem sets as the best candidate common structure motifs. This method does not require prior structural alignment of the sequences and is able to detect pseudoknot structures. We have tested this approach on some RNA sequences with known secondary structures, in which it is capable of detecting the real structures completely or partially correctly and outperforms other existing programs for similar purposes. AVAILABILITY: The algorithm has been implemented in C++ in a program called comRNA, which is available at http://ural.wustl.edu/softwares.html  相似文献   

18.
The importance of RNA tertiary structure is evident from the growing number of published high resolution NMR and X-ray crystallographic structures of RNA molecules. These structures provide insights into function and create a knowledge base that is leveraged by programs such as Assemble, ModeRNA, RNABuilder, NAST, FARNA, Mc-Sym, RNA2D3D, and iFoldRNA for tertiary structure prediction and design. While these methods sample native-like RNA structures during simulations, all struggle to capture the native RNA conformation after scoring. We propose RSIM, an improved RNA fragment assembly method that preserves RNA global secondary structure while sampling conformations. This approach enhances the quality of predicted RNA tertiary structure, provides insights into the native state dynamics, and generates a powerful visualization of the RNA conformational space. RSIM is available for download from http://www.github.com/jpbida/rsim.  相似文献   

19.
A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures, something which our tool excels at, rather than providing a handful of the lowest energy structures.  相似文献   

20.
Fast evaluation of internal loops in RNA secondary structure prediction.   总被引:7,自引:0,他引:7  
MOTIVATION: Though not as abundant in known biological processes as proteins, RNA molecules serve as more than mere intermediaries between DNA and proteins. Research in the last 15 years demonstrates that RNA molecules serve in many roles, including catalysis. Furthermore, RNA secondary structure prediction based on free energy rules for stacking and loop formation remains one of the few major breakthroughs in the field of structure prediction, as minimum free energy structures and related quantities can be computed with full mathematical rigor. However, with the current energy parameters, the algorithms used hitherto suffer the disadvantage of either employing heuristics that risk (though highly unlikely) missing the optimal structure or becoming prohibitively time consuming for moderate to large sequences. RESULTS: We present a new method to evaluate internal loops utilizing currently used energy rules. This method reduces the time complexity of this part of the structure prediction from O(n4) to O(n3), thus reducing the overall complexity to O(n3). Even when the size of evaluated internal loops is bounded by k (a commonly used heuristic), the method presented has a competitive edge by reducing the time complexity of internal loop evaluation from O(k2n2) to O(kn2). The method also applies to the calculation of the equilibrium partition function. AVAILABILITY: Source code for an RNA secondary structure prediction program implementing this method is available at ftp://www.ibc.wustl.edu/pub/zuker/zuker .tar.Z  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号