首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resistance to the cytostatic activity of the antimalarial drug chloroquine (CQ) is becoming well understood, however, resistance to cytocidal effects of CQ is largely unexplored. We find that PfCRT mutations that almost fully recapitulate P. falciparum cytostatic CQ resistance (CQRCS) as quantified by CQ IC50 shift, account for only 10–20% of cytocidal CQR (CQRCC) as quantified by CQ LD50 shift. Quantitative trait loci (QTL) analysis of the progeny of a chloroquine sensitive (CQS; strain HB3)×chloroquine resistant (CQR; strain Dd2) genetic cross identifies distinct genetic architectures for CQRCS vs CQRCC phenotypes, including identification of novel interacting chromosomal loci that influence CQ LD50. Candidate genes in these loci are consistent with a role for autophagy in CQRCC, leading us to directly examine the autophagy pathway in intraerythrocytic CQR parasites. Indirect immunofluorescence of RBC infected with synchronized CQS vs CQR trophozoite stage parasites reveals differences in the distribution of the autophagy marker protein PfATG8 coinciding with CQRCC. Taken together, the data show that an unusual autophagy – like process is either activated or inhibited for intraerythrocytic trophozoite parasites at LD50 doses (but not IC50 doses) of CQ, that the pathway is altered in CQR P. falciparum, and that it may contribute along with mutations in PfCRT to confer the CQRCC phenotype.  相似文献   

2.
Functional studies have demonstrated a role for the Anopheles gambiae APL1A gene in resistance against the human malaria parasite, Plasmodium falciparum. Here, we exhaustively characterize the structure of the APL1 locus and show that three structurally different APL1A alleles segregate in the Ngousso colony. Genetic association combined with RNAi-mediated gene silencing revealed that APL1A alleles display distinct protective profiles against P. falciparum. One APL1A allele is sufficient to explain the protective phenotype of APL1A observed in silencing experiments. Epitope-tagged APL1A isoforms expressed in an in vitro hemocyte-like cell system showed that under assay conditions, the most protective APL1A isoform (APL1A2) localizes within large cytoplasmic vesicles, is not constitutively secreted, and forms only one protein complex, while a less protective isoform (APL1A1) is constitutively secreted in at least two protein complexes. The tested alleles are identical to natural variants in the wild A. gambiae population, suggesting that APL1A genetic variation could be a factor underlying natural heterogeneity of vector susceptibility to P. falciparum.  相似文献   

3.
Immune responses in Anopheles gambiae   总被引:7,自引:0,他引:7  
Transmission of human malaria requires a successful development of Plasmodium parasites in anopheline mosquitoes. Insects have developed efficient immune responses to oppose microbial and eukaryotic invaders. The completion of the sequencing of the Anopheles genome provides a wealth of information on putative immune genes that are homologous to components of the Drosophila and mammalian immune systems. In this review, we will summarize our present knowledge of immune responses in the mosquito Anopheles gambiae and attempt a comparative analysis of insect immune systems.  相似文献   

4.

Background

Complement (C) is a crucial part of the innate immune system and becomes over activated during malaria, resulting in depletion of C components, especially those for lectin pathway (LP), thereby compromising the host''s innate defense. In this study, involvement of P. falciparum antigens in C activation was investigated.

Methods

A highly synchronous culture of the Dd2 clone of P. falciparum was established in a serum free medium. Supernatants harvested from rings, trophozoites and schizonts at various parasite densities were tested for ability to activate C by quantifying amount of C3b deposited on erythrocytes (E). Uninfected sham culture was used as control. Remnants of each C pathway were determined using Wieslab complement System Screenkit (Euro-diagnostica, Sweden). To identify MBL binding antigens of LP, culture supernatants were added to MBL sepharose columns and trapped antigens eluted with increasing concentrations of EDTA (10 mM, 50 mM and 100 mM) and then desalted before being tested for ability to activate C. The EDTA eluate with highest activity was run on a polyacrylamide gel and silver stained proteins analyzed by mass spectroscopy.

Results

Antigens released by P. falciparum growing in culture activated C leading to C3b deposition on E. Maximal activation at 7% parasitemia was associated with schizont stage (36.7%) compared to 22% for rings, 21% for trophozoites and 3% for sham culture. All the three pathways of C were activated, with highest activation being for the alternative pathway (only 6% of C activation potential remained), 65% for classiical and 43% for the LP. Seven MBL binding merozoite proteins were identified by mass spectrometry in the 50 mM EDTA eluate.

Conclusions

MBL binding merozoite adhesins with ability to activate C pathway were identified. The survival advantage for such pronounced C activation is unclear, but opsonisation could facilitate recognition and invasion of E.  相似文献   

5.
Melanization is a potent immune response mediated by phenoloxidase (PO). Multiple Clip-domain serine proteases (CLIP) regulate PO activation as part of a complex cascade of proteases that are cleaved sequentially. The role of several CLIP as key activators or suppressors of the melanization responses of Anopheles gambiae to Plasmodium berghei (murine malaria) has been established recently using a genome-wide reverse genetics approach. Important differences in regulation of PO activation between An. gambiae strains were also identified. This review summarizes these findings and discusses our current understanding of the An. gambiae melanization responses to Plasmodium.  相似文献   

6.
7.
The Thailand-Cambodia border is the epicenter for drug-resistant falciparum malaria. Previous studies have shown that chloroquine (CQ) and pyrimethamine resistance originated in this region and eventually spread to other Asian countries and Africa. However, there is a dearth in understanding the origin and evolution of dhps alleles associated with sulfadoxine resistance. The present study was designed to reveal the origin(s) of sulfadoxine resistance in Cambodia and its evolutionary relationship to African and South American dhps alleles. We sequenced 234 Cambodian Plasmodium falciparum isolates for the dhps codons S436A/F, A437G, K540E, A581G and A613S/T implicated in sulfadoxine resistance. We also genotyped 10 microsatellite loci around dhps to determine the genetic backgrounds of various alleles and compared them with the backgrounds of alleles prevalent in Africa and South America. In addition to previously known highly-resistant triple mutant dhps alleles SGEGA and AGEAA (codons 436, 437, 540, 581, 613 are sequentially indicated), a large proportion of the isolates (19.3%) contained a 540N mutation in association with 437G/581G yielding a previously unreported triple mutant allele, SGNGA. Microsatellite data strongly suggest the strength of selection was greater on triple mutant dhps alleles followed by the double and single mutants. We provide evidence for at least three independent origins for the double mutants, one each for the SGKGA, AGKAA and SGEAA alleles. Our data suggest that the triple mutant allele SGEGA and the novel allele SGNGA have common origin on the SGKGA background, whereas the AGEAA triple mutant was derived from AGKAA on multiple, albeit limited, genetic backgrounds. The SGEAA did not share haplotypes with any of the triple mutants. Comparative analysis of the microsatellite haplotypes flanking dhps alleles from Cambodia, Kenya, Cameroon and Venezuela revealed an independent origin of sulfadoxine resistant alleles in each of these regions.  相似文献   

8.
9.
In human erythrocytes (h-RBCs) various stimuli induce increases in [cAMP] that trigger ATP release. The resulting pattern of extracellular ATP accumulation (ATPe kinetics) depends on both ATP release and ATPe degradation by ectoATPase activity. In this study we evaluated ATPe kinetics from primary cultures of h-RBCs infected with P. falciparum at various stages of infection (ring, trophozoite and schizont stages). A “3V” mixture containing isoproterenol (β-adrenergic agonist), forskolin (adenylate kinase activator) and papaverine (phosphodiesterase inhibitor) was used to induce cAMP-dependent ATP release. ATPe kinetics of r-RBCs (ring-infected RBCs), t-RBCs (trophozoite-infected RBCs) and s-RBCs (schizont-infected RBCs) showed [ATPe] to peak acutely to a maximum value followed by a slower time dependent decrease. In all intraerythrocytic stages, values of ΔATP1 (difference between [ATPe] measured 1 min post-stimulus and basal [ATPe]) increased nonlinearly with parasitemia (from 2 to 12.5%). Under 3V exposure, t-RBCs at parasitemia 94% (t94-RBCs) showed 3.8-fold higher ΔATP1 values than in h-RBCs, indicative of upregulated ATP release. Pre-exposure to either 100 µM carbenoxolone, 100 nM mefloquine or 100 µM NPPB reduced ΔATP1 to 83–87% for h-RBCs and 63–74% for t94-RBCs. EctoATPase activity, assayed at both low nM concentrations (300–900 nM) and 500 µM exogenous ATPe concentrations increased approx. 400-fold in t94-RBCs, as compared to h-RBCs, while intracellular ATP concentrations of t94-RBCs were 65% that of h-RBCs. In t94-RBCs, production of nitric oxide (NO) was approx. 7-fold higher than in h-RBCs, and was partially inhibited by L-NAME pre-treatment. In media with L-NAME, ΔATP1 values were 2.7-times higher in h-RBCs and 4.2-times higher in t94-RBCs, than without L-NAME. Results suggest that P. falciparum infection of h-RBCs strongly activates ATP release via Pannexin 1 in these cells. Several processes partially counteracted ATPe accumulation: an upregulated ATPe degradation, an enhanced NO production, and a decreased intracellular ATP concentration.  相似文献   

10.
Plasmodium falciparum invades human red blood cells, residing in a parasitophorous vacuole (PV), with a parasitophorous vacuole membrane (PVM) separating the PV from the host cell cytoplasm. Here we have investigated the role of N-myristoylation and two other N-terminal motifs, a cysteine potential S-palmitoylation site and a stretch of basic residues, as the driving force for protein targeting to the parasite plasma membrane (PPM) and subsequent translocation across this membrane. Plasmodium falciparum adenylate kinase 2 (Pf AK2) contains these three motifs, and was previously proposed to be targeted beyond the parasite to the PVM, despite the absence of a signal peptide for entry into the classical secretory pathway. Biochemical and microscopy analyses of PfAK2 variants tagged with green fluorescent protein (GFP) showed that these three motifs are involved in targeting the protein to the PPM and translocation across the PPM to the PV. It was shown that the N-terminal 37 amino acids of PfAK2 alone are sufficient to target and translocate GFP across the PPM. As a control we examined the N-myristoylated P. falciparum ADP-ribosylation factor 1 (PfARF1). PfARF1 was found to co-localise with a Golgi marker. To determine whether or not the putative palmitoylation and the cluster of lysine residues from the N-terminus of PfAK2 would modulate the subcellular localization of PfARF1, a chimeric fusion protein containing the N-terminus of PfARF1 and the two additional PfAK2 motifs was analysed. This chimeric protein was targeted to the PPM, but not translocated across the membrane into the PV, indicating that other features of the N-terminus of PfAK2 also play a role in the secretion process.  相似文献   

11.

Background

As pathogens that circumvent the host immune response are favoured by selection, so are host alleles that reduce parasite load. Such evolutionary processes leave their signature on the genes involved. Deciphering modes of selection operating on immune genes might reveal the nature of host-pathogen interactions and factors that govern susceptibility in host populations. Such understanding would have important public health implications.

Methodology/Findings

We analyzed polymorphisms in four mosquito immune genes (SP14D1, GNBP, defensin, and gambicin) to decipher selection effects, presumably mediated by pathogens. Using samples of Anopheles arabiensis, An. quadriannulatus and four An. gambiae populations, as well as published sequences from other Culicidae, we contrasted patterns of polymorphisms between different functional units of the same gene within and between populations. Our results revealed selection signatures operating on different time scales. At the most recent time scale, within-population diversity revealed purifying selection. Between populations and between species variation revealed reduced differentiation (GNBP and gambicin) at coding vs. noncoding- regions, consistent with balancing selection. McDonald-Kreitman tests between An. quadriannulatus and both sibling species revealed higher fixation rate of synonymous than nonsynonymous substitutions (GNBP) in accordance with frequency dependent balancing selection. At the longest time scale (>100 my), PAML analysis using distant Culicid taxa revealed positive selection at one codon in gambicin. Patterns of genetic variation were independent of exposure to human pathogens.

Significance and Conclusions

Purifying selection is the most common form of selection operating on immune genes as it was detected on a contemporary time scale on all genes. Selection for “hypervariability” was not detected, but negative balancing selection, detected at a recent evolutionary time scale between sibling species may be rather common. Detection of positive selection at the deepest evolutionary time scale suggests that it occurs infrequently, possibly in association with speciation events. Our results provided no evidence to support the hypothesis that selection was mediated by pathogens that are transmitted to humans.  相似文献   

12.
Abstract. In preparation for field studies of transmission-blocking malaria vaccines, a study was carried out to determine whether P. falciparum infections obtained in An. gambiae blood-fed at 16.00 hours were quantitatively similar to infections obtained at 23.00 hours. Using a group of children aged 5-12 years from villages at Ahero, near Kisumu in Kenya, 71/74 (96%) of whom were found to be positive for P. falciparum parasitaemia, one batch of fifty colony-bred An. gambiae females were fed on volunteers at 16.00 hours and another batch at 23.00 hours. No statistically significant differences were found in the proportions of mosquitoes becoming infected, the numbers of children infecting mosquitoes or the mean numbers of malaria oocysts developing in mosquitoes blood-fed at the different times. Because mosquito infections obtained by day (16.00 hours) are equivalent in quantity to those obtained at night (23.00 hours), experimental infections can be carried out in the afternoon, when it is most convenient, rather than during the night.  相似文献   

13.
Deciphering molecular interactions between the malaria parasite and its mosquito vector is an emerging area of research that will be greatly facilitated by the recent sequencing of the genomes of Anopheles gambiae mosquito and of various Plasmodium species. So far, most such studies have focused on Plasmodium berghei, a parasite species that infects rodents and is more amenable to studies. Here, we analysed the expression pattern of nine An.gambiae genes involved in immune surveillance during development of the human malaria parasite P.falciparum in mosquitoes fed on parasite-containing blood from patients in Cameroon. We found that P.falciparum ingestion triggers a midgut-associated, as well as a systemic, response in the mosquito, with three genes, NOS, defensin and GNBP, being regulated by ingestion of gametocytes, the infectious stage of the parasite. Surprisingly, we found a different pattern of expression of these genes in the An.gambiae-P.berghei model. Therefore, differences in mosquito reaction against various Plasmodium species may exist, which stresses the need to validate the main conclusions suggested by the P.berghei-An.gambiae model in the P.falciparum-An.gambiae system.  相似文献   

14.
15.
16.
17.
In the malaria mosquito Anopheles gambiae polymorphic chromosomal inversions may play an important role in adaptation to environmental variation. Recently, we used microarray-based divergence mapping combined with targeted resequencing to map nucleotide differentiation between alternative arrangements of the 2La inversion. Here, we applied the same technique to four different polymorphic inversions on the 2R chromosome of An. gambiae. Surprisingly, divergence was much lower between alternative arrangements for all 2R inversions when compared to the 2La inversion. For one of the rearrangements, 2Ru, we successfully mapped a very small region (∼100 kb) of elevated divergence. For the other three rearrangements, we did not identify any regions of significantly high divergence, despite ample independent evidence from natural populations of geographic clines and seasonal cycling, and stable heterotic polymorphisms in laboratory populations. If these inversions are the targets of selection as hypothesized, we suggest that divergence between rearrangements may have escaped detection due to retained ancestral polymorphism in the case of the youngest 2R rearrangements and to extensive gene flux in the older 2R inversion systems that segregate in both An. gambiae and its sibling species An. arabiensis.MORE than 70 years ago Dobzhansky and Sturtevant (1938) first discovered polymorphic inversion arrangements carried by various Drosophila pseudoobscura populations. After observing correlations between environmental conditions and inversion frequencies, Dobzhansky proposed that inversions are under strong selection due to their role in promoting local adaptation to the heterogeneous conditions a species encounters both spatially and temporally (Dobzhansky 1944, 1948; Powell 1997). More recent studies have implicated chromosomal inversions in the adaptation of a diversity of eukaryotes including humans (Coluzzi et al. 1979; Feder et al. 2003; Hoffmann et al. 2004; Stefansson et al. 2005). Long known to be common in dipteran insects, more recent HapMap data suggest that polymorphic inversions may be numerous in human populations and by extension other mammals (Bansal et al. 2007). Given their potential importance in facilitating adaptation, surprisingly little is known about the mechanism(s) or the genes responsible for maintaining inversion polymorphisms in natural populations.Gene exchange between inverted and standard arrangements, although reduced, can still occur through gene flux: the action of gene conversion and multiple crossovers in inversion heterozygotes (heterokaryotypes) (Chovnick 1973; Navarro et al. 1997; Schaeffer and Anderson 2005). Over time allelic variation unrelated to ecological adaptation should become homogenized between arrangements, while alleles which are under divergent selection pressures should remain in linkage disequilibrium with each other and with the inversion itself, leading to heightened differentiation between standard and inverted arrangements at and near the target loci. In principle, this process allows the identification of specific loci involved in adaptive divergence (Schaeffer et al. 2003; Schaeffer and Anderson 2005; Storz 2005). Consistent with this model, previous low-resolution studies of Drosophila inversions revealed heterogeneous patterns of nucleotide diversity relative to divergence, as well as the interspersion of regions of high and low genetic association potentially due to the interaction of selection and gene flux (Schaeffer et al. 2003; Kennington et al. 2006; but see Munte et al. 2005). The application of high-resolution tools flowing from completely sequenced genomes will facilitate the mapping of genes that are the targets of divergent natural selection within gene arrangements.Although Drosophila has been the favored model, the African malaria vector Anopheles gambiae sensu stricto also provides an excellent system for studying the maintenance of inversion polymorphisms, not only within a species but across speciation events of different ages in the An. gambiae sibling species complex. The nominal species An. gambiae s.s. (hereafter, An. gambiae) is synanthropic: almost exclusively biting humans, resting indoors, and exploiting anthropogenic larval habitats (Coluzzi 1999). This close association with humans, vital to making An. gambiae one of the most proficient vectors of malaria, is likely to have been facilitated by chromosomal inversions thought to confer adaptive benefits in heterogeneous climatic and ecological settings in Africa. Seven common polymorphic inversions exist on the second chromosome. Six of these are located on the right arm (2R): j, b, c, u, d, and k, while 2La is the only inversion on the left arm (Coluzzi et al. 2002). Facilitated by the sequenced reference genome (Holt et al. 2002), some of the breakpoints for these polymorphic inversions have been localized to small genomic regions (Sharakhov et al. 2006; Coulibaly et al. 2007; Sangare 2007). Most of these inversions appear to be the targets of strong selection. Five of the inversions (2La and 2Rb, -c, -d, and -u) are nonrandomly associated with degree of aridity; each cycles seasonally with rainfall, and all except 2Ru form stable geographic clines in frequency from mesic forest to xeric regions bordering the Sahara (Coluzzi et al. 1979; Toure et al. 1994, 1998; Powell et al. 1999). Inversion 2Rj is not clinal, but its distribution in Mali is consistent with adaptation to novel rockpool niches (Coluzzi et al. 1985; Manoukis et al. 2008).In the An. gambiae species complex, inversion polymorphisms can be maintained across the boundaries of emerging and even full species. An. gambiae and its sibling An. arabiensis, strictly sympatric throughout most of their extensive ranges in sub-Saharan Africa, differ by multiple fixed chromosomal rearrangements on the X but share three chromosome 2 inversions: 2La, fixed in An. arabiensis and polymorphic in An. gambiae; and 2Rb and -c, polymorphic in both species (Coluzzi et al. 1979, 2002). Moreover, these same inversions and all other common An. gambiae inversions with the exception of 2Rj are shared and polymorphic in two lineages apparently undergoing ecological speciation within An. gambiae—the assortatively mating M and S molecular forms (della Torre et al. 2002, 2005). Inversion frequencies are correlated with climatic and ecological conditions in parallel in both lineages (Costantini et al. 2009; Simard et al. 2009). Unlike the full species, the M and S incipient species are not distinguished by any fixed inversion differences. Indeed, genomewide divergence mapping between the M and S forms revealed that significant differentiation was confined to two small low-recombination regions adjacent to the centromeres of 2L and X which are distant from any inversions (Turner et al. 2005). Thus, in distinction to models of speciation invoking inversions as facilitating the persistence of hybridizing species (Noor et al. 2001; Rieseberg 2001; Ortiz-Barrientos et al. 2002; Navarro and Barton 2003), the An. gambiae data suggest that chromosome 2 inversions are not directly responsible for reproductive isolation. Instead, the same chromosome 2 inversion polymorphisms appear to confer similar ecological benefits, within and across species boundaries. A long-term research goal is to identify the mechanisms and the genes controlling these processes.Previously we conducted the first high-density genomic scan of divergence across a chromosomal inversion (2La) in An. gambiae (White et al. 2007). By hybridizing genomic DNA from S form mosquitoes homokaryotypic for alternate gene arrangements on chromosome 2L (2La or 2L+a) to oligonucleotide microarrays we were able to measure divergence across the 22-Mb inversion at nearly 14,000 markers. Differentiation in the rearranged region was significantly higher than in collinear portions of chromosome 2L. Between breakpoints the pattern of differentiation was heterogeneous: two genomic clusters of significantly higher divergence were identified near but not adjacent to the breakpoints. Directed resequencing within the S form confirmed these results and suggested that both clusters contained genes targeted by selection. Observed levels of linkage disequilibrium between the 2La breakpoints and markers in the clusters are highly unlikely under a neutral scenario, in light of known recombination rates and plausible estimates of the age of the inversion.The present study characterizes the patterns of genetic variation in polymorphic rearrangements on the opposite (right) arm of chromosome 2: 2Rj, -b, -c, and -u. With the goal of identifying candidate genes maintaining these inversions in natural populations, we applied microarray-based divergence mapping to measure differentiation between alternative 2R arrangements. Because three of four inversions have taxonomic distributions that span incipient and/or completed speciation events, we validated the microarray findings by targeted sequencing in multiple taxa: sympatric Malian populations of An. gambiae M and S forms, and the sibling species An. arabiensis.  相似文献   

18.
Previous studies showed that Anopheles gambiae L3-5 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial state-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when state-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of Plasmodium berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection.  相似文献   

19.
Using a proteomic approach we identified polypeptides from Anopheles gambiae and Drosophila melanogaster protein extracts that selectively bind purified Plasmodium berghei ookinetes in vitro; these were two and three distinct polypeptides, respectively, with an apparent molecular weight of about 36 kDa. Combining two-dimensional electrophoresis and MALDI-TOF (matrix-associated laser desorption ionization time of flight) mass spectrometry we determined that the polypeptides correspond to isomorphs of the annexin B11 protein of the fruit fly. When protein extracts derived from A. gambiae and D. melanogaster tissue culture cells were further fractionated, the binding activity matching the annexin protein could be localized in the fraction derived from cell membranes in both diptera. Antibody staining showed that annexin also binds to ookinetes during the invasion of the mosquito midgut. Finally, inclusion of antiannexin antisera in a mosquito blood meal impaired parasite development, suggesting a facilitating role for annexins in the infection of the mosquito by Plasmodium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号