首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A broad Gag-specific CD8+ T-cell response is associated with effective control of adult human immunodeficiency virus (HIV) infection. The association of certain HLA class I molecules, such as HLA-B*57, -B*5801, and -B*8101, with immune control is linked to mutations within Gag epitopes presented by these alleles that allow HIV to evade the immune response but that also reduce viral replicative capacity. Transmission of such viruses containing mutations within Gag epitopes results in lower viral loads in adult recipients. In this study of pediatric infection, we tested the hypothesis that children may tend to progress relatively slowly if either they themselves possess one of the protective HLA-B alleles or the mother possesses one of these alleles, thereby transmitting a low-fitness virus to the child. We analyzed HLA type, CD8+ T-cell responses, and viral sequence changes for 61 mother-child pairs from Durban, South Africa, who were monitored from birth. Slow progression was significantly associated with the mother or child possessing one of the protective HLA-B alleles, and more significantly so when the protective allele was not shared by mother and child (P = 0.007). Slow progressors tended to make CD8+ T-cell responses to Gag epitopes presented by the protective HLA-B alleles, in contrast to progressors expressing the same alleles (P = 0.07; Fisher''s exact test). Mothers expressing the protective alleles were significantly more likely to transmit escape variants within the Gag epitopes presented by those alleles than mothers not expressing those alleles (75% versus 21%; P = 0.001). Reversion of transmitted escape mutations was observed in all slow-progressing children whose mothers possessed protective HLA-B alleles. These data show that HLA class I alleles influence disease progression in pediatric as well as adult infection, both as a result of the CD8+ T-cell responses generated in the child and through the transmission of low-fitness viruses by the mother.Human immunodeficiency virus (HIV)-specific CD8+ T cells play a central role in controlling viral replication (12). It is the specificity of the CD8+ T-cell response, particularly the response to Gag, that is associated with low viral loads in HIV infection (7, 17, 34). Although immune control is undermined by the selection of viral mutations that prevent recognition by the CD8+ T cells, evasion of Gag-specific responses mediated by protective class I HLA-B alleles typically brings a reduction in viral replicative capacity, facilitating subsequent immune control of HIV (2, 20, 21). The same principle has been demonstrated in studies of simian immunodeficiency virus infection (18, 22).Recent studies showed that the class I HLA-B alleles that protect against disease progression present more Gag-specific CD8+ T-cell epitopes and drive the selection of more Gag-specific escape mutations than those alleles that are associated with high viral loads (23). These protective HLA-B alleles not only are beneficial to infected individuals expressing those alleles but also benefit a recipient following transmission, since the transmitted virus carrying multiple Gag escape mutations may have substantially reduced fitness (3, 4, 8). However, there is no benefit to the recipient if he or she shares the same protective allele as the donor because the transmitted virus carries escape mutations in the Gag epitopes that would otherwise be expected to mediate successful immune control in the recipient (8, 11).The sharing of HLA alleles between donor and recipient occurs frequently in mother-to-child transmission (MTCT). The risk of MTCT is related to viral load in the mother, and a high viral load is associated with nonprotective alleles, such as HLA-B*18 and -B*5802. This may contribute in two distinct ways to the more rapid progression observed in pediatric HIV infection (24, 26, 27). First, because infected children share 50% or more of their HLA alleles with the transmitting mother, they are less likely than adults to carry protective HLA alleles (16). Thus, infected children as a group carry fewer protective HLA alleles and more nonprotective HLA alleles. Second, even when the child has a protective allele, such as HLA-B*27, this allele does not offer protection if the maternally transmitted virus carries escape mutations within the key Gag epitopes that are presented by the protective allele (11, 19).However, it is clear that infected children who possess protective alleles, such as HLA-B*27 or HLA-B*57, can achieve durable immune control of HIV infection if the virus transmitted from the mother is not preadapted to those alleles (6, 10). HIV-specific CD8+ T-cell responses are detectable from birth in infected infants (32). Furthermore, as in adult infection (3, 8), HIV-infected children have the potential to benefit from transmission of low-fitness viruses in the situation where the mother possesses protective HLA alleles and the child does not share those protective alleles. MTCT of low-fitness viruses carrying CD8+ T-cell escape mutations was recently documented (28; J. Prado et al., unpublished data).In this study, undertaken in Durban, South Africa, we set out to test the hypothesis that HIV-infected children are less likely to progress rapidly to disease if either the infected child or the transmitting mother possesses a protective HLA allele that is not shared. The HLA alleles most strongly associated with low viral loads and high CD4 counts in a cohort of >1,200 HIV-infected adults in Durban are HLA-B*57 (-B*5702 and -B*5703), HLA-B*5801, and HLA-B*8101 (16; A. Leslie et al., unpublished data). These four alleles all present Gag-specific CD8+ T-cell epitopes, and in each case the escape mutations selected in these epitopes reduce viral replicative capacity (2-4, 8, 21, 23).Analyzing a previously described cohort of 61 HIV-infected children in Durban (24, 26, 32), South Africa, who were all monitored from birth, we first addressed the question of whether possession of any of these four alleles by either mother or child is associated with slower disease progression in the child and then determined whether sharing of protective alleles by mother and child affects the ability of the child to make the Gag-specific CD8+ T-cell responses restricted by the shared allele.  相似文献   

2.
The mechanisms underlying HIV-1 control by protective HLA class I alleles are not fully understood and could involve selection of escape mutations in functionally important Gag epitopes resulting in fitness costs. This study was undertaken to investigate, at the population level, the impact of HLA-mediated immune pressure in Gag on viral fitness and its influence on HIV-1 pathogenesis. Replication capacities of 406 recombinant viruses encoding plasma-derived Gag-protease from patients chronically infected with HIV-1 subtype C were assayed in an HIV-1-inducible green fluorescent protein reporter cell line. Viral replication capacities varied significantly with respect to the specific HLA-B alleles expressed by the patient, and protective HLA-B alleles, most notably HLA-B*81, were associated with lower replication capacities. HLA-associated mutations at low-entropy sites, especially the HLA-B*81-associated 186S mutation in the TL9 epitope, were associated with lower replication capacities. Most mutations linked to alterations in replication capacity in the conserved p24 region decreased replication capacity, while most in the highly variable p17 region increased replication capacity. Replication capacity also correlated positively with baseline viral load and negatively with baseline CD4 count but did not correlate with the subsequent rate of CD4 decline. In conclusion, there is evidence that protective HLA alleles, in particular HLA-B*81, significantly influence Gag-protease function by driving sequence changes in Gag and that conserved regions of Gag should be included in a vaccine aiming to drive HIV-1 toward a less fit state. However, the long-term clinical benefit of immune-driven fitness costs is uncertain given the lack of correlation with longitudinal markers of disease progression.There is broad heterogeneity in the ability of HIV-infected individuals to control virus replication, ranging from elite controllers, who maintain undetectable viral loads without treatment, to rapid progressors, who progress to AIDS within 2 years of infection (9, 22, 32). Many interrelated factors, including host and viral genetic factors involved in antiviral immunity and the viral life cycle, may partially account for the differences in the course of disease progression (10, 11, 30, 41). The complex interplay between host genetic factors and viral factors is exemplified by human leukocyte antigen (HLA) class I-restricted cytotoxic T-lymphocyte (CTL) responses, which exert considerable immune pressure on the virus, resulting in escape mutations that affect the interaction of viral and host proteins, thereby influencing infection outcome.The exact mechanisms by which some HLA class I alleles, such as HLA-B*57 and HLA-B*27, are associated with slower progression to AIDS, while others, such as B*5802 and B*18, are associated with accelerated disease progression (6, 20, 42), are unclear. The magnitude and/or breadth of HLA-restricted CTL responses to the conserved Gag protein has been correlated inversely with disease progression or markers of disease progression in several studies (12, 21, 28, 31, 35, 43, 46), although there are some exceptions (4, 16, 37), while preferential targeting of the highly variable envelope protein (as occurs in HLA-B*5802-positive individuals) correlates with higher viral loads (21, 29). Protective HLA alleles restrict CTL responses that impose a strong selection pressure on a few specific Gag p24 epitopes, resulting in escape mutations (14) for which fitness costs have been demonstrated either through site-directed mutations introduced into a reference strain background (2, 8, 25, 38) or through in vivo reversion of these mutations after transmission to an HLA-mismatched individual (8, 24). Recent evidence suggests that Gag escape mutations with a fitness cost, particularly those in p24, are a significant determinant of disease progression: the transmitted number of HLA-B-associated polymorphisms in Gag was found to significantly impact the viral set point in recipients (although an associated fitness cost was not shown) (7, 15), and in a small number of infants, decreased fitness of the transmitted virus with HLA-B*5703/5801-selected mutations in Gag p24 epitopes resulted in slower disease progression (33, 39). Also, the number of reverting Gag mutations (thought to revert as a consequence of fitness costs) associated with individual HLA-B alleles was strongly correlated with the HLA-linked viral set point in chronically infected patients (26). A recent in vitro study showed that HLA-associated variation in Gag-protease, with resulting reduced replication capacity, may contribute to viral control in HIV-1 subtype B-infected elite controllers (27). Taken together, these studies suggest that CTL responses restricted by favorable HLA alleles select for escape mutations in conserved epitopes, particularly those in Gag, resulting in a fitness cost to HIV and therefore at least partly explaining the slower disease progression in individuals carrying these alleles.To date, many of the studies investigating the fitness cost of Gag escape mutations and their clinical relevance have concentrated on escape mutations associated with protective HLA alleles, have not assessed fitness consequences in the natural sequence background (in the presence of other escape and compensatory mutations), and/or have focused on a limited number of patients. Most importantly, the majority of studies have focused on HIV-1 subtype B. The present study is the first to use a large population-based approach and clinically derived Gag-protease sequences to investigate comprehensively the relationships between immune-driven sequence variation in Gag, viral replication capacity, and markers of disease progression in chronic infection with HIV-1 subtype C, the most predominant subtype in the epidemic. We assayed the replication capacity of recombinant viruses encoding patient Gag-protease in an HIV-1-inducible green fluorescent protein (GFP) reporter cell line and found associations between lower replication capacities, protective HLA alleles, protective HLA-associated mutations, lower baseline viral loads, and higher baseline CD4 counts. However, Gag-protease replication capacity did not correlate with the subsequent rate of CD4 decline.  相似文献   

3.
The control of human immunodeficiency virus type 1 (HIV-1) associated with particular HLA class I alleles suggests that some CD8+ T-cell responses may be more effective than others at containing HIV-1. Unfortunately, substantial diversities in the breadth, magnitude, and function of these responses have impaired our ability to identify responses most critical to this control. It has been proposed that CD8 responses targeting conserved regions of the virus may be particularly effective, since the development of cytotoxic T-lymphocyte (CTL) escape mutations in these regions may significantly impair viral replication. To address this hypothesis at the population level, we derived near-full-length viral genomes from 98 chronically infected individuals and identified a total of 76 HLA class I-associated mutations across the genome, reflective of CD8 responses capable of selecting for sequence evolution. The majority of HLA-associated mutations were found in p24 Gag, Pol, and Nef. Reversion of HLA-associated mutations in the absence of the selecting HLA allele was also commonly observed, suggesting an impact of most CTL escape mutations on viral replication. Although no correlations were observed between the number or location of HLA-associated mutations and protective HLA alleles, limiting the analysis to mutations selected by acute-phase immunodominant responses revealed a strong positive correlation between mutations at conserved residues and protective HLA alleles. These data suggest that control of HIV-1 may be associated with acute-phase CD8 responses capable of selecting for viral escape mutations in highly conserved regions of the virus, supporting the inclusion of these regions in the design of an effective vaccine.Despite substantial advances in antiretroviral therapies, development of an effective human immunodeficiency virus type 1 (HIV-1) vaccine remains a critical goal (6, 39, 82). Unfortunately, current vaccine efforts have failed to reduce infection rates in humans (9, 75) and have only achieved modest decreases in viral loads in the simian immunodeficiency virus (SIV)/SHIV macaque model (21, 44, 81). A majority of these vaccine approaches have focused on inducing T-cell responses, utilizing large regions of the virus in an attempt to induce a broad array of immune responses (6, 34, 44, 81). While it is well established that CD8+ T-cell responses play a critical role in the containment of HIV-1 (45, 49, 67), supported in part by the strong association of particular HLA class I alleles with control of HIV (20, 33, 42, 61), it remains unclear which particular CD8+ T-cell responses are best able to control the virus and thus should be preferentially targeted by a vaccine. Studies comparing the magnitude, breadth, and function of CD8+ T-cell responses in subjects exhibiting either enhanced or poor control of HIV-1 have yielded few clues as to the specific factors associated with an effective CD8+ T-cell response (2, 28, 64, 67). Various differences in the functional capacity of T-cell responses have been observed in long-term nonprogressors (1, 26, 64), although it is possible that these differences may be reflective of an intact immune response, as opposed to having had directly enhanced immune control. As such, efforts are needed to identify factors or phenotypes associated with protective CD8+ T-cell responses in order to enable vaccines to induce the most effective responses.Recent studies have begun to suggest that the specificity of the CD8+ T-cell response, or the targeting of specific regions of the virus, may be associated with control of HIV-1. Preferential targeting of Gag, a structurally conserved viral protein responsible for multiple functions, has been associated with lower viral loads (25, 43, 56, 60, 77, 85). Furthermore, Kiepiela et al. (43) recently illustrated in a large cohort of 578 clade C-infected subjects that Gag-specific responses were associated with lowered viremia, in contrast to Env-specific responses, which were associated with higher viremia. These data are in line with previous observations that many of the major histocompatibility complex (MHC) class I alleles most strongly associated with control of HIV-1 and SIV, namely, HLA-B57, HLA-B27, and Mamu-A*01, restrict immunodominant CD8+ T-cell responses against the Gag protein (8, 10, 24, 63, 68, 83). However, other alleles associated with slower disease progression, such as HLA-B51 in humans and Mamu-B08 and B-17 in the rhesus macaque, do not immunodominantly target Gag, suggesting that targeting of some other regions of the virus may also be capable of eliciting control (8, 52-54). In addition, recent studies investigating the pattern of HIV-1-specific CD8+ T-cell responses during acute infection reveal that only a small subset of CD8+ T-cell responses restricted by any given HLA allele arise during acute infection and that there exist clear immunodominance patterns to these responses (8, 77, 85). Since control of HIV-1 is likely to be established or lost during the first few weeks of infection, these data suggest that potentially only a few key CD8+ T-cell responses may be needed to adequately establish early control of HIV-1.One of the major factors limiting the effectiveness of CD8+ T-cell responses is the propensity for HIV-1 to evade these responses through sequence evolution or viral escape (3, 13, 66). Even single point mutations within a targeted CD8 epitope can effectively abrogate recognition by either the HLA allele or the T-cell receptor. However, recent studies have begun to highlight that many sequence polymorphisms will revert to more common consensus residues upon transmission of HIV-1 to a new host, including many cytotoxic T-lymphocyte (CTL) escape mutations (4, 30, 33, 48, 50). Notably, the more rapidly reverting mutations have been observed to preferentially occur at conserved residues, indicating that structurally conserved regions of the virus may be particularly refractory to sequence changes (50). In support of these data, many CTL escape mutations have now been observed to directly impair viral replication (15, 23, 55, 74), in particular those known to either revert or require the presence of secondary compensatory mutations (15, 23, 73, 74). Taken together, these data suggest that, whereas CTL escape mutations provide a benefit to the virus to enable the evasion of host immune pressures, some of these mutations may come at a substantial cost to viral replication. These data may also imply that the association between Gag-specific responses and control of HIV-1 may be due to the targeting of highly conserved regions of the virus that are difficult to evade through sequence evolution.The propensity by which HIV-1 escapes CD8+ T-cell responses, and the reproducibility by which mutations arise at precise residues in targeted CD8 epitopes (3, 48), also enables the utilization of sequence data to predict which responses may be most capable of exerting immune selection pressure on the virus. Studies in HIV-1, SIV, and hepatitis C virus (16, 58, 65, 78) are now rapidly identifying immune-driven CTL escape mutations across these highly variable pathogens at the population level by correlating sequence polymorphisms in these viruses with the expression of particular HLA alleles. We provide here an analysis of HLA-associated mutations across the entire HIV-1 genome using a set of sequences derived from clade B chronically infected individuals. Through full-length viral genome coverage, these data provide an unbiased analysis of the location of these mutations and suggest that the control of HIV-1 by particular HLA alleles correlates with their ability to preferentially restrict early CD8+ T-cell responses capable of selecting for viral escape mutations at highly conserved residues of the virus. These data provide support for the inclusion of specific highly conserved regions of HIV-1 into vaccine antigens.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) elite controllers (EC) maintain viremia below the limit of commercial assay detection (<50 RNA copies/ml) in the absence of antiviral therapy, but the mechanisms of control remain unclear. HLA-B57 and the closely related allele B*5801 are particularly associated with enhanced control and recognize the same Gag240-249 TW10 epitope. The typical escape mutation (T242N) within this epitope diminishes viral replication capacity in chronically infected persons; however, little is known about TW10 epitope sequences in residual replicating viruses in B57/B*5801 EC and the extent to which mutations within this epitope may influence steady-state viremia. Here we analyzed TW10 in a total of 50 B57/B*5801-positive subjects (23 EC and 27 viremic subjects). Autologous plasma viral sequences from both EC and viremic subjects frequently harbored the typical cytotoxic T-lymphocyte (CTL)-selected mutation T242N (15/23 sequences [65.2%] versus 23/27 sequences [85.1%], respectively; P = 0.18). However, other unique mutants were identified in HIV controllers, both within and flanking TW10, that were associated with an even greater reduction in viral replication capacity in vitro. In addition, strong CTL responses to many of these unique TW10 variants were detected by gamma interferon-specific enzyme-linked immunospot assay. These data suggest a dual mechanism for durable control of HIV replication, consisting of viral fitness loss resulting from CTL escape mutations together with strong CD8 T-cell immune responses to the arising variant epitopes.A subset of human immunodeficiency virus type 1 (HIV-1)-infected persons who control viremia to below the limit of detection (<50 RNA copies/ml plasma) without antiviral therapy has been termed elite controllers/suppressors (EC) (2, 3, 6, 13, 32). Some of these individuals have been infected in excess of 30 years, indicating prolonged containment of HIV replication, but the mechanisms associated with this extreme viremia control remain elusive (13). Among EC, certain HLA class I alleles are overrepresented, in particular HLA-B57, strongly suggesting that HIV-1-specific cytotoxic T-lymphocyte (CTL) responses restricted by these alleles may be crucial for viremia control (16, 29, 32). However, to date, there has been no clear explanation as to why some subjects can control viremia but others cannot, even when carrying the same allegedly protective HLA alleles. Moreover, the characteristics of virus-specific immune responses as well as the impact of viral escape mutations on in vitro replicative fitness in persons with different disease outcomes remain unclear.Growing numbers of studies suggest that CTL targeting Gag, particularly the p24 capsid protein, play an important role in controlling viremia (7, 15, 22, 26, 32, 33, 38). Indeed, the most protective HLA class I allele, B57, which is present in over 40% of EC (32), restricts four immunodominant CTL epitopes in the p24 capsid protein. Previous studies have failed to find differences in the recognition of Gag epitopes or in gamma interferon (IFN-γ) responses to HIV proteins between B57-positive (B57+) long-term nonprogressors and B57+ progressors (28). Other studies have shown differences in the frequency of polyfunctional CD8+ T cells between B57+ EC and B57+ progressors (5); likewise, differences in the frequency of IFN-γ/interleukin-2-producing CD8+ T cells between controllers and progressors with protective HLA alleles were reported (16). Recently, Bailey et al. reported that plasma viruses in B57+ EC can harbor CTL escape mutations in the Gag protein, and in some cases these autologous variants were recognized by CTL (3). However, since there were no comparisons to progressors, it is unclear whether the viral variants that were detected or the apparent de novo CTL responses to the variant viruses are characteristic features among B57+ persons who maintain persistent control.Of the four immunodominant Gag CTL epitopes restricted by HLA-B57, TW10 (TSTLQEQIGW [Gag residues 240 to 249]) is known to be the earliest target in acute infection (1, 11, 36), therefore likely playing an important role in defining the plasma viral load set point. This epitope is also known to be presented by the closely related B*5801 allele, which is also associated with viral control (21). One of the most frequently detected mutations within this epitope, T242N, is known to occur rapidly and almost universally after acute infection in persons expressing HLA-B57/B*5801 (11, 17, 23). The same mutation has been shown to have a negative impact on viral replication capacity (VRC) by both clinical observation and in vitro experiments (8, 23, 25). Moreover, as plasma viral load increases, compensatory mutations accumulate, restoring VRC to some extent (8). Additional studies, predominantly with children, indicated that some TW10 escape variants may be targeted by specific immune responses (17). Together, these data suggest a hypothesis to explain the diverse disease courses among B57+ subjects, namely, that a combination of fitness cost by CTL escape from the TW10 response, variable accumulation of compensatory mutations, and variable generation of specific CTL responses to the new variant influence plasma viral loads.In this study, we investigated plasma viral sequences and IFN-γ-specific enzyme-linked immunospot (ELISPOT) assay responses to autologous Gag TW10 sequences in HLA-B57/B*5801-positive EC and compared these data to those obtained from persons with detectable viremia. Our results indicate that the TW10 T242N mutation does not differentiate HLA-B57/B*5801 EC from those with viremia and that CTL responses to this variant epitope are frequently detected in both viremic and aviremic subjects. However, some rare variants within and flanking this epitope were observed exclusively in HIV controllers, most of which not only reduced VRC but also were recognized by specific CTL at a high magnitude. These data suggest that the additive effects of both CTL-mediated selection for less fit viral variants and CD8 T-cell responses to the variant viruses contribute to strict viremia control in HLA-B57/B*5801-positive controllers.  相似文献   

5.
6.
The full repertoire of hepatitis B virus (HBV) peptides that bind to the common HLA class I molecules found in areas with a high prevalence of chronic HBV infection has not been determined. This information may be useful for designing immunotherapies for chronic hepatitis B. We identified amino acid residues under positive selection pressure in the HBV core gene by phylogenetic analysis of cloned DNA sequences obtained from HBV DNA extracted from the sera of Tongan subjects with inactive, HBeAg-negative chronic HBV infections. The repertoires of positively selected sites in groups of subjects who were homozygous for either HLA-B*4001 (n = 10) or HLA-B*5602 (n = 7) were compared. We identified 13 amino acid sites under positive selection pressure. A significant association between an HLA class I allele and the presence of nonsynonymous mutations was found at five of these sites. HLA-B*4001 was associated with mutations at E77 (P = 0.05) and E113 (P = 0.002), and HLA-B*5602 was associated with mutations at S21 (P = 0.02). In addition, amino acid mutations at V13 (P = 0.03) and E14 (P = 0.01) were more common in the seven subjects with an HLA-A*02 allele. In summary, we have developed an assay that can identify associations between HLA class I alleles and HBV core gene amino acids that mutate in response to selection pressure. This is consistent with published evidence that CD8+ T cells have a role in suppressing viral replication in inactive, HBeAg-negative chronic HBV infection. This assay may be useful for identifying the clinically significant HBV peptides that bind to common HLA class I molecules.The most potent nucleoside/nucleotide analogue drugs used to treat chronic hepatitis B reduce serum hepatitis B virus (HBV) DNA to undetectable levels in over 90% of subjects (5, 10). It was originally hoped that such a substantial reduction in viral titers would reverse T-cell tolerance for HBV antigens (17, 30) and lead to an immune response that permanently suppressed the virus, thus removing the need for expensive, lifelong drug therapy. However, HBeAg seroconversion rates of under 30% suggest that suppression of HBV replication is not sufficient to reverse the defects (4, 15) in the HBV peptide-specific CD8+ T-cell compartment that occur in these patients. A therapeutic vaccine that stimulated a diverse repertoire of functional CD8+ T cells could make a valuable contribution to management of chronic hepatitis B.The first step in designing a therapeutic vaccine that will suppress viral replication without exacerbating chronic hepatitis B (15) is to identify the HBV peptides that stimulate functional CD8+ T cells by binding to the most common HLA class I alleles. These peptides may contribute to the antigen component of a vaccine and to the design of assays for use as correlates of immunity in trials of antiviral therapies. Although some of the HBV peptides that bind to four HLA-A alleles have been published (3, 19, 25, 28), a much wider repertoire of peptide-HLA interactions needs to be identified. There is no established method for finding them (32). Adding pools of peptides to peripheral blood mononuclear cells in enzyme-linked immunospot assays is the most commonly used technique (4), but it has disadvantages. Pools of peptides contain epitopes that are not produced by in vivo antigen-processing mechanisms (32), and the influence of these epitopes on complex mixtures of T cells with degenerate antigen receptors is unknown. False-positive and false-negative results are possible. In addition, it cannot be assumed that the ability of a T cell to secrete gamma interferon in an enzyme-linked immunospot assay correlates with its ability to place clinically significant selection pressure on the virus in vivo.We are proposing an alternative approach, which should lead to the identification of the most clinically significant wild-type peptide antigens. This is to assess the influence of HLA class I alleles on the repertoire of escape mutations (3, 18) encoded in the HBV DNA extracted from the sera of HBeAg-negative subjects with an inactive chronic HBV infection. A functional CD8+ T-cell repertoire (15, 22) develops in these subjects at the same time the virus in their sera accumulates amino acid mutations (2). Phylogenetic analysis can distinguish those amino acid mutations that have arisen as a result of positive selection pressure from those that have arisen as a result of random processes (31). CD8+ T cells are likely to have placed selection pressure on any of the nonrandom amino acid mutations that preferentially occur in patients with a specific HLA class I allele. It should be possible to obtain the precise amino acid sequences of the peptides that contain these amino acids using immunological assays.This study was carried out with Tongan subjects who are homozygous for one of two common HLA-B alleles. Since there is significant linkage disequilibrium within the HLA class I locus in Tongan people (1), this has allowed two groups of subjects with distinct HLA class I haplotypes to be studied. In addition, we restricted the study to subjects infected with a genotype C3 HBV.  相似文献   

7.
Mutations that allow escape from CD8 T-cell responses are common in HIV-1 and may attenuate pathogenesis by reducing viral fitness. While this has been demonstrated for individual cases, a systematic investigation of the consequence of HLA class I-mediated selection on HIV-1 in vitro replication capacity (RC) has not been undertaken. We examined this question by generating recombinant viruses expressing plasma HIV-1 RNA-derived Gag-Protease sequences from 66 acute/early and 803 chronic untreated subtype B-infected individuals in an NL4-3 background and measuring their RCs using a green fluorescent protein (GFP) reporter CD4 T-cell assay. In acute/early infection, viruses derived from individuals expressing the protective alleles HLA-B*57, -B*5801, and/or -B*13 displayed significantly lower RCs than did viruses from individuals lacking these alleles (P < 0.05). Furthermore, acute/early RC inversely correlated with the presence of HLA-B-associated Gag polymorphisms (R = −0.27; P = 0.03), suggesting a cumulative effect of primary escape mutations on fitness during the first months of infection. At the chronic stage of infection, no strong correlations were observed between RC and protective HLA-B alleles or with the presence of HLA-B-associated polymorphisms restricted by protective alleles despite increased statistical power to detect these associations. However, RC correlated positively with the presence of known compensatory mutations in chronic viruses from B*57-expressing individuals harboring the Gag T242N mutation (n = 50; R = 0.36; P = 0.01), suggesting that the rescue of fitness defects occurred through mutations at secondary sites. Additional mutations in Gag that may modulate the impact of the T242N mutation on RC were identified. A modest inverse correlation was observed between RC and CD4 cell count in chronic infection (R = −0.17; P < 0.0001), suggesting that Gag-Protease RC could increase over the disease course. Notably, this association was stronger for individuals who expressed B*57, B*58, or B*13 (R = −0.27; P = 0.004). Taken together, these data indicate that certain protective HLA alleles contribute to early defects in HIV-1 fitness through the selection of detrimental mutations in Gag; however, these effects wane as compensatory mutations accumulate in chronic infection. The long-term control of HIV-1 in some persons who express protective alleles suggests that early fitness hits may provide lasting benefits.The host immune response elicited by CD8+ cytotoxic T lymphocytes (CTLs) is a major contributor to viral control following human immunodeficiency virus type 1 (HIV-1) infection (6, 39), but antiviral pressure exerted by CTLs is diminished by the selection of escape mutations in targeted regions throughout the viral proteome (7, 18, 29, 35, 41, 45, 57). A comprehensive identification of HLA-associated viral polymorphisms has recently been achieved through population-based analyses of HIV-1 sequences and HLA class I types from different cohorts worldwide (3, 8, 13-15, 34, 43, 50, 56, 63). However, despite improved characterization of the sites and pathways of immune escape, effective ways to incorporate these findings into immunogen design remain an area of debate. A better understanding of the impact of escape mutations on viral fitness may provide novel directions for HIV-1 vaccines that are designed to attenuate pathogenesis.The development of innovative vaccine strategies that can overcome the extreme diversity of HIV is a key priority (4). One proposed approach is to target the most conserved T-cell epitopes, which presumably cannot escape from CTL pressure easily due to structural or functional constraints on the viral protein (55). Complementary approaches include the design of polyvalent and/or mosaic immunogens that incorporate commonly observed viral diversity (4, 38) or the specific targeting of vulnerable regions of the viral proteome that do escape but only at a substantial cost to viral replication capacity (RC) (1, 40). A chief target of such vaccine approaches is the major HIV-1 structural protein Gag, which is known to be highly immunogenic and to elicit CTL responses that correlate with the natural control of infection (22, 36, 66). Indeed, several lines of evidence support a relationship between the selection of CTL escape mutations and reduced HIV-1 fitness. These include the reversion of escape mutations following transmission to an HLA-mismatched recipient who cannot target the epitope (19, 24, 41) as well as reduced plasma viral load (pVL) set point following the transmission of certain escape variants from donors who expressed protective HLA alleles (17, 27). Notably, these in vivo observations have been made most often for variations within Gag that are attributed to CTL responses restricted by the protective alleles HLA-B*57 and -B*5801 (17, 19, 27, 41). Most recently, reduced in vitro RCs of clinical isolates and/or engineered strains encoding single or multiple escape mutations in Gag selected in the context of certain protective HLA alleles, including B*57, B*5801, B*27, and B*13, have been demonstrated (9, 10, 42, 53, 59, 62). Despite these efforts, the goal of a T-cell vaccine that targets highly conserved and attenuation-inducing sites is hampered by a lack of knowledge concerning the contribution of most escape mutations to HIV-1 fitness as well as a poor understanding of the relative influence of HLA on the viral RC at different stages of infection.The mutability of HIV-1 permits the generation of progeny viruses encoding compensatory mutations that restore normal protein function and/or viral fitness. Detailed studies have demonstrated that the in vitro RC of escape variants in human and primate immunodeficiency viruses can be enhanced by the addition of secondary mutations outside the targeted epitope (10, 20, 52, 59, 65). Thus, vaccine strategies aimed at attenuating HIV-1 must also consider, among other factors, the frequency, time course, and extent to which compensation might overcome attenuation mediated by CTL-induced escape. Despite its anticipated utility for HIV-1 vaccine design, systematic studies to examine the consequences of naturally occurring CTL escape and compensatory mutations on viral RC have not been undertaken.We have described previously an in vitro recombinant viral assay to examine the impact of Gag-Protease mutations on HIV-1 RC (47, 49). Gag and protease have been included in each virus to minimize the impact of sequence polymorphisms at Gag cleavage sites, which coevolve with changes in protease (5, 37). Using this approach, we have demonstrated that viruses derived from HIV-1 controllers replicated significantly less well than those derived from noncontrollers and that these differences were detectable at both the acute/early (49) and chronic (47) stages. Escape mutations in Gag associated with the protective HLA-B*57 allele, as well as putative compensatory mutations outside known CTL epitopes, contributed to this difference in RC (47). However, substantial variability was observed for viruses from controllers and noncontrollers, indicating that additional factors were likely to be involved. Benefits of this assay include its relatively high-throughput capacity as well as the fact that clinically derived HIV-1 sequences are used in their entirety. Thus, it is possible to examine a large number of “real-world” Gag-Protease sequences, to define an RC value for each one, and to identify sequences within the population of recombinant strains that are responsible for RC differences.Here, we use this recombinant virus approach to examine the contribution of HLA-associated immune pressure on Gag-Protease RC during acute/early (n = 66) and chronic (n = 803) infections in the context of naturally occurring HIV-1 subtype B isolates from untreated individuals. In a recent report (64), we employed this system to examine the Gag-Protease RC in a similar cohort of chronic HIV-1 subtype C-infected individuals. The results of these studies provide important insights into the roles of immune pressure and fitness constraints on HIV-1 evolution that may contribute to the rational design of an effective vaccine.  相似文献   

8.
An understanding of the mechanism(s) by which some individuals spontaneously control human immunodeficiency virus (HIV)/simian immunodeficiency virus replication may aid vaccine design. Approximately 50% of Indian rhesus macaques that express the major histocompatibility complex (MHC) class I allele Mamu-B*08 become elite controllers after infection with simian immunodeficiency virus SIVmac239. Mamu-B*08 has a binding motif that is very similar to that of HLA-B27, a human MHC class I allele associated with the elite control of HIV, suggesting that SIVmac239-infected Mamu-B*08-positive (Mamu-B*08+) animals may be a good model for the elite control of HIV. The association with MHC class I alleles implicates CD8+ T cells and/or natural killer cells in the control of viral replication. We therefore introduced point mutations into eight Mamu-B*08-restricted CD8+ T-cell epitopes to investigate the contribution of epitope-specific CD8+ T-cell responses to the development of the control of viral replication. Ten Mamu-B*08+ macaques were infected with this mutant virus, 8X-SIVmac239. We compared immune responses and viral loads of these animals to those of wild-type SIVmac239-infected Mamu-B*08+ macaques. The five most immunodominant Mamu-B*08-restricted CD8+ T-cell responses were barely detectable in 8X-SIVmac239-infected animals. By 48 weeks postinfection, 2 of 10 8X-SIVmac239-infected Mamu-B*08+ animals controlled viral replication to <20,000 viral RNA (vRNA) copy equivalents (eq)/ml plasma, while 10 of 15 wild-type-infected Mamu-B*08+ animals had viral loads of <20,000 vRNA copy eq/ml (P = 0.04). Our results suggest that these epitope-specific CD8+ T-cell responses may play a role in establishing the control of viral replication in Mamu-B*08+ macaques.A few individuals spontaneously control the replication of human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) to very low levels. The precise mechanisms underlying this control are of great interest, as a clear understanding of what constitutes a successful immune response may aid in developing an AIDS vaccine. Particularly pressing questions for vaccine design include which proteins to use as immunogens, the extent to which increasing the breadth and magnitude of responses is advantageous, how immunodomination affects T-cell responses, and if biasing the immune response toward particular effector profiles is beneficial. Characterization of immune responses made by elite controllers (ECs) may reveal patterns that can then be applied to vaccine formulation and evaluation.HIV ECs are generally not infected with grossly unfit viruses (6, 42). Instead, elite control of immunodeficiency virus replication is correlated with the presence of particular major histocompatibility complex class I (MHC-I) alleles (11, 12, 18, 32, 41, 55). The association of MHC-I alleles with the control of viremia implicates CD8+ T cells as being mediators of this immune containment. Several lines of evidence support this hypothesis. These lines of evidence include the correlation between the appearance of CD8+ T-cell responses and the resolution of peak viremia during acute infection (7, 29), the finding that alleles associated with viral control restrict dominant acute-phase CD8+ T-cell responses (3), and the finding that responses directed against epitopes restricted by these alleles frequently select for viral escape variants (4, 27, 38). Perhaps most compelling is the observation that for a few HIV-infected individuals, the selection of escape variants by an immunodominant HLA-B27-restricted T-cell response temporally preceded substantial increases in viremia (17, 21, 53). While viruses exhibiting escape variants in epitopes restricted by protective alleles are often detectably less fit in vitro (10, 38, 43, 51), recent data have found normal, high levels of replication in vivo upon the transmission of some of these variants (15).The association of control with MHC-I alleles does not, of course, implicate solely CD8+ T cells. MHC-I molecules are also ligands for killer immunoglobulin receptors (KIRs), which are predominantly expressed on natural killer (NK) cells. Genetic studies of HIV-infected humans suggest a model in which individuals with particular KIR/HLA combinations are predisposed to control HIV replication more readily than those with other KIR/HLA combinations (36, 37). These data were supported by functional studies of this KIR/HLA pairing in vitro, which demonstrated an inhibition of HIV replication by such NK cells (2). The relative contributions of NK and CD8+ T-cell responses to control have yet to be elucidated and may be closely intertwined.Previously, the experimental depletion of circulating CD8+ cells from SIVmac239-infected ECs resulted in a sharp spike in viremia, which resolved as CD8+ cells repopulated the periphery (19). During the reestablishment of control of SIV replication, CD8+ T cells targeting multiple epitopes restricted by alleles associated with elite control expanded in frequency, providing strong circumstantial evidence for their role in maintaining elite control (19, 31). However, CD8 depletion antibodies used in macaques also remove NK cells, which, at least in vitro, also inhibit SIV replication (19). It was therefore difficult to make definitive conclusions regarding the separate contributions of these subsets to maintaining the control of SIV replication in vivo.Here we investigate elite control in the rhesus macaque model for AIDS. We focused on the macaque MHC-I allele most tightly associated with the control of SIVmac239, Mamu-B*08. Approximately 50% of Mamu-B*08-positive (Mamu-B*08+) animals infected with SIVmac239 become ECs (32). Peptides presented by Mamu-B*08 share a binding motif with peptides presented by HLA-B27. Although these two MHC-I genes are dissimilar in domains that are important for peptide binding, each molecule can bind peptides that are presented by the other molecule (33). This striking similarity suggests that the elite control of SIVmac239 in Mamu-B*08+ animals is a good model for the elite control of HIV.Seven SIVmac239 epitopes restricted by Mamu-B*08 accrue variation in Mamu-B*08+ rhesus macaques (30, 31). For an eighth Mamu-B*08-restricted epitope, which is also restricted by Mamu-B*03 (Mamu-B*03 differs from Mamu-B*08 by 2 amino acids in the α1 and α2 domains [9, 32]), escape has been documented only for SIV-infected Mamu-B*03+ macaques (16). Variation in these CD8+ T-cell epitopes accumulates with different kinetics, starting during acute infection for those targeted by high-magnitude responses.In this study, we addressed the question of whether the elite control of SIVmac239 in Mamu-B*08+ animals is mediated by the known high-frequency CD8+ T-cell responses targeting Mamu-B*08-restricted epitopes. To this end, we introduced point mutations into eight epitopes, with the goal of reducing or abrogating immune responses directed against these epitopes during acute infection. We hypothesized that Mamu-B*08+ macaques would be unable to control SIV replication without these Mamu-B*08-restricted T-cell responses.  相似文献   

9.
The potential importance of HLA-C-restricted CD8+ cytotoxic T lymphocytes (CTL) in HIV infection remains undetermined. We studied the dominant HLA-Cw*03-restricted CTL response to YVDRFFKTL296-304 (YL9), within the conserved major homology region (MHR) of the Gag protein, in 80 HLA-Cw*03-positive individuals with chronic HIV infection to better define the efficacy of the YL9 HLA-C-restricted response. The HLA-Cw*03 allele is strongly associated with HIV sequence changes from Thr-303 to Val, Ile, or Ala at position 8 within the YL9 epitope (P = 1.62 × 10−10). In vitro studies revealed that introduction of the changes T303I and T303A into the YL9 epitope both significantly reduced CTL recognition and substantially reduced the viral replicative capacity. However, subsequent selection of the Val-303 variant, via intracodon variation from Ile-303 (I303V) or Ala-303 (A303V), restored both viral fitness and CTL recognition, as supported by our in vivo data. These results illustrate that HLA-C-restricted CTL responses are capable of driving viral immune escape within Gag, but in contrast to what was previously described for HLA-B-restricted Gag escape mutants, the common Cw*03-Gag-303V variant selected resulted in no detectable benefit to the host.Human leukocyte antigen (HLA) class I is the most polymorphic region of the human genome. HLA class I genes are found at the A, B, and C loci of chromosome 6 and have been shown to play an important role in control of infections by intracellular pathogens (3). Of these three loci, HLA-B has had many more unique molecules identified than has HLA-A or -C (http://www.anthonynolan.org.uk/HIG/index.html). This locus variability is likely to reflect functional differences among HLA-B alleles and disease progression (20). In the context of HIV infection, several studies have demonstrated that HLA-B alleles have the greatest impact on HIV-1 replication control (7, 22). The reason why particular HLA-B, and not HLA-A or -C, alleles have been associated with improved outcome in HIV is unknown but may be explained by the numbers and regions of viral proteomes presented in the context of HLA-B molecules (19, 23, 46).Regardless of the importance of HLA-B-restricted responses in HIV control, the roles of the HLA-A and -C class I alleles have not been fully investigated. A genomewide analysis investigating single-nucleotide polymorphisms (SNP) has associated both the presence of certain HLA-B alleles and a dimorphism upstream of the HLA-C gene (−35C/T) as two of the strongest predictors of the plasma viral load in HIV infection (14). In addition, the −35 SNP has recently been associated with levels of HLA-C expression and may indicate a new role for HLA-C alleles in HIV-1 control (40).One reason that has been postulated to explain the lack of HLA-C association with immune pressure is the lower expression of HLA-C on the cell surface (18, 36, 37). However, HLA-C, unlike HLA-A and HLA-B, is not downregulated by the Nef protein, and this factor, therefore, may explain the lower expression level (9).Analyses of large numbers of HIV sequences have identified associations between particular HLA-C polymorphisms in the HIV pol gene and the set point viral load (27). These polymorphisms were within or in close proximity to defined HLA-C-restricted epitopes, suggesting that HLA-C-restricted responses could be driving HIV evolution (22, 27). Confirmation that all HLA-C-restricted epitopes are not fundamentally ineffective was recently provided by a study of an HLA-Cw*01-restricted epitope targeted to p15 Gag, which was found to drive selection of a 3-amino-acid insertion in a HIV-infected patient (6). Additionally, in vitro studies have demonstrated antiviral activities of HLA-C-restricted cytotoxic T lymphocytes (CTL) clones against HIV comparable to other HLA-B-restricted responses (2). In spite of all these data, the contribution of HLA-C responses to HIV control is still unknown.Our study was undertaken to address the role of an HLA-Cw*0303/0304-restricted response to YVDRFFKTL296-304 (YL9) in HIV infection. This response was of particular interest due to its dominance and because it targets a highly conserved region of the Gag protein among different retroviruses, namely, the major homology region (MHR). In the study cohort of 778 individuals with chronic HIV infection, 80 were found to carry Cw*0303/0304. Gag viral sequences were obtained from HLA-Cw*0303/0304 subjects and used to identify and define HIV immune escape driven by the YL9-especific responses. We then studied the impacts of these mutations on viral recognition by CD8+ T cells and on virus replicative capacity (RC).  相似文献   

10.
Antigenic peptides recognized by virus-specific cytotoxic T lymphocytes (CTLs) are presented by major histocompatibility complex (MHC; or human leukocyte antigen [HLA] in humans) molecules, and the peptide selection and presentation strategy of the host has been studied to guide our understanding of cellular immunity and vaccine development. Here, a severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid (N) protein-derived CTL epitope, N1 (QFKDNVILL), restricted by HLA-A*2402 was identified by a series of in vitro studies, including a computer-assisted algorithm for prediction, stabilization of the peptide by co-refolding with HLA-A*2402 heavy chain and β2-microglobulin (β2m), and T2-A24 cell binding. Consequently, the antigenicity of the peptide was confirmed by enzyme-linked immunospot (ELISPOT), proliferation assays, and HLA-peptide complex tetramer staining using peripheral blood mononuclear cells (PBMCs) from donors who had recovered from SARS donors. Furthermore, the crystal structure of HLA-A*2402 complexed with peptide N1 was determined, and the featured peptide was characterized with two unexpected intrachain hydrogen bonds which augment the central residues to bulge out of the binding groove. This may contribute to the T-cell receptor (TCR) interaction, showing a host immunodominant peptide presentation strategy. Meanwhile, a rapid and efficient strategy is presented for the determination of naturally presented CTL epitopes in the context of given HLA alleles of interest from long immunogenic overlapping peptides.In 2003, severe and acute respiratory syndrome (SARS), emerging from China, caused a global outbreak, affecting 29 countries, with over 8,000 human cases and greater than 800 deaths (5, 9, 24, 33, 37). Thanks to the unprecedented global collaboration coordinated by the WHO, SARS coronavirus (SARS-CoV), a novel member of Coronaviridae family, was rapidly confirmed to be the etiological agent for the SARS epidemic (36). Soon after the identification of the causative agent, SARS was controlled and then quickly announced to be conquered through international cooperation on epidemiological processes (9). However, the role that human immunity played in the clearance of SARS-CoV and whether the memory immunity will persist for the potential reemergence of SARS are not yet well understood.In viral infections, CD8+ cytotoxic T lymphocytes (CTLs) are essential to the control of infectious disease. Virus-specific CD8+ T cells recognize peptides which have 8 to 11 amino acids, in most cases presented by major histocompatibility complex (MHC) class I molecules. However, identification of virus-specific CD8+ T-cell epitopes remains a complicated and time-consuming process. Various strategies have been developed to define CTL epitopes so far. One of the most common practices to determine immunodominant CTL epitopes on a large scale is based on screening and functional analysis of overlapping 15- to 20-mer peptides covering an entire viral proteome or a given set of immunogenic proteins (19, 23, 32). However, peptides identified through this method are too long to be naturally processed CTL epitopes, and the definition of MHC class I restriction of these peptides still requires further analysis. Rapid and efficient strategies should be developed for the determination of naturally presented CTL epitopes in the context of any given HLA allele of interest. Furthermore, no other HLA alleles except HLA-A2-restricted CTL epitopes have been reported for SARS-CoV-derived proteins (16, 22, 31, 43, 46, 47, 49). This is primarily because of the limitation of the experimental methods for the other HLA alleles. HLA-A24 is one of the most common HLA-A alleles throughout the world, especially in East Asia, where SARS-CoV emerged, second only to HLA-A2 (30). The development of a fast and valid method to screen and identify HLA-A24-restricted epitopes would greatly contribute to the understanding of the specific CTL epitope-stimulated response and widen the application of the epitope-based vaccine among a more universal population (17). A genomewide scanning of HLA binding peptides from SARS-CoV has been performed by Sylvester-Hvid and colleagues, through which dozens of peptides with major HLA supertypes, including HLA-A24 binding capability, have been identified (41).There are strong indications that different peptide ligands, such as peptides with distinct immunodominance, can elicit a diverse specific T-cell repertoire, and even subtle changes in the same peptide can have a profound effect on the response (25, 44). Furthermore, a broader T-cell receptor (TCR) repertoire to a virus-specific peptide-MHC complex can keep the host resistant to the virus and limit the emergence of virus immune-escape mutants (29, 34, 38). Recent studies have demonstrated that the diversity of the selected TCR repertoire (designated as T-cell receptor bias) is clearly influenced by the conformational characteristics of the bound peptide in the MHC groove. Peptides with a flat, featureless surface when presented by MHC generate only limited TCR diversity in a mature repertoire, while featured peptides with exposed residues (without extreme bulges) protruding outside the pMHC landscapes are rather associated with the more diverse T-cell repertoire (15, 28, 39, 44, 45). Therefore, being able to determine the binding features of a peptide to MHC and describe the peptide-MHC topology will help us understand the immunodominance of a given peptide and demonstrate the peptide presentation strategy of the host.Structural proteins of SARS-CoV, such as spike, membrane, and nucleocapsid (N), have been demonstrated as factors of the antigenicity of the virus, as compared with the nonstructural proteins (12, 20). Coronavirus nucleocapsid (N) protein is a highly phosphorylated protein which not only is responsible for construction of the ribonucleoprotein complex by interacting with the viral genome and regulating the synthesis of viral RNA and protein, but also serves as a potent immunogen that induces humoral and cellular immunity (13, 14, 26, 48). The CD8+ T-cell epitopes derived from SARS-CoV N protein defined so far mainly cluster in two major immunogenic regions (4, 21, 23, 31, 32, 43). One of them, residues 219 to 235, comprises most of the N protein-derived minimal CTL epitopes identified so far—N220-228, N223-231, N227-235, etc.—all of which are HLA-A*0201 restricted (4, 43). The other region, residues 331 to 365, also includes high-immunogenicity peptides that can induce memory T-lymphocyte responses against SARS-CoV (21, 23, 32). However, until now, no minimal CTL epitope with a given HLA allele restriction has been investigated in this region.Here, based on previously defined immunogenic regions derived from SARS-CoV N protein (21), we identified an HLA-A*2402-restricted epitope, N1 (residues 346 to 354), in the region through a distinct strategy using structural and functional approaches. The binding affinity with HLA-A*2402 molecules and the cellular immunogenicity of the peptide were demonstrated in a series of assays. The X-ray crystal structure of HLA-A*2402 complexed with peptide N1 has shown a novel host strategy to present an immunodominant CTL epitope by intrachain hydrogen bond as a featured epitope.  相似文献   

11.
12.
NK cells are critical in the early containment of viral infections. Epidemiological and functional studies have shown an important role of NK cells expressing specific killer immunoglobulin-like receptors (KIRs) in the control of human immunodeficiency virus type 1 (HIV-1) infection, but little is known about the mechanisms that determine the expansion of these antiviral NK cell populations during acute HIV-1 infection. Here we demonstrate that NK cells expressing the activating receptor KIR3DS1+ and, to a lesser extent, the inhibitory receptor KIR3DL1+ specifically expand in acute HIV-1 infection in the presence of HLA-B Bw480I, the putative HLA class I ligand for KIR3DL1/3DS1. These data demonstrate for the first time the HLA class I subtype-dependent expansion of specific KIR+ NK cells during an acute viral infection in humans.NK cells are cytotoxic effector cells that play a vital role in the innate immune response to viral infections (9, 12, 33). The critical role of NK cells in acute viral infections has been best characterized in acute murine cytomegalovirus (MCMV) infection (14, 28). While several murine lab strains are resistant to MCMV infection, others are highly susceptible. Resistance to MCMV infection was mapped to a gene encoding an activating NK cell receptor, Ly49H, which has been shown to be critical in the early recognition and control of MCMV infection via the direct recognition of a viral product (M157) expressed on infected cells (28). Remarkably, MCMV-infected mice exhibit a dramatic expansion of NK cells during acute infection, but this expansion is restricted to the specific accumulation of Ly49H+ NK cells (16). Data from these studies suggest that the antiviral activity of the Ly49H+ NK cells is linked to their ability to expand early in infection, prior to the development of adaptive antiviral immunity.While the critical role of Ly49H+ NK cells in MCMV infection has been well established, very little is known about the clonal composition of NK cells that expand in human viral infections, and the NK cell receptors that mediate their antiviral activity. Unlike T cells and B cells, the specificity of NK cells is not determined by a single NK cell receptor (8); rather, NK cells express an array of activating and inhibitory receptors that regulate their activity. While the expression of these receptors is stochastic, the random combinations of different receptors on the surface of a given NK cell clone determine its ability to respond to a specific target cell (26, 27). It has been suggested that individual NK cell populations expressing a specific array of receptors may respond differentially to diverse viral infections (7). This has been further supported by epidemiological studies associating the expression of individual activating or inhibitory NK cell receptors in combination with their HLA class I ligands with better or worse disease outcomes in viral infections such as hepatitis C virus (22), human immunodeficiency virus (HIV) (29, 30), human papillomavirus (11), and CMV (7). The functional basis for this protective immunity mediated by NK cells in human viral infections remains largely unknown.Similar to MCMV infection, highly functional NK cells expand rapidly in acute HIV-1 infection, prior to the induction of adaptive immune responses (2). One particular activating killer immunoglobulin-like NK cell receptor (KIR3DS1), in combination with its putative ligand, an HLA-B allele with isoleucine at position 80 (HLA-B Bw480I), has been shown to be associated with slower HIV-1 disease progression (29). We have recently shown that KIR3DS1+ NK cells can effectively suppress HIV-1 replication in HLA-B Bw480I+ target cells in vitro (1). Furthermore, a subset of inhibitory alleles from the same locus, KIR3DL1, that show high cell surface expression levels have similarly been associated with slower disease progression toward AIDS in the presence of their ligand, HLA-B Bw480I (30). These data suggest that both KIR3DS1+ and KIR3DL1+ NK cells may play a critical role in the control of natural HIV-1 infection, depending on the interaction with their ligand on infected cells (4). However, the mechanisms underlying their protective role are not understood.Given the critical role of NK cells in acute viral infections and the described expansion of NK cells overall during acute HIV-1 infection (16), we assessed clonal NK cell expansions during acute HIV-1 infection by quantitative PCR and flow cytometric analysis. Here we report an HLA class I subtype-dependent specific expansion of KIR3DS1+ and KIR3DL1+ NK cells during acute HIV-1 infection. These data demonstrate for the first time the impact of the HLA class I ligands on clonal NK cell expansions during an acute human viral infection.  相似文献   

13.
14.
Highly active antiretroviral therapy (HAART) can reduce human immunodeficiency virus type 1 (HIV-1) viremia to clinically undetectable levels. Despite this dramatic reduction, some virus is present in the blood. In addition, a long-lived latent reservoir for HIV-1 exists in resting memory CD4+ T cells. This reservoir is believed to be a source of the residual viremia and is the focus of eradication efforts. Here, we use two measures of population structure—analysis of molecular variance and the Slatkin-Maddison test—to demonstrate that the residual viremia is genetically distinct from proviruses in resting CD4+ T cells but that proviruses in resting and activated CD4+ T cells belong to a single population. Residual viremia is genetically distinct from proviruses in activated CD4+ T cells, monocytes, and unfractionated peripheral blood mononuclear cells. The finding that some of the residual viremia in patients on HAART stems from an unidentified cellular source other than CD4+ T cells has implications for eradication efforts.Successful treatment of human immunodeficiency virus type 1 (HIV-1) infection with highly active antiretroviral therapy (HAART) reduces free virus in the blood to levels undetectable by the most sensitive clinical assays (18, 36). However, HIV-1 persists as a latent provirus in resting, memory CD4+ T lymphocytes (6, 9, 12, 16, 48) and perhaps in other cell types (45, 52). The latent reservoir in resting CD4+ T cells represents a barrier to eradication because of its long half-life (15, 37, 40-42) and because specifically targeting and purging this reservoir is inherently difficult (8, 25, 27).In addition to the latent reservoir in resting CD4+ T cells, patients on HAART also have a low amount of free virus in the plasma, typically at levels below the limit of detection of current clinical assays (13, 19, 35, 37). Because free virus has a short half-life (20, 47), residual viremia is indicative of active virus production. The continued presence of free virus in the plasma of patients on HAART indicates either ongoing replication (10, 13, 17, 19), release of virus after reactivation of latently infected CD4+ T cells (22, 24, 31, 50), release from other cellular reservoirs (7, 45, 52), or some combination of these mechanisms. Finding the cellular source of residual viremia is important because it will identify the cells that are still capable of producing virus in patients on HAART, cells that must be targeted in any eradication effort.Detailed analysis of this residual viremia has been hindered by technical challenges involved in working with very low concentrations of virus (13, 19, 35). Recently, new insights into the nature of residual viremia have been obtained through intensive patient sampling and enhanced ultrasensitive sequencing methods (1). In a subset of patients, most of the residual viremia consisted of a small number of viral clones (1, 46) produced by a cell type severely underrepresented in the peripheral circulation (1). These unique viral clones, termed predominant plasma clones (PPCs), persist unchanged for extended periods of time (1). The persistence of PPCs indicates that in some patients there may be another major cellular source of residual viremia (1). However, PPCs were observed in a small group of patients who started HAART with very low CD4 counts, and it has been unclear whether the PPC phenomenon extends beyond this group of patients. More importantly, it has been unclear whether the residual viremia generally consists of distinct virus populations produced by different cell types.Since the HIV-1 infection in most patients is initially established by a single viral clone (23, 51), with subsequent diversification (29), the presence of genetically distinct populations of virus in a single individual can reflect entry of viruses into compartments where replication occurs with limited subsequent intercompartmental mixing (32). Sophisticated genetic tests can detect such population structure in a sample of viral sequences (4, 39, 49). Using two complementary tests of population structure (14, 43), we analyzed viral sequences from multiple sources within individual patients in order to determine whether a source other than circulating resting CD4+ T cells contributes to residual viremia and viral persistence. Our results have important clinical implications for understanding HIV-1 persistence and treatment failure and for improving eradication strategies, which are currently focusing only on the latent CD4+ T-cell reservoir.  相似文献   

15.
16.
The immune correlates of human/simian immunodeficiency virus control remain elusive. While CD8+ T lymphocytes likely play a major role in reducing peak viremia and maintaining viral control in the chronic phase, the relative antiviral efficacy of individual virus-specific effector populations is unknown. Conventional assays measure cytokine secretion of virus-specific CD8+ T cells after cognate peptide recognition. Cytokine secretion, however, does not always directly translate into antiviral efficacy. Recently developed suppression assays assess the efficiency of virus-specific CD8+ T cells to control viral replication, but these assays often use cell lines or clones. We therefore designed a novel virus production assay to test the ability of freshly ex vivo-sorted simian immunodeficiency virus (SIV)-specific CD8+ T cells to suppress viral replication from SIVmac239-infected CD4+ T cells. Using this assay, we established an antiviral hierarchy when we compared CD8+ T cells specific for 12 different epitopes. Antiviral efficacy was unrelated to the disease status of each animal, the protein from which the tested epitopes were derived, or the major histocompatibility complex (MHC) class I restriction of the tested epitopes. Additionally, there was no correlation with the ability to suppress viral replication and epitope avidity, epitope affinity, CD8+ T-cell cytokine multifunctionality, the percentage of central and effector memory cell populations, or the expression of PD-1. The ability of virus-specific CD8+ T cells to suppress viral replication therefore cannot be determined using conventional assays. Our results suggest that a single definitive correlate of immune control may not exist; rather, a successful CD8+ T-cell response may be comprised of several factors.CD8+ T cells may play a critical role in blunting peak viremia and controlling human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. The transient depletion of CD8+ cells in SIV-infected macaques results in increased viral replication (26, 31, 51, 70). The emergence of virus-specific CD8+ T cells coincides with the reduction of peak viremia (12, 39, 42, 63), and CD8+ T-cell pressure selects for escape mutants (6, 9, 13, 28, 29, 38, 60, 61, 85). Furthermore, particular major histocompatibility complex (MHC) class I alleles are overrepresented in SIV- and HIV-infected elite controllers (15, 29, 33, 34, 46, 56, 88).Because it has been difficult to induce broadly neutralizing antibodies (Abs), the AIDS vaccine field is currently focused on developing a vaccine designed to elicit HIV-specific CD8+ T cells (8, 52, 53, 82). Investigators have tried to define the immune correlates of HIV control. Neither the magnitude nor the breadth of epitopes recognized by virus-specific CD8+ T-cell responses correlates with the control of viral replication (1). The quality of the immune response may, however, contribute to the antiviral efficacy of the effector cells. It has been suggested that the number of cytokines that virus-specific CD8+ T cells secrete may correlate with viral control, since HIV-infected nonprogressors appear to maintain CD8+ T cells that secrete several cytokines, compared to HIV-infected progressors (11, 27). An increased amount of perforin secretion may also be related to the proliferation of HIV-specific CD8+ T cells in HIV-infected nonprogressors (55). While those studies offer insight into the different immune systems of progressors and nonprogressors, they did not address the mechanism of viral control. Previously, we found no association between the ability of SIV-specific CD8+ T-cell clones to suppress viral replication in vitro and their ability to secrete gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), or interleukin-2 (IL-2) (18).Evidence suggests that some HIV/SIV proteins may be better vaccine targets than others. CD8+ T cells recognize epitopes derived from Gag as early as 2 h postinfection, whereas CD8+ T cells specific for epitopes in Env recognize infected cells only at 18 h postinfection (68). Additionally, a previously reported study of HIV-infected individuals showed that an increased breadth of Gag-specific responses was associated with lower viral loads (35, 59, 65, 66). CD8+ T-cell responses specific for Env, Rev, Tat, Vif, Vpr, Vpu, and Nef were associated with higher viral loads, with increased breadth of Env in particular being significantly associated with a higher chronic-phase viral set point.None of the many sophisticated methods employed for analyzing the characteristics of HIV- or SIV-specific immune responses clearly demarcate the critical qualities of an effective antiviral response. In an attempt to address these questions, we developed a new assay to measure the antiviral efficacy of individual SIV-specific CD8+ T-cell responses sorted directly from fresh peripheral blood mononuclear cells (PBMC). Using MHC class I tetramers specific for the epitope of interest, we sorted freshly isolated virus-specific CD8+ T cells and determined their ability to suppress virus production from SIV-infected CD4+ T cells. We then looked for a common characteristic of efficacious epitope-specific CD8+ T cells using traditional methods.  相似文献   

17.
The structural precursor polyprotein, Gag, encoded by all retroviruses, including the human immunodeficiency virus type 1 (HIV-1), is necessary and sufficient for the assembly and release of particles that morphologically resemble immature virus particles. Previous studies have shown that the addition of Ca2+ to cells expressing Gag enhances virus particle production. However, no specific cellular factor has been implicated as mediator of Ca2+ provision. The inositol (1,4,5)-triphosphate receptor (IP3R) gates intracellular Ca2+ stores. Following activation by binding of its ligand, IP3, it releases Ca2+ from the stores. We demonstrate here that IP3R function is required for efficient release of HIV-1 virus particles. Depletion of IP3R by small interfering RNA, sequestration of its activating ligand by expression of a mutated fragment of IP3R that binds IP3 with very high affinity, or blocking formation of the ligand by inhibiting phospholipase C-mediated hydrolysis of the precursor, phosphatidylinositol-4,5-biphosphate, inhibited Gag particle release. These disruptions, as well as interference with ligand-receptor interaction using antibody targeted to the ligand-binding site on IP3R, blocked plasma membrane accumulation of Gag. These findings identify IP3R as a new determinant in HIV-1 trafficking during Gag assembly and introduce IP3R-regulated Ca2+ signaling as a potential novel cofactor in viral particle release.Assembly of the human immunodeficiency virus (HIV) is determined by a single gene that encodes a structural polyprotein precursor, Gag (71), and may occur at the plasma membrane or within late endosomes/multivesicular bodies (LE/MVB) (7, 48, 58; reviewed in reference 9). Irrespective of where assembly occurs, the assembled particle is released from the plasma membrane of the host cell. Release of Gag as virus-like particles (VLPs) requires the C-terminal p6 region of the protein (18, 19), which contains binding sites for Alix (60, 68) and Tsg101 (17, 37, 38, 41, 67, 68). Efficient release of virus particles requires Gag interaction with Alix and Tsg101. Alix and Tsg101 normally function to sort cargo proteins to LE/MVB for lysosomal degradation (5, 15, 29, 52). Previous studies have shown that addition of ionomycin, a calcium ionophore, and CaCl2 to the culture medium of cells expressing Gag or virus enhances particle production (20, 48). This is an intriguing observation, given the well-documented positive role for Ca2+ in exocytotic events (33, 56). It is unclear which cellular factors might regulate calcium availability for the virus release process.Local and global elevations in the cytosolic Ca2+ level are achieved by ion release from intracellular stores and by influx from the extracellular milieu (reviewed in reference 3). The major intracellular Ca2+ store is the endoplasmic reticulum (ER); stores also exist in MVB and the nucleus. Ca2+ release is regulated by transmembrane channels on the Ca2+ store membrane that are formed by tetramers of inositol (1,4,5)-triphosphate receptor (IP3R) proteins (reviewed in references 39, 47, and 66). The bulk of IP3R channels mediate release of Ca2+ from the ER, the emptying of which signals Ca2+ influx (39, 51, 57, 66). The few IP3R channels on the plasma membrane have been shown to be functional as well (13). Through proteomic analysis, we identified IP3R as a cellular protein that was enriched in a previously described membrane fraction (18) which, in subsequent membrane floatation analyses, reproducibly cofractionated with Gag and was enriched in the membrane fraction only when Gag was expressed. That IP3R is a major regulator of cytosolic calcium concentration (Ca2+) is well documented (39, 47, 66). An IP3R-mediated rise in cytosolic Ca2+ requires activation of the receptor by a ligand, inositol (1,4,5)-triphosphate (IP3), which is produced when phospholipase C (PLC) hydrolyzes phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] at the plasma membrane (16, 25, 54). Paradoxically, PI(4,5)P2 binds to the matrix (MA) domain in Gag (8, 55, 59), and the interaction targets Gag to PI(4,5)P2-enriched regions on the plasma membrane; these events are required for virus release (45). We hypothesized that PI(4,5)P2 binding might serve to target Gag to plasma membrane sites of localized Ca2+ elevation resulting from PLC-mediated PI(4,5)P2 hydrolysis and IP3R activation. This idea prompted us to investigate the role of IP3R in Gag function.Here, we show that HIV-1 Gag requires steady-state levels of IP3R for its efficient release. Three isoforms of IP3R, types 1, 2, and 3, are encoded in three independent genes (39, 47). Types 1 and 3 are expressed in a variety of cells and have been studied most extensively (22, 39, 47, 73). Depletion of the major isoforms in HeLa or COS-1 cells by small interfering RNA (siRNA) inhibited viral particle release. Moreover, we show that sequestration of the IP3R activating ligand or blocking ligand formation also inhibited Gag particle release. The above perturbations, as well as interfering with receptor expression or activation, led to reduced Gag accumulation at the cell periphery. The results support the conclusion that IP3R activation is required for efficient HIV-1 viral particle release.  相似文献   

18.
19.
Human immunodeficiency virus type 1 (HIV-1) can evade immunity shortly after transmission to a new host but the clinical significance of this early viral adaptation in HIV infection is not clear. We present an analysis of sequence variation from a longitudinal cohort study of HIV adaptation in 189 acute seroconverters followed for up to 3 years. We measured the rates of variation within well-defined epitopes to determine associations with the HLA-linked hazard of disease progression. We found early reversion across both the gag and pol genes, with a 10-fold faster rate of escape in gag (2.2 versus 0.27 forward mutations/1,000 amino acid sites). For most epitopes (23/34), variation in the HLA-matched and HLA-unmatched controls was similar. For a minority of epitopes (8/34, and generally associated with HLA class I alleles that confer clinical benefit), new variants appeared early and consistently over the first 3 years of infection. Reversion occurred early at a rate which was HLA-dependent and correlated with the HLA class 1-associated relative hazard of disease progression and death (P = 0.0008), reinforcing the association between strong cytotoxic T-lymphocyte responses, viral fitness, and disease status. These data provide a comprehensive overview of viral adaptation in the first 3 years of infection. Our findings of HLA-dependent reversion suggest that costs are borne by some escape variants which may benefit the host, a finding contrary to a simple immune evasion paradigm. These epitopes, which are both strongly and frequently recognized, and for which escape involves a high cost to the virus, have the potential to optimize vaccine design.The dynamics of viral replication in acute and early human immunodeficiency virus (HIV) infection are not well understood as longitudinal data from large cohorts of seroconverters are hard to assemble. Recent studies have shown that new HIV infections may be the result of a single transmitted variant, that new env gene mutations can be detected within a few weeks (25), and that early immune escape can be detected at sites across the HIV genome (9). These data add to a body of work showing that cytotoxic T cells act early, contributing to the early reduction in viremia (8, 30).Whether early cytotoxic T-lymphocyte (CTL) immune responses influence longer-term clinical outcome is not clear. Antigen-specific CTLs capable of producing gamma interferon and other cytokines are detectable at all stages of HIV infection (1, 3, 24, 41). Much weight is placed on the macaque/simian immunodeficiency virus model in which nearly total peripheral blood CD8+ T-cell elimination using monoclonal antibodies results in rising viremia (42). The role of other forms of host immunity (e.g., neutralizing antibodies, natural killer cells, and macrophages) has, to some extent, been pursued with less intensity in light of persuasive evidence that CTLs can control retrovirus infection (46). The extent to which the simian model mirrors HIV infection has been questioned (5) and, despite exhaustive cellular assays of T-cell function—from gamma interferon enzyme-linked immunospot assays(1, 27, 38) to polyfunctional cytokine matrices (2, 6)—no CTL function correlates robustly with HIV plasma viral load or viral dynamics. Moreover, analyses of evolutionary data suggest that CTLs are inefficient at killing HIV-infected cells (4).However, statistical analysis of data from large cross-sectional studies link HLA class I alleles with specific genome-wide HIV polymorphisms, suggestive of a pervasive selection pressure enacted by CTLs (7, 10, 18, 36, 40). It is clear that associations between some HLA class I alleles and particular amino acid polymorphisms are robust although it is disputed whether immune escape influences disease progression. The viral fitness costs resulting from immune escape may even contribute to better clinical outcomes associated with the possession of HLA class I alleles such as B*27, B*57, and B*58 (18).Evolutionary studies of HIV require longitudinal data from large cohorts of patients sampled since seroconversion to detect adaptation in new hosts as it accrues. HIV is one of the few pathogens where it is possible to do this within individuals because of the high viral turnover and rapid intrahost evolution. Here, we investigate a cohort of 189 acute seroconverters—the largest cohort reported to date—followed for up to 3 years to study the rates of viral mutation in individual epitopes within internal HIV proteins and to determine the association between HLA class I alleles and rates of immune escape and reversion.  相似文献   

20.
Understanding the mechanisms underlying potential altered susceptibility to human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) individuals and the later clinical consequences of breakthrough infection can provide insight into strategies to control HIV-1 with an effective vaccine. From our Seattle ES cohort, we identified one individual (LSC63) who seroconverted after over 2 years of repeated unprotected sexual contact with his HIV-1-infected partner (P63) and other sexual partners of unknown HIV-1 serostatus. The HIV-1 variants infecting LSC63 were genetically unrelated to those sequenced from P63. This may not be surprising, since viral load measurements in P63 were repeatedly below 50 copies/ml, making him an unlikely transmitter. However, broad HIV-1-specific cytotoxic T-lymphocyte (CTL) responses were detected in LSC63 before seroconversion. Compared to those detected after seroconversion, these responses were of lower magnitude and half of them targeted different regions of the viral proteome. Strong HLA-B27-restricted CTLs, which have been associated with disease control, were detected in LSC63 after but not before seroconversion. Furthermore, for the majority of the protein-coding regions of the HIV-1 variants in LSC63 (except gp41, nef, and the 3′ half of pol), the genetic distances between the infecting viruses and the viruses to which he was exposed through P63 (termed the exposed virus) were comparable to the distances between random subtype B HIV-1 sequences and the exposed viruses. These results suggest that broad preinfection immune responses were not able to prevent the acquisition of HIV-1 infection in LSC63, even though the infecting viruses were not particularly distant from the viruses that may have elicited these responses.Understanding the mechanisms of altered susceptibility or control of human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) persons may provide invaluable information aiding the design of HIV-1 vaccines and therapy (9, 14, 15, 33, 45, 57, 58). In a cohort of female commercial sex workers in Nairobi, Kenya, a small proportion of individuals remained seronegative for over 3 years despite the continued practice of unprotected sex (12, 28, 55, 56). Similarly, resistance to HIV-1 infection has been reported in homosexual men who frequently practiced unprotected sex with infected partners (1, 15, 17, 21, 61). Multiple factors have been associated with the resistance to HIV-1 infection in ES individuals (32), including host genetic factors (8, 16, 20, 37-39, 44, 46, 47, 49, 59, 63), such as certain HLA class I and II alleles (41), as well as cellular (1, 15, 26, 55, 56), humoral (25, 29), and innate immune responses (22, 35).Seroconversion in previously HIV-resistant Nairobi female commercial sex workers, despite preexisting HIV-specific cytotoxic T-lymphocyte (CTL) responses, has been reported (27). Similarly, 13 of 125 ES enrollees in our Seattle ES cohort (1, 15, 17) have become late seroconverters (H. Zhu, T. Andrus, Y. Liu, and T. Zhu, unpublished observations). Here, we analyze the virology, genetics, and immune responses of HIV-1 infection in one of the later seroconverting subjects, LSC63, who had developed broad CTL responses before seroconversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号