首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.

Background

FcRγ is an immunoreceptor tyrosine-based activation motif (ITAM)-signalling protein essential for immunoreceptor signaling and monocyte, macrophage and NK cell function. Previous study from our laboratory showed that FcRγ is down-regulated in HIV-infected macrophages in vitro. FcRγ expression in immune cells present in HIV-infected individuals is unknown.

Methodology/Principal Findings

We compared FcRγ expression in peripheral blood mononuclear cells isolated from HIV-1-infected individuals receiving combination antiretroviral therapy and healthy, HIV-1-uninfected individuals. FcRγ mRNA and protein levels were measured using quantitative real-time PCR and immunoblotting, respectively. CD56+ CD94+ lymphocytes isolated from blood of HIV-1 infected individuals had reduced FcRγ protein expression compared to HIV-uninfected individuals (decrease = 76.8%, n = 18 and n = 12 respectively, p = 0.0036). In a second group of patients, highly purified NK cells had reduced FcRγ protein expression compared to uninfected controls (decrease = 50.2%, n = 9 and n = 8 respectively, p = 0.021). Decreased FcRγ expression in CD56+CD94+ lymphocytes was associated with reduced mRNA (51.7%, p = 0.021) but this was not observed for the smaller group of patients analysed for NK cell expression (p = 0.36).

Conclusion/Significance

These data suggest biochemical defects in ITAM-dependent signalling within NK cells in HIV-infected individuals which is present in the context of treatment with combination antiretroviral therapy.  相似文献   

2.

Objective

Platelets express the α2β1 integrin and the glycoprotein VI (GPVI)/FcRγ complex, both collagen receptors. Understanding platelet-collagen receptor function has been enhanced through use of genetically modified mouse models. Previous studies of GPVI/FcRγ-mediated collagen-induced platelet activation were perfomed with mice in which the FcRγ subunit was genetically deleted (FcRγ−/−) or the complex was depleted. The development of α2β1−/− and GPVI−/− mice permits side-by-side comparison to address contributions of these collagen receptors in vivo and in vitro.

Approach and Results

To understand the different roles played by the α2β1 integrin, the GPVI receptor or FcRγ subunit in collagen-stimulated hemostasis and thrombosis, we compared α2β1−/−, FcRγ−/−, and GPVI−/− mice in models of endothelial injury and intravascular thrombosis in vivo and their platelets in collagen-stimulated activation in vitro. We demonstrate that both the α2β1 integrin and the GPVI receptor, but not the FcRγ subunit influence carotid artery occlusion in vivo. In contrast, the GPVI receptor and the FcRγ chain, but not the α2β1 integrin, play similar roles in intravascular thrombosis in response to soluble Type I collagen. FcRγ−/− platelets showed less attenuation of tyrosine phosphorylation of several proteins including RhoGDI when compared to GPVI−/− and wild type platelets. The difference between FcRγ−/− and GPVI−/− platelet phosphotyrosine levels correlated with the in vivo thrombosis findings.

Conclusion

Our data demonstrate that genetic deletion of GPVI receptor, FcRγ chain, or the α2β1 integrin changes the thrombotic potentials of these platelets to collagen dependent on the stimulus mechanism. The data suggest that the FcRγ chain may provide a dominant negative effect through modulating signaling pathways in platelets involving several tyrosine phosphorylated proteins such as RhoGDI. In addition, these findings suggest a more complex signaling network downstream of the platelet collagen receptors than previously appreciated.  相似文献   

3.

Background

Alpha-dystroglycan (α-DG) is a cell surface receptor providing a molecular link between the extracellular matrix (ECM) and the actin-based cytoskeleton. During its biosynthesis, α-DG undergoes specific and unusual O-glycosylation crucial for its function as a high-affinity cellular receptor for ECM proteins.

Methodology/Principal Findings

We report that expression of functionally glycosylated α-DG during thymic development is tightly regulated in developing T cells and largely confined to CD4CD8 double negative (DN) thymocytes. Ablation of DG in T cells had no effect on proliferation, migration or effector function but did reduce the size of the thymus due to a significant loss in absolute numbers of thymocytes. While numbers of DN thymocytes appeared normal, a marked reduction in CD4+CD8+ double positive (DP) thymocytes occurred. In the periphery mature naïve T cells deficient in DG showed both normal proliferation in response to allogeneic cells and normal migration, effector and memory T cell function when tested in acute infection of mice with either lymphocytic choriomeningitis virus (LCMV) or influenza virus.

Conclusions/Significance

Our study demonstrates that DG function is modulated by glycosylation during T cell development in vivo and that DG is essential for normal development and differentiation of T cells.  相似文献   

4.

Background

The emergence of antibiotic-resistant strains of Salmonella enterica serovar Typhi (S. Typhi), the etiologic agent of typhoid fever, has aggravated an already important public health problem and added new urgency to the development of more effective typhoid vaccines. To this end it is critical to better understand the induction of immunity to S. Typhi. CD8+ T cells are likely to play an important role in host defense against S. Typhi by several effector mechanisms, including killing of infected cells and IFN-γ secretion. However, how S. Typhi regulates the development of specific CD8+ responses in humans remains unclear. Recent studies in mice have shown that dendritic cells (DC) can either directly (upon uptake and processing of Salmonella) or indirectly (by bystander mechanisms) elicit Salmonella-specific CD8+ T cells.

Methodology/Principal Findings

We report here that upon infection with live S. Typhi, human DC produced high levels of pro-inflammatory cytokines IL-6, IL-8 and TNF-α, but low levels of IL-12 p70 and IFN-γ. In contrast, DC co-cultured with S. Typhi-infected cells, through suicide cross-presentation, uptake S. Typhi-infected human cells and release high levels of IFN-γ and IL-12p70, leading to the subsequent presentation of bacterial antigens and triggering the induction of memory T cells, mostly CD3+CD8+CD45RACD62L effector/memory T cells.

Conclusions/Significance

This study is the first to demonstrate the effect of S. Typhi on human DC maturation and on their ability to prime CD8+ cells and highlights the significance of these phenomena in eliciting adaptive immunity to S. Typhi.  相似文献   

5.
6.

Background

Double negative CD3+48 TCRαβ splenic cells (DNCD3) can suppress the immune responses to allo and xenografts, infectious agents, tumors, and some autoimmune disorders. However, little is known about their role in autoimmune diabetes, a disease characterized by the reduction of insulin production subsequent to destruction of pancreatic β-cells by a polyclonal population of self-reactive T-cells. Herein, we analyzed the function and phenotype of DNCD3 splenic cells in young NOD mice predisposed to several autoimmune disorders among which, the human-like autoimmune diabetes.

Methodology/Principal Findings

DNCD3 splenic cells from young NOD mice (1) provided long-lasting protection against diabetes transfer in NOD/Scid immunodeficient mice, (2) proliferated and differentiated in the spleen and pancreas of NOD/Scid mice and pre-diabetic NOD mice into IL-10-secreting TR-1 like cells in a Th2-like environment, and (3) their anti-diabetogenic phenotype is CD3+(CD4CD8)CD28+CD69+CD25low Foxp3 iCTLA-4TCRαβ+ with a predominant Vβ13 gene usage.

Conclusions/Significance

These findings delineate a new T regulatory component in autoimmune diabetes apart from that of NKT and CD4+CD25high Foxp3+T-regulatory cells. DNCD3 splenic cells could be potentially manipulated towards the development of autologous cell therapies in autoimmune diabetes.  相似文献   

7.
Patients with autoimmune lymphoproliferative syndrome (ALPS) and lymphoproliferation (LPR) mice are deficient in Fas, and accumulate large numbers of αβ-TCR+, CD4, CD8 double negative (DN) T cells. The function of these DN T cells remains largely unknown. The common γ subunit of the activating Fc receptors, FcRγ, plays an important role in mediating innate immune responses. We have shown previously that a significant proportion of DN T cells express FcRγ, and that this molecule is required for TCR transgenic DN T cells to suppress allogeneic immune responses. Whether FcRγ plays a critical role in LPR DN T cell-mediated suppression of immune responses to auto and allo-antigens is not known. Here, we demonstrated that FcRγ+, but not FcRγ LPR DN T cells could suppress Fas+ CD4+ and CD8+ T cell proliferation in vitro and attenuated CD4+ T cell-mediated graft-versus host disease. Although FcRγ expression did not allow LPR DN T cells to inhibit the expansion of Fas-deficient cells within the LPR context, adoptive transfer of FcRγ+, but not FcRγ, DN T cells inhibited lymphoproliferation in generalized lymphoproliferative disease (GLD) mice. Furthermore, FcRγ acted in a cell-intrinsic fashion to limit DN T cell accumulation by increasing the rate of apoptosis in proliferated cells. These results indicate that FcRγ can confer Fas-dependent regulatory properties on LPR DN T cells, and suggest that FcRγ may be a novel marker for functional DN Tregs.  相似文献   

8.

Background

IL-9 is a growth factor for T- and mast-cells that is secreted by human Th2 cells. We recently reported that IL-4+TGF-β directs mouse CD4+CD25CD62L+ T cells to commit to inflammatory IL-9 producing CD4+ T cells.

Methodology/Principal Findings

Here we show that human inducible regulatory T cells (iTregs) also express IL-9. IL-4+TGF-β induced higher levels of IL-9 expression in plate bound-anti-CD3 mAb (pbCD3)/soluble-anti-CD28 mAb (sCD28) activated human resting memory CD4+CD25CD45RO+ T cells as compared to naïve CD4+CD25CD45RA+ T cells. In addition, as compared to pbCD3/sCD28 plus TGF-β stimulation, IL-4+TGF-β stimulated memory CD4+CD25CD45RO+ T cells expressed reduced FOXP3 protein. As analyzed by pre-amplification boosted single-cell real-time PCR, human CD4+IL-9+ T cells expressed GATA3 and RORC, but not IL-10, IL-13, IFNγ or IL-17A/F. Attempts to optimize IL-9 production by pbCD3/sCD28 and IL-4+TGF-β stimulated resting memory CD4+ T cells demonstrated that the addition of IL-1β, IL-12, and IL-21 further enhance IL-9 production.

Conclusions/Significance

Taken together these data show both the differences and similarities between mouse and human CD4+IL9+ T cells and reaffirm the powerful influence of inflammatory cytokines to shape the response of activated CD4+ T cells to antigen.  相似文献   

9.

Background

Passive transfer of antibodies not only provides immediate short-term protection against disease, but also can be exploited as a therapeutic tool. However, the ‘humanization’ of murine monoclonal antibodies (mAbs) is a time-consuming and expensive process that has the inherent drawback of potentially altering antigenic specificity and/or affinity. The immortalization of human B cells represents an alternative for obtaining human mAbs, but relies on the availability of biological samples from vaccinated individuals or convalescent patients. In this work we describe a novel approach to generate fully human mAbs by combining a humanized mouse model with a new B cell immortalization technique.

Methodology/Principal Findings

After transplantation with CD34+CD38 human hematopoietic progenitor cells, BALB/c Rag2−/−IL-2Rγc−/− mice acquire a human immune system and harbor B cells with a diverse IgM repertoire. “Human Immune System” mice were then immunized with two commercial vaccine antigens, tetanus toxoid and hepatitis B surface antigen. Sorted human CD19+CD27+ B cells were retrovirally transduced with the human B cell lymphoma (BCL)-6 and BCL-XL genes, and subsequently cultured in the presence of CD40-ligand and IL-21. This procedure allows generating stable B cell receptor-positive B cells that secrete immunoglobulins. We recovered stable B cell clones that produced IgM specific for tetanus toxoid and the hepatitis B surface antigen, respectively.

Conclusion/Significance

This work provides the proof-of-concept for the usefulness of this novel method based on the immunization of humanized mice for the rapid generation of human mAbs against a wide range of antigens.  相似文献   

10.

Background

Mycobacterium-induced granulomas are the interface between bacteria and host immune response. During acute infection dendritic cells (DCs) are critical for mycobacterial dissemination and activation of protective T cells. However, their role during chronic infection in the granuloma is poorly understood.

Methodology/Principal Findings

We report that an inflammatory subset of murine DCs are present in granulomas induced by Mycobacteria bovis strain Bacillus Calmette-guerin (BCG), and both their location in granulomas and costimulatory molecule expression changes throughout infection. By flow cytometric analysis, we found that CD11c+ cells in chronic granulomas had lower expression of MHCII and co-stimulatory molecules CD40, CD80 and CD86, and higher expression of inhibitory molecules PD-L1 and PD-L2 compared to CD11c+ cells from acute granulomas. As a consequence of their phenotype, CD11c+ cells from chronic lesions were unable to support the reactivation of newly-recruited, antigen 85B-specific CD4+IFNγ+ T cells or induce an IFNγ response from naïve T cells in vivo and ex vivo. The mechanism of this inhibition involves the PD-1:PD-L signaling pathway, as ex vivo blockade of PD-L1 and PD-L2 restored the ability of isolated CD11c+ cells from chronic lesions to stimulate a protective IFNγ T cell response.

Conclusions/Significance

Our data suggest that DCs in chronic lesions may facilitate latent infection by down-regulating protective T cell responses, ultimately acting as a shield that promotes mycobacterium survival. This DC shield may explain why mycobacteria are adapted for long-term survival in granulomatous lesions.  相似文献   

11.

Background

Immunization with murine pneumotropic virus virus-like particles carrying Her2/neu (Her2MPtVLPs) prevents tumour outgrowth in mice when given prophylactically, and therapeutically if combined with the adjuvant CpG. We investigated which components of the immune system are involved in tumour rejection, and whether long-term immunological memory can be obtained.

Methodology and Results

During the effector phase in BALB/c mice, only depletion of CD4+ and CD8+ in combination, with or without NK cells, completely abrogated tumour protection. Depletion of single CD4+, CD8+ or NK cell populations only had minor effects. During the immunization/induction phase, combined depletion of CD4+ and CD8+ cells abolished protection, while depletion of each individual subset had no or negligible effect. When tumour rejection was studied in knock-out mice with a C57Bl/6 background, protection was lost in CD4−/−CD8−/− and CD4−/−, but not in CD8−/− mice. In contrast, when normal C57Bl/6 mice were depleted of different cell types, protection was lost irrespective of whether only CD4+, only CD8+, or CD4+ and CD8+ cells in combination were eradicated. No anti-Her2/neu antibodies were detected but a Her2/neu-specific IFNγ response was seen. Studies of long-term memory showed that BALB/c mice could be protected against tumour development when immunized together with CpG as long as ten weeks before challenge.

Conclusion

Her2MPtVLP immunization is efficient in stimulating several compartments of the immune system, and induces an efficient immune response including long-term memory. In addition, when depleting mice of isolated cellular compartments, tumour protection is not as efficiently abolished as when depleting several immune compartments together.  相似文献   

12.

Background

Human T-lymphotropic virus type 1 (HTLV-1) is a human retrovirus associated with both HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), which is a chronic neuroinflammatory disease, and adult T-cell leukemia (ATL). The pathogenesis of HAM/TSP is known to be as follows: HTLV-1-infected T cells trigger a hyperimmune response leading to neuroinflammation. However, the HTLV-1-infected T cell subset that plays a major role in the accelerated immune response has not yet been identified.

Principal Findings

Here, we demonstrate that CD4+CD25+CCR4+ T cells are the predominant viral reservoir, and their levels are increased in HAM/TSP patients. While CCR4 is known to be selectively expressed on T helper type 2 (Th2), Th17, and regulatory T (Treg) cells in healthy individuals, we demonstrate that IFN-γ production is extraordinarily increased and IL-4, IL-10, IL-17, and Foxp3 expression is decreased in the CD4+CD25+CCR4+ T cells of HAM/TSP patients as compared to those in healthy individuals, and the alteration in function is specific to this cell subtype. Notably, the frequency of IFN-γ-producing CD4+CD25+CCR4+Foxp3 T cells is dramatically increased in HAM/TSP patients, and this was found to be correlated with disease activity and severity.

Conclusions

We have defined a unique T cell subset—IFN-γ+CCR4+CD4+CD25+ T cells—that is abnormally increased and functionally altered in this retrovirus-associated inflammatory disorder of the central nervous system.  相似文献   

13.
14.

Background

Bone marrow-derived endothelial progenitor cells (EPCs) are critical for neovascularization. We hypothesized that microparticles (MPs), small fragments generated from the plasma membrane, can activate angiogenic programming of EPCs.

Methodology/Principal Findings

We studied the effects of MPs obtained from wild type (MPsPPARα+/+) and knock-out (MPsPPARα−/−) mice on EPC differentiation and angiogenesis. Bone marrow-derived cells were isolated from WT or KO mice and were cultured in the presence of MPsPPARα+/+ or MPsPPARα−/− obtained from blood of mice. Only MPsPPARα+/+ harboring PPARα significantly increased EPC, but not monocytic, differentiation. Bone marrow-derived cells treated with MPsPPARα+/+ displayed increased expression of pro-angiogenic genes and increased in vivo angiogenesis. MPsPPARα+/+ increased capillary-like tube formation of endothelial cells that was associated with enhanced expressions of endothelial cell-specific markers. Finally, the effects of MPsPPARα+/+ were mediated by NF-κB-dependent mechanisms.

Conclusions/Significance

Our results underscore the obligatory role of PPARα carried by MPs for EPC differentiation and angiogenesis. PPARα-NF-κB-Akt pathways may play a pivotal stimulatory role for neovascularization, which may, at least in part, be mediated by bone marrow-derived EPCs. Improvement of EPC differentiation may represent a useful strategy during reparative neovascularization.  相似文献   

15.

Background

Recently we and others have identified CD8 and CD4 T cell epitopes within the highly expressed M. tuberculosis protein TB10.4. This has enabled, for the first time, a comparative study of the dynamics and function of CD4 and CD8 T cells specific for epitopes within the same protein in various stages of TB infection.

Methods and Findings

We focused on T cells directed to two epitopes in TB10.4; the MHC class I restricted epitope TB10.4 3–11 (CD8/10.4 T cells) and the MHC class II restricted epitope TB10.4 74–88 (CD4/10.4 T cells). CD4/10.4 and CD8/10.4 T cells displayed marked differences in terms of expansion and contraction in a mouse TB model. CD4/10.4 T cells dominated in the early phase of infection whereas CD8/10.4 T cells were expanded after week 16 and reached 5–8 fold higher numbers in the late phase of infection. In the early phase of infection both CD4/10.4 and CD8/10.4 T cells were characterized by 20–25% polyfunctional cells (IL-2+, IFN-γ+, TNF-α+), but whereas the majority of CD4/10.4 T cells were maintained as polyfunctional T cells throughout infection, CD8/10.4 T cells differentiated almost exclusively into effector cells (IFN-γ+, TNF-α+). Both CD4/10.4 and CD8/10.4 T cells exhibited cytotoxicity in vivo in the early phase of infection, but whereas CD4/10.4 cell mediated cytotoxicity waned during the infection, CD8/10.4 T cells exhibited increasing cytotoxic potential throughout the infection.

Conclusions/Significance

Our results show that CD4 and CD8 T cells directed to epitopes in the same antigen differ both in their kinetics and functional characteristics throughout an infection with M. tuberculosis. In addition, the observed strong expansion of CD8 T cells in the late stages of infection could have implications for the development of post exposure vaccines against latent TB.  相似文献   

16.

Background

IL-2 has been reported to be critical for peripheral Treg survival in mouse models. Here, we examined Treg maintenance in a series of paediatric liver transplant recipients who received basiliximab, a therapeutic anti-CD25 monoclonal antibody.

Methodology/Principal Findings

FoxP3+ CD4 T cells were analyzed by flow cytometry before liver grafting and more than 9 months later. We found that in vivo CD25 blockade did not lead to Treg depletion: the proportion of FoxP3+ cells among CD4 T cells and the level of FoxP3 expression were both unchanged. IL-2Rβ expression was enhanced in FoxP3+ cells both before and after basiliximab treatment, while the level of IL-2Rγ expression was similar in Tregs and non-Tregs. No significant change in the weak or absent expression of IL-7Rα and IL-15Rα expression on FoxP3+ cells was observed. Although the proportion of FoxP3+ cells among CD4 T cells did not vary, food allergies occurred more rapidly after liver grafting in patients who received basiliximab, raising questions as to Treg functionality in vivo in the absence of functional CD25.

Conclusions

CD25 appears non essential for human Treg peripheral maintenance in vivo. However, our results raise questions as to Treg functionality after therapeutic CD25 targeting.  相似文献   

17.

Background

Dendritic cells (DCs) are the most potent antigen-presenting cells in the mammalian immune system. In the skin, epidermal Langerhans cells (LCs) and dermal dendritic cells (DDCs) survey for invasive pathogens and present antigens to T cells after migration to the cutaneous lymph nodes (LNs). So far, functional and phenotypic differences between these two DC subsets remain unclear due to lack of markers to identify DDCs.

Methodology/Principal Findings

In the present report, we demonstrated that macrophage galactose-type C-type lectin (MGL) 2 was exclusively expressed in the DDC subset in the skin-to-LN immune system. In the skin, MGL2 was expressed on the majority (about 88%) of MHCII+CD11c+ cells in the dermis. In the cutaneous LN, MGL2 expression was restricted to B220CD8αloCD11b+CD11c+MHCIIhi tissue-derived DC. MGL2+DDC migrated from the dermis into the draining LNs within 24 h after skin sensitization with FITC. Distinct from LCs, MGL2+DDCs localized near the high endothelial venules in the outer T cell cortex. In FITC-induced contact hypersensitivity (CHS), adoptive transfer of FITC+MGL2+DDCs, but not FITC+MGL2DCs into naive mice resulted in the induction of FITC-specific ear swelling, indicating that DDCs played a key role in initiation of immune responses in the skin.

Conclusions/Significance

These results demonstrated the availability of MGL2 as a novel marker for DDCs and suggested the contribution of MGL2+ DDCs for initiating CHS.  相似文献   

18.

Background

An incomplete understanding of bone forming cells during wound healing and ectopic calcification has led to a search for circulating cells that may fulfill this function. Previously, we showed that monoosteophils, a novel lineage of calcifying/bone-forming cells generated by treatment of monocytes with the natural peptide LL-37, are candidates. In this study, we have analyzed their gene expression profile and bone repair function.

Methods and Findings

Human monoosteophils can be distinguished from monocytes, macrophages and osteoclasts by their unique up-regulation of integrin α3 and down-regulation of CD14 and CD16. Monoosteophils express high mRNA and protein levels of SPP1 (osteopontin), GPNMB (osteoactivin), CHI3L1 (cartilage glycoprotein-39), CHIT1 (Chitinase 1), MMP-7, CCL22 and MAPK13 (p38MAPKδ). Monocytes from wild type, but not MAPK13 KO mice are also capable of monoosteophil differentiation, suggesting that MAPK13 regulates this process. When human monoosteophils were implanted in a freshly drilled hole in mid-diaphyseal femurs of NOD/SCID mice, significant bone repair required only 14 days compared to at least 24 days in control treated injuries.

Conclusion

Human derived monoosteophils, characterized as CD45+α3+α3β+CD34CD14BAP (bone alkaline phosphatase) cells, can function in an animal model of bone injury.  相似文献   

19.
20.

Background

Antigen-specific IFN-γ producing CD4+ T cells are the main mediators of protection against Mycobacterium tuberculosis infection both under natural conditions and following vaccination. However these cells are responsible for lung damage and poor vaccine efficacy when not tightly controlled. Discovering new tools to control nonprotective antigen-specific IFN-γ production without affecting protective IFN-γ is a challenge in tuberculosis research.

Methods and Findings

Immunization with DNA encoding Ag85B, a candidate vaccine antigen of Mycobacterium tuberculosis, elicited in mice a low but protective CD4+ T cell-mediated IFN-γ response, while in mice primed with DNA and boosted with Ag85B protein a massive increase in IFN-γ response was associated with loss of protection. Both protective and non-protective Ag85B-immunization generated antigen-specific CD8+ T cells which suppressed IFN-γ-secreting CD4+ T cells. However, ex vivo ligation of 4-1BB, a member of TNF-receptor super-family, reduced the massive, non-protective IFN-γ responses by CD4+ T cells in protein-boosted mice without affecting the low protective IFN-γ-secretion in mice immunized with DNA. This selective inhibition was due to the induction of 4-1BB exclusively on CD8+ T cells of DNA-primed and protein-boosted mice following Ag85B protein stimulation. The 4-1BB-mediated IFN-γ inhibition did not require soluble IL-10, TGF-β, XCL-1 and MIP-1β. In vivo Ag85B stimulation induced 4-1BB expression on CD8+ T cells and in vivo 4-1BB ligation reduced the activation, IFN-γ production and expansion of Ag85B-specific CD4+ T cells of DNA-primed and protein-boosted mice.

Conclusion/Significance

Antigen-specific suppressor CD8+ T cells are elicited through immunization with the mycobacterial antigen Ag85B. Ligation of 4-1BB receptor further enhanced their suppressive activity on IFN-γ-secreting CD4+ T cells. The selective expression of 4-1BB only on CD8+ T cells in mice developing a massive, non-protective IFN-γ response opens novel strategies for intervention in tuberculosis pathology and vaccination through T-cell co-stimulatory-based molecular targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号