首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Genetic code redundancy allows most amino acids to be encoded by multiple codons that are non-randomly distributed along coding sequences. An accepted theory explaining the biological significance of such non-uniform codon selection is that codons are translated at different speeds. Thus, varying codon placement along a message may confer variable rates of polypeptide emergence from the ribosome, which may influence the capacity to fold toward the native state. Previous studies report conflicting results regarding whether certain codons correlate with particular structural or folding properties of the encoded protein. This is partly due to different criteria traditionally utilized for predicting translation speeds of codons, including their usage frequencies and the concentration of tRNA species capable of decoding them, which do not always correlate. Here, we developed a metric to predict organism-specific relative translation rates of codons based on the availability of tRNA decoding mechanisms: Watson-Crick, non-Watson-Crick or both types of interactions. We determine translation rates of messages by pulse-chase analyses in living Escherichia coli cells and show that sequence engineering based on these concepts predictably modulates translation rates in a manner that is superior to codon usage frequency, which occur during the elongation phase, and significantly impacts folding of the encoded polypeptide. Finally, we demonstrate that sequence harmonization based on expression host tRNA pools, designed to mimic ribosome movement of the original organism, can significantly increase the folding of the encoded polypeptide. These results illuminate how genetic code degeneracy may function to specify properties beyond amino acid encoding, including folding.  相似文献   

2.
Estimates of missense error rates (misreading) during protein synthesis vary from 10(-3) to 10(-4) per codon. The experiments reporting these rates have measured several distinct errors using several methods and reporter systems. Variation in reported rates may reflect real differences in rates among the errors tested or in sensitivity of the reporter systems. To develop a more accurate understanding of the range of error rates, we developed a system to quantify the frequency of every possible misreading error at a defined codon in Escherichia coli. This system uses an essential lysine in the active site of firefly luciferase. Mutations in Lys529 result in up to a 1600-fold reduction in activity, but the phenotype varies with amino acid. We hypothesized that residual activity of some of the mutant genes might result from misreading of the mutant codons by tRNA(Lys) (UUUU), the cognate tRNA for the lysine codons, AAA and AAG. Our data validate this hypothesis and reveal details about relative missense error rates of near-cognate codons. The error rates in E. coli do, in fact, vary widely. One source of variation is the effect of competition by cognate tRNAs for the mutant codons; higher error frequencies result from lower competition from low-abundance tRNAs. We also used the system to study the effect of ribosomal protein mutations known to affect error rates and the effect of error-inducing antibiotics, finding that they affect misreading on only a subset of near-cognate codons and that their effect may be less general than previously thought.  相似文献   

3.
The origin of the genetic code is a central open problem regarding the early evolution of life. Here, we consider two undeveloped but important aspects of possible scenarios for the evolutionary pathway of the translation machinery: the role of unassigned codons in early stages of the code and the incorporation of tRNA anticodon modifications. As the first codons started to encode amino acids, the translation machinery likely was faced with a large number of unassigned codons. Current molecular scenarios for the evolution of the code usually assume the very rapid assignment of all codons before all 20 amino acids became encoded. We show that the phenomenon of nonsense suppression as observed in current organisms allows for a scenario in which many unassigned codons persisted throughout most of the evolutionary development of the code. In addition, we demonstrate that incorporation of anticodon modifications at a late stage is feasible. The wobble rules allow a set of 20 tRNAs fully lacking anticodon modifications to encode all 20 canonical amino acids. These observations have implications for the biochemical plausibility of early stages in the evolution of the genetic code predating tRNA anticodon modifications and allow for effective translation by a relatively small and simple early tRNA set.  相似文献   

4.
5.
鉴于遗传密码子的简并性能够将基因遗传信息的容量提升,同义密码子使用偏嗜性得以在生物体的基因组中广泛存在。虽然同义密码子之间碱基的变化并不能导致氨基酸种类的改变,在研究mRNA半衰期、编码多肽翻译效率及肽链空间构象正确折叠的准确性和翻译等这一系列过程中发现,同义密码子使用的偏嗜性在某种程度上通过精微调控翻译机制体现其遗传学功能。同义密码子指导tRNA在翻译过程中识别核糖体的速率变化是由氨基酸的特定顺序决定,并且在新生多肽链合成时,蛋白质共翻译转运机制同时调节其空间构象的正确折叠从而保证蛋白的正常生物学功能。某些同义密码子使用偏嗜性与特定蛋白结构的形成具有显著相关性,密码子使用偏嗜性一旦改变将可能导致新生多肽空间构象出现错误折叠。结合近些年来国内外在此领域的研究成果,阐述同义密码子使用偏嗜性如何发挥精微调控翻译的生物学功能与作用。  相似文献   

6.
The Sec secretion pathway is found across all domains of life. A critical feature of Sec secreted proteins is the signal peptide, a short peptide with distinct physicochemical properties located at the N-terminus of the protein. Previous work indicates signal peptides are biased towards translationally inefficient codons, which is hypothesized to be an adaptation driven by selection to improve the efficacy and efficiency of the protein secretion mechanisms. We investigate codon usage in the signal peptides of E. coli using the Codon Adaptation Index (CAI), the tRNA Adaptation Index (tAI), and the ribosomal overhead cost formulation of the stochastic evolutionary model of protein production rates (ROC-SEMPPR). Comparisons between signal peptides and 5-end of cytoplasmic proteins using CAI and tAI are consistent with a preference for inefficient codons in signal peptides. Simulations reveal these differences are due to amino acid usage and gene expression – we find these differences disappear when accounting for both factors. In contrast, ROC-SEMPPR, a mechanistic population genetics model capable of separating the effects of selection and mutation bias, shows codon usage bias (CUB) of the signal peptides is indistinguishable from the 5-ends of cytoplasmic proteins. Additionally, we find CUB at the 5-ends is weaker than later segments of the gene. Results illustrate the value in using models grounded in population genetics to interpret genetic data. We show failure to account for mutation bias and the effects of gene expression on the efficacy of selection against translation inefficiency can lead to a misinterpretation of codon usage patterns.  相似文献   

7.
The possible codon-anticodon pairings follow the standard genetic code, yet in a different mode. The corresponding rules for decoding sequence of the codons in mRNA with tRNA may be called "tRNA code". In this paper we analyse the mutational and translational stability of such tRNA code. Our approach is based on the model of "ambiguous intermediate" and on the study of underlying block structure and Eulerean graph technique. It is shown that the wobble rules and the reduced number of tRNA anticodons strongly affect the mutational and translational stability of the code. The selection of tRNA anticodons, besides the optimization of translation, also ensures the more reliable start and, to a lesser extent, the stop of translation. The attribution of tRNA anticodons to the groups [WWW, WWS, SWW, SWS] and [SSS, SSW, WSS, WSW] as well as [MMM, MMK, KMM, KMK] and [KKK, KKM, MKK, MKM] clearly correlates with class I and class II aminoacyl-tRNA synthetases and obeys the principle of the optimal coding in both cases. Both W-S and M-K groupings also refer to the encoding of amino acids with the large and small side-chain volumes, which may provide such an attribution. The higher variability of tRNA code agrees with the suggestions that the variations in an assignment of tRNA anticodons may serve as the driving force generating the different variants of the genetic code.  相似文献   

8.
The genetic code is one of the most highly conserved characters in living organisms. Only a small number of genomes have evolved slight variations on the code, and these non-canonical codes are instrumental in understanding the selective pressures maintaining the code. Here, we describe a new case of a non-canonical genetic code from the oxymonad flagellate Streblomastix strix. We have sequenced four protein-coding genes from S.strix and found that the canonical stop codons TAA and TAG encode the amino acid glutamine. These codons are retained in S.strix mRNAs, and the legitimate termination codons of all genes examined were found to be TGA, supporting the prediction that this should be the only true stop codon in this genome. Only four other lineages of eukaryotes are known to have evolved non-canonical nuclear genetic codes, and our phylogenetic analyses of alpha-tubulin, beta-tubulin, elongation factor-1 alpha (EF-1 alpha), heat-shock protein 90 (HSP90), and small subunit rRNA all confirm that the variant code in S.strix evolved independently of any other known variant. The independent origin of each of these codes is particularly interesting because the code found in S.strix, where TAA and TAG encode glutamine, has evolved in three of the four other nuclear lineages with variant codes, but this code has never evolved in a prokaryote or a prokaryote-derived organelle. The distribution of non-canonical codes is probably the result of a combination of differences in translation termination, tRNAs, and tRNA synthetases, such that the eukaryotic machinery preferentially allows changes involving TAA and TAG.  相似文献   

9.
10.
To synthesize a protein, a ribosome moves along a messenger RNA (mRNA), reads it codon by codon, and takes up the corresponding ternary complexes which consist of aminoacylated transfer RNAs (aa-tRNAs), elongation factor Tu (EF-Tu), and GTP. During this process of translation elongation, the ribosome proceeds with a codon-specific rate. Here, we present a general theoretical framework to calculate codon-specific elongation rates and error frequencies based on tRNA concentrations and codon usages. Our theory takes three important aspects of in-vivo translation elongation into account. First, non-cognate, near-cognate and cognate ternary complexes compete for the binding sites on the ribosomes. Second, the corresponding binding rates are determined by the concentrations of free ternary complexes, which must be distinguished from the total tRNA concentrations as measured in vivo. Third, for each tRNA species, the difference between total tRNA and ternary complex concentration depends on the codon usages of the corresponding cognate and near-cognate codons. Furthermore, we apply our theory to two alternative pathways for tRNA release from the ribosomal E site and show how the mechanism of tRNA release influences the concentrations of free ternary complexes and thus the codon-specific elongation rates. Using a recently introduced method to determine kinetic rates of in-vivo translation from in-vitro data, we compute elongation rates for all codons in Escherichia coli. We show that for some tRNA species only a few tRNA molecules are part of ternary complexes and, thus, available for the translating ribosomes. In addition, we find that codon-specific elongation rates strongly depend on the overall codon usage in the cell, which could be altered experimentally by overexpression of individual genes.  相似文献   

11.
12.
Growth rate dependence of transfer RNA abundance in Escherichia coli.   总被引:14,自引:1,他引:13       下载免费PDF全文
We have tested the predictions of a model that accounts for the codon preferences of bacteria in terms of a growth maximization strategy. According to this model the tRNA species cognate to minor and major codons should be regulated differently under different growth conditions: the isoacceptors cognate to major codons should increase at fast growth rates while those cognate to minor codons should decrease at fast growth rates. We have used a quantitative Northern blotting technique to measure the abundance of the methionine and the leucine isoacceptor families over growth rates ranging from 0.5 to 2.1 doublings per hour. Five tRNA species that are cognate to major codons (tRNA(eMet), tRNA(1fMet), tRNA(2fMet), tRNA(1Leu) and tRNA(3Leu) increase both as a relative fraction of total tRNA and in absolute concentration with increasing growth rates. Three tRNA species that are cognate to minor codons (tRNA(2Leu), tRNA(4Leu) and tRNA(5Leu) decrease as a relative fraction of total RNA and in absolute concentration with increasing growth rates. These data suggest that the abundances of groups of tRNA species are regulated in different ways, and that they are not regulated simply according to isoacceptor specificity. In particular, the data support the growth optimization model for codon bias.  相似文献   

13.
Alternative synonymous codons are often used at unequal frequencies. Classically, studies of such codon usage bias (CUB) attempted to separate the impact of neutral from selective forces by assuming that deviations from a predicted neutral equilibrium capture selection. However, GC-biased gene conversion (gBGC) can also cause deviation from a neutral null. Alternatively, selection has been inferred from CUB in highly expressed genes, but the accuracy of this approach has not been extensively tested, and gBGC can interfere with such extrapolations (e.g., if expression and gene conversion rates covary). It is therefore critical to examine deviations from a mutational null in a species with no gBGC. To achieve this goal, we implement such an analysis in the highly AT rich genome of Dictyostelium discoideum, where we find no evidence of gBGC. We infer neutral CUB under mutational equilibrium to quantify “adaptive codon preference,” a nontautologous genome wide quantitative measure of the relative selection strength driving CUB. We observe signatures of purifying selection consistent with selection favoring adaptive codon preference. Preferred codons are not GC rich, underscoring the independence from gBGC. Expression-associated “preference” largely matches adaptive codon preference but does not wholly capture the influence of selection shaping patterns across all genes, suggesting selective constraints associated specifically with high expression. We observe patterns consistent with effects on mRNA translation and stability shaping adaptive codon preference. Thus, our approach to quantifying adaptive codon preference provides a framework for inferring the sources of selection that shape CUB across different contexts within the genome.  相似文献   

14.
Goto Y  Katoh T  Suga H 《Nature protocols》2011,6(6):779-790
Genetic code reprogramming is a method for the reassignment of arbitrary codons from proteinogenic amino acids to nonproteinogenic ones; thus, specific sequences of nonstandard peptides can be ribosomally expressed according to their mRNA templates. Here we describe a protocol that facilitates genetic code reprogramming using flexizymes integrated with a custom-made in vitro translation apparatus, referred to as the flexible in vitro translation (FIT) system. Flexizymes are flexible tRNA acylation ribozymes that enable the preparation of a diverse array of nonproteinogenic acyl-tRNAs. These acyl-tRNAs read vacant codons created in the FIT system, yielding the desired nonstandard peptides with diverse exotic structures, such as N-methyl amino acids, D-amino acids and physiologically stable macrocyclic scaffolds. The facility of the protocol allows a wide variety of applications in the synthesis of new classes of nonstandard peptides with biological functions. Preparation of flexizymes and tRNA used for genetic code reprogramming, optimization of flexizyme reaction conditions and expression of nonstandard peptides using the FIT system can be completed by one person in approximately 1 week. However, once the flexizymes and tRNAs are in hand and reaction conditions are fixed, synthesis of acyl-tRNAs and peptide expression is generally completed in 1 d, and alteration of a peptide sequence can be achieved by simply changing the corresponding mRNA template.  相似文献   

15.
Genetic code development by stop codon takeover   总被引:5,自引:0,他引:5  
A novel theoretical consideration of the origin and evolution of the genetic code is presented. Code development is viewed from the perspective of simultaneously evolving codons, anticodons and amino acids. Early code structure was determined primarily by thermodynamic stability considerations, requiring simplicity in primordial codes. More advanced coding stages could arise as biological systems became more complex and precise in their replication. To be consistent with these ideas, a model is described in which codons become permanently associated with amino acids only when a codon-anticodon pairing is strong enough to permit rapid translation. Hence all codons are essentially chain-termination or "stop" codons until tRNA adaptors evolve having the ability to bind tightly to them. This view, which draws support from several lines of evidence, differs from the prevalent thinking on code evolution which holds that codons specifying newer amino acids were derived from codons encoding older amino acids.  相似文献   

16.
The present study was undertaken to investigate the pattern of optimal codon usage in Archaea. Comparative analysis was executed to understand the pattern of codon usage bias between the high expression genes (HEG) and the whole genomes in two Archaeal phyla, Crenarchaea and Euryarchaea. The G + C% of the HEG was found to be less in comparison to the genome G + C% in Crenarchaea, whereas reverse was the case in Euryarchaea. The preponderance of U/A ending codons that code for HEG in Crenarchaea was in sharp contrast to the C/G ended ones in Euryarchaea. The analysis revealed prevalence of U-ending codons even within the WWY (nucleotide ambiguity code) families in Crenarchaea vis-à-vis Euryarchaea, bacteria and Eukarya. No plausible interpretation of the observed disparity could be made either in the context of tRNA gene composition or genome G + C%. The results in this study attested that the preferential biasness for codons in HEG of Crenarchaea might be different from Euryarchaea. The main highlights are (i) varied CUB in the HEG and in the whole genomes in Euryarchaea and Crenarchaea. (ii) Crenarchaea was found to have some unusual optimal codons (OCs) compared to other organisms. (iii) G + C% (and GC3) of the HEG were different from the genome G + C% in the two phyla. (iv) Genome G + C% and tRNA gene number failed to explain CUB in Crenarchaea. (v) Translational selection is possibly responsible for A + T rich OCs in Crenarchaea.  相似文献   

17.
The expansion of the genetic code consisting of four bases and 20 amino acids into diverse building blocks has been an exciting topic in synthetic biology. Many biochemical components are involved in gene expression; therefore, adding a new component to the genetic code requires engineering many other components that interact with it. Genetic code expansion has advanced significantly for the last two decades with the engineering of several components involved in protein synthesis. These components include tRNA/aminoacyl-tRNA synthetase, new codons, ribosomes, and elongation factor Tu. In addition, biosynthesis and enhanced uptake of non-canonical amino acids have been attempted and have made meaningful progress. This review discusses the efforts to engineer these translation components, to improve the genetic code expansion technology.  相似文献   

18.
The expansion of the genetic code is gradually becoming a core discipline in Synthetic Biology. It offers the best possible platform for the transfer of numerous chemical reactions and processes from the chemical synthetic laboratory into the biochemistry of living cells. The incorporation of biologically occurring or chemically synthesized non-canonical amino acids into recombinant proteins and even proteomes via reprogrammed protein translation is in the heart of these efforts. Orthogonal pairs consisting of aminoacyl-tRNA synthetase and its cognate tRNA proved to be a general tool for the assignment of certain codons of the genetic code with a maximum degree of chemical liberty. Here, we highlight recent developments that should provide a solid basis for the development of generalist tools enabling a controlled variation of chemical composition in proteins and even proteomes. This will take place in the frame of a greatly expanded genetic code with emancipated codons liberated from the current function or with totally new coding units.  相似文献   

19.
20.
We present a new classification scheme of the genetic code. In contrast to the standard form it clearly shows five codon symmetries: codon-anticodon, codon-reverse codon, and sense-antisense symmetry, as well as symmetries with respect to purine-pyrimidine (A versus G, U versus C) and keto-aminobase (G versus U, A versus C) exchanges. We study the number of tRNA genes of 16 archaea, 81 bacteria and 7 eucaryotes to analyze whether these symmetries are reflected in the corresponding tRNA usage patterns. Two features are especially striking: reverse stop codons do not have their own tRNAs (just one exception in human), and A** anticodons are significantly suppressed. Our classification scheme of the genetic code and the identified tRNA usage patterns support recent speculations about the early evolution of the genetic code. In particular, pre-tRNAs might have had the ability to bind their codons in two directions to the corresponding codons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号