首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The review focuses on the functional role of histamine and the genetic factors involved in maintaining the physiological level of this amine in the organism, as well as on the involvement of histamine and genes of the histamine pathway in the development of several common diseases. Histamine is a biogenic amine with a wide range of competencies, the physiological effects of which are realized with the help of four types of receptors (HRH1, HRH2, HRH3, and HRH4), characterized by tissue-specific expression. The key genes responsible for maintaining the physiological level of histamine are HDC (responsible for the synthesis of endogenous histamine), AOC1, HNMT, MAOB, and ALDH7A1 (involved in the degradation of histamine and its metabolites). However, in total, according to Gene Ontology, proteins and enzymes encoded by more than 200 genes are involved in the histamine pathway. Both temporal and chronic imbalances between the synthesis/intake of histamine and its degradation/metabolism in the human body (including those caused by specific genetic features) mediate the development of inflammatory manifestations with disturbance of the homeostasis of various organ systems (nervous, immune, endocrine, cardiovascular, etc.). Immunopathologic reactions mediated by histamine accompany the development of antigen-specific and nonspecific immediate and delayed-type hypersensitivity reactions of inflammation, effector immunocomplex reactions, autoimmune disorders, and cancer and, ultimately, can determine the comorbidity of common diseases. The review also provides information on the associations of the genes of the histamine pathway with common diseases (according to the studies using the candidate-gene approach and genome-wide association studies).  相似文献   

2.
We previously found that genetic polymorphisms in gene coding for histamine H4 receptors were related to the risk and malignant degree of breast cancer. The roles of polymorphisms in other histamine-related genes, such as histidine decarboxylase (HDC), histamine N-methyltransferase (HNMT) and histamine H3 receptor (HRH3), remain unexplored. The aim of this study is to analyze the clinical associations of polymorphisms in HDC, HNMT and HRH3 with breast cancer. Two hundred and one unrelated Chinese Han breast cancer patients and 205 ethnicity-matched health controls were recruited for case-control investigation. Genomic DNA from the participants was extracted and 5 single nucleotide polymorphisms (SNPs) in HDC, HNMT and HRH3 were genotyped. We found that polymorphisms of HNMT and HRH3 were irrelevant with breast cancer in the present study. However, the T allele of rs7164386 in HDC significantly decreased the risk of breast cancer (adjusted odds ratios [ORs], 0.387; 95% confidence intervals [CIs], 0.208–0.720; P = 0.003). Furthermore, for HDC haplotypes, the CG haplotype of rs7164386-rs7182203 was more frequent among breast cancer patients (adjusted OR, 1.828; 95% CI, 1.218–2.744; P = 0.004) while the TG haplotype was more frequent among health controls (adjusted OR, 0.351; 95% CI, 0.182–0.678; P = 0.002). These findings indicated that polymorphisms of HDC gene were significantly associated with breast cancer in Chinese Han population and may be novel diagnostic or therapeutic targets for breast cancer. Further studies with larger participants worldwide are still needed for conclusion validation.  相似文献   

3.
Histamine H1 receptor (H1R) is one of the targets of histamine in the nervous system and the peripheral tissues. Protein kinase Cδ (PKCδ) signaling is involved in histamine-induced upregulation of H1R gene expression in HeLa cells. Histamine also upregulates H1R gene expression in U-373 MG cells. However, the molecular signaling of this upregulation is still unclear. Here, we investigated the molecular mechanism of histamine-induced H1R gene upregulation in U-373 MG cells. Histamine-induced H1R gene upregulation was inhibited by H1R antagonist d-chlorpheniramine, but not by ranitidine, ciproxifan, or JNJ77777120, and H2R, H3R, or H4R antagonists, respectively. Ro-31-8220 and Go6976 also suppressed this upregulation, however, the PKCδ selective inhibitor rottlerin and the PKCβ selective inhibitor Ly333531 did not. Time-course studies showed distinct kinetics of H1R gene upregulation in U-373 MG cells from that in HeLa cells. A promoter assay revealed that the promoter region responsible for H1R gene upregulation in U-373 MG cells was different from that of HeLa cells. These data suggest that the H1R-activated H1R gene expression signaling pathway in U-373 MG cells is different from that in HeLa cells, possibly by using different promoters. The involvement of PKCα also suggests that compounds that target PKCδ could work as peripheral type H1R-selective inhibitors without a sedative effect.  相似文献   

4.
5.
Recent research of histamine metabolism suggests that microvascular smooth muscle and endothelial cells are under the continuous dilator influence of minute quantities of intrinsically formed histamine, produced by action of an inducible form of histidine decarboxylase. Various autonomous dilator activities of the microcirculation, e.g., vasomotion, reactive and post- exercise hyperemia and autoregulation, may all involve interplay of this intrinsic dilator with an intrinsic constictor mechanism. Drastic stimuli which cause a marked increase in histamine output locally or systemically, may lead to the early, slowly-developing microvascular changes in inflammation and shock, respectively.  相似文献   

6.
Abstract: Histamine levels were determined in mouse brains from WBB6F1- +/+ (mast cell normal) and WBB6F1- W/Wv (mast cell-deficient) mice whose brains were dissected immediately after decapitation or after freezing the severed heads in liquid nitrogen for 10 s. In WBB6F1-+/+ mice, brains obtained from frozen heads contained significantly higher levels of histamine than those obtained from unfrozen heads. The converse was found in brains obtained from the WBB6F1- W/Wv mice. When CF-1 mice (which also contain brain-associated mast cells) were treated as described above, results very similar to those found with the WBB6F1- +/+ mice were obtained. Further, the high levels of histamine found in CF-1 mice whose brains had been frozen in situ were accompanied by an extensive degranulation of mast cells in the dura mater of these mice. Because of this degranulation of mast cells, and the fact that increased levels of brain histamine were not found in mast cell-deficient mice, it is concluded that dural mast cells are the likely source of the artifactually higher levels of histamine seen in brains frozen in situ.  相似文献   

7.
Preincubation of eosinophils with 10(-5) M or higher concentrations of histamine inhibited the eosinophil chemotactic response to endotoxin-activated serum whether by using the nucleopore filter assay and counting the cells migrating through the filter, or by using the Zigmond-Hirsch assay and counting the cells at each 10-mum interval. When the H2-receptor sites on the eosinophils were blocked by metiamide, the inhibitory capacity of histamine was prevented. Preincubation of eosinophils with 10(-6) M histamine increased the number of responding eosinophils to endotoxin-activated serum and this enhancement was blocked by an H1-receptor antagonist. Isoproteronol and aminophylline inhibited eosinophil movement and increasing concentrations of dibutryl cyclic AMP inhibited eosinophil migration. Concentrations of histamine that consistently resulted in inhibition of eosinophil movement stimulated an increase in cyclic AMP that was prevented by blocking the H2-receptor but not the H1-receptor. Thus, histamine-dependent inhibition of the eosinophil chemotactic response to other agents is mediated through the H2-receptor and is associated with an increase in the intracellular level of cyclic AMP whereas histamine dependent enhancement of eosinophil migration to other agents appears to be mediated through the H1-receptor. Eosinophils behave as a heterogeneous population as assessed by the ability of histamine to augment or inhibit cell migration. This may reflect differences in H1 to H2 receptor density or cell responsiveness to receptor stimulation. The chemoattractant activity of histamine itself is not influenced by H1 or H2 receptor antagonists, thus it is possible that an eosinophil has a third type of histamine receptor.  相似文献   

8.
The tissues affected by histamine and anaphylactic reactions are identical. Epinephrine antagonizes the action of histamine by acting on effector cells in a direction opposite to that of histamine. The so-called antihistaminic drugs block rather than antagonize the action of histamine. The injection into the human body of epinephrine or certain antihistaminic substances provokes the release of histamine and thereby produces a rise in the histamine blood level. There is a remarkable conformity of potency of antihistaminics as determined by Dale experiments and by histamine intoxication experiments in the intact guinea pig. Neoantergan, Pyribenzamine and Histadyl are usually superior to other compounds when potency is assayed by these methods. All antihistaminics provide similar protection again animal anaphylaxis. Larger doses are necessary to protect against anaphylaxis than against histamine intoxication. The differences in potency as determined by Dale experiments and histamine experiments in animals are not found in clinical use. One compound is not generally superior to all others in the treatment of any one or several allergic disorders. The antihistaminic drugs are beneficial in the symptomatic treatment of allergic rhinitis, acute urticaria and angioneurotic edema, and mild non-infective bronchial asthma. Their effectiveness in the management of moderately severe and severe non-infective bronchial bronchial asthma; infective bronchial asthma; migraine; atopic dermatitis (disseminated neurodermatitis), and pruritus of skin disorders other than acute urticaria and angioneurotic edema, is not worthy of particular commendation. The size of the dose of any antihistaminic substance influences the incidence of but not the type of side-effect that may accompany its usage. The quality of side effects varies according to the drug, although there is an individuality of response for each patient which must be reckoned with. In selecting an antihistaminic compound it is necessary to consider the percentage of cases in which side effects occur, as well as the percentage of good results. Optimal results are obtained by employing combinations of compounds and changing from one to the other as the case demands.  相似文献   

9.
Histamine, a decarboxylated amino acid with a molecular mass of 112 daltons reveals multicoloured functional activities. Its role in allergy and inflammation is abundantly characterized. Moreover histamine is one of the neuotransmitters, has a role in gastric acid production and in maintenance of blood-brain barrier. In the last decade, many data were collected suggesting an important function of histamine in events of immune response and also in both benign and malignant cell proliferation. Our group collected data on the relevance of histamine as an autocrine factor in human melanoma. The outcome of the action seems to be closely related to the local and actual balance of histamine receptors (H1R, H2R, H3R and H4R) on tumor cells. Recently, using a gene targeted mouse strain (lacking an enzyme, histidine decarboxylase, the only one responsible for histamine production) many phenotype of the histamine-free mice were demonstrated. Our data suggest, that histamine, as part of the poorly characterized metabolome of the mammalian cells plays significant role in many physiological and pathological processes.  相似文献   

10.
11.
Histamine is a potent mediator of inflammation and a regulator of innate and adaptive immune responses. However, the influence of histamine on microglia, the resident immune cells in the brain, remains uninvestigated. In the present study, we found that microglia can constitutively express all four histamine receptors (H1R, H2R, H3R, and H4R), and the expression of H1R and H4R can be selectively upregulated in primary cultured microglia in a dose-dependent manner by histamine. Histamine can also dose-dependently stimulate microglia activation and subsequently production of proinflammatory factors tumor necrosis factor (TNF)-alpha and interleukin-6 (IL-6). The antagonists of H1R and H4R but not H2R and H3R reduced histamine-induced TNF-alpha and IL-6 production, MAPK and PI3K/AKT pathway activation, and mitochondrial membrane potential loss in microglia, suggesting that the actions of histamine are via H1R and H4R. On the other hand, inhibitors of JNK, p38, or PI3K suppressed histamine-induced TNF-alpha and IL-6 release from microglia. Histamine also activated NF-kappa B and ammonium pyrrolidinedithiocarbamate, an inhibitor of NF-kappa B, and reduced histamine-induced TNF-alpha and IL-6 release. In summary, the present study identifies the expression of histamine receptors on microglia. We also demonstrate that histamine induced TNF-alpha and IL-6 release from activated microglia via H1R and H4R-MAPK and PI3K/AKT-NF-kappa B signaling pathway, which will deepen the understanding of microglia-mediated neuroinflammatory symptoms of chronic neurodegenerative disease.  相似文献   

12.
The turnover of neuronal histamine (HA) in nine brain regions and the spinal cord of the guinea pig and the mouse was estimated and the values obtained were compared with data previously obtained in rats. The size of the neuronal HA pool was determined from the decrease in HA content, as induced by (S)-alpha-fluoro-methylhistidine (alpha-FMH), a suicide inhibitor of histidine decarboxylase. The ratios of neuronal HA to the total differed with the brain region. Pargyline hydrochloride increased the tele-methylhistamine (t-MH) levels linearly up to 2 h after administration in both the guinea pig and the mouse whole brain. Regional differences in the turnover rate of neuronal HA, calculated from the pargyline-induced accumulation of t-MH, as well as in the size of the neuronal HA pool, were more marked in the mouse than in the guinea pig brain. The hypothalamus showed the highest rate in both species. There was a good correlation between the steady-state t-MH levels and the turnover rate in different brain regions. Neither the elevation of the t-MH levels by pargyline nor the reduction of HA by alpha-FMH was observed in the spinal cord, thereby suggesting that the HA present in this region is of mast cell origin. The half-life of neuronal HA in different brain regions was in the range of 13-38 min for the mouse and 24-37 min for the guinea pig, except for HA from the guinea pig hypothalamus, which had an extraordinarily long value of 87 min. These results suggest that there are species differences in the function of the brain histaminergic system.  相似文献   

13.
Since its discovery 10 years ago the histamine H(4) receptor (H(4)R) has attracted attention as a potential drug target, for instance, for the treatment of inflammatory and allergic diseases. Potent and selective ligands including agonists are required as pharmacological tools to study the role of the H(4)R in vitro and in vivo. Many H(4)R agonists, which were identified among already known histamine receptor ligands, show only low or insufficient H(4)R selectivity. In addition, the investigation of numerous H(4)R agonists in animal models is hampered by species-dependent discrepancies regarding potencies and histamine receptor selectivities of the available compounds, especially when comparing human and rodent receptors. This article gives an overview about structures, potencies, and selectivities of various compounds showing H(4)R agonistic activity and summarizes the structure-activity relationships of selected compound classes.  相似文献   

14.
J. Neurochem. (2012) 122, 872-882. ABSTRACT: The function of histamine in the adult central nervous system has been extensively studied, but data on its actions upon the developing nervous system are still scarce. Herein, we review the available information regarding the possible role for histamine in brain development. Some relevant findings are the existence of a transient histaminergic neuronal system during brain development, which includes serotonergic neurons in the midbrain and the rhombencephalon that coexpress histamine; the high levels of histamine found in several areas of the embryo nervous system at the neurogenic stage; the presence of histaminergic fibers and the expression of histamine receptors in various areas of the developing brain; and the neurogenic and proliferative effects on neural stem cells following histamine H(1) - and H(2) -receptor activation, respectively. Altogether, the reviewed information supports a significant role for histamine in brain development and the need for further research in this field.  相似文献   

15.
Histamine receptors and cyclic AMP   总被引:1,自引:0,他引:1  
The identification and characterization of histamine receptors in the organ systems of various species has been made possible in recent years by the introduction of relatively selective agonists and antagonists of H1 and H2 receptors. H2 receptors have now been clearly demonstrated in gastric mucosa, heart, rat uterus, brain, and adipose tissue. Less well-defined H2 receptor systems have also been described in the vasculature, bronchioles, and other smooth muscles as well as in the thyroid gland and lymphocytes. In tissues where it has been examined a close correlation between H2 receptors and the adenylate cyclase--cyclic AMP system has been found. With the exception of the central nervous system stimulation of H1 receptors does not seem to be involved with cyclic AMP. In the case of the brain the H1 receptor stimulation of adenylate cyclase can be differentiated from H2 receptor stimulation of the enzyme by the use of blocking agents and by the fact that the H1 receptor response is enhanced in the presence of adenosine. Studies of the involvement of histamine with the adenylate cyclase--cyclic AMP system have been concentrated on such tissues as gastric mucosa, heart, rat uterus, brain, and adipose tissue. The present review will concentrate on the literature concerning those tissues.  相似文献   

16.
Histamine and the heart   总被引:1,自引:0,他引:1  
Histamine has been known as a cardiac stimulant for over 70 years. Work in our laboratory over the past decade has established that histamine receptors exist in the hearts of various species. The type of histamine receptor varies not only between species but also in the various regions of the heart. In the guinea pig heart H1 receptors are found in left atria and ventricles while H2 receptors are found in right atria and are the predominant histamine receptor in the ventricles. Rabbit atria contain both H1 and H2 receptors while the ventricles appear to possess only H1. Rat and cat heart do not seem to have histamine receptors and the positive inotropic and chronotropic effects elicited by histamine in cardiac preparations of these species are due to the release of noradrenaline. Dog heart contains H1 receptors while human heart has H2 receptors. In all cases H2 receptors are associated with adenylate cyclase and stimulation of such receptors results in an increase in cyclic AMP levels. H1 receptors are not associated with cyclic nucleotides in the heart. There are certain similarities between beta-adrenergic and H2-histaminergic receptors as well as between alpha-adrenergic and H1-histaminergic receptors. Stimulation of either histamine receptor must result in an increase in the free calcium ion concentration in the cardiac cell but the mechanisms involved are obviously different.  相似文献   

17.
目的:探讨杨梅黄酮对大鼠下丘脑谷氨酸脱羧酶65、组胺1型受体及Hypocretin2型受体基因表达的调控作用.方法:大鼠分为正常对照、杨梅黄酮或Zolpidem处理组,分别于药物处理2小时或8小时后断头取下丘脑进行RT-PCR实验,观察上述基因mRNA水平的改变.结果:大鼠经杨梅黄酮或Zolpidem处理2小时后,谷氨酸脱羧酶65的mRNA水平显著升高,8小时后杨梅黄酮组恢复正常,而Zolpidem组虽有回归趋势,但未恢复到正常水平.而组胺1型受体和Hypocretin 2型受体mRNA的水平在药物处理2小时后则出现明显下降趋势,8小时后恢复正常.结论:杨梅黄酮可能通过调节下丘脑睡眠相关基因的表达从而起到助眠作用.  相似文献   

18.
Total histamine levels in heart, lung, stomach and skeletal muscle are not significantly different between normotensive (NT) and desoxycorticosterone acetate (DOCA) — hypertensive (HT) rats. Histamine depletion from skeletal muscle and heart of NT and HT rats by Compound 48/80 was similar indicating that the mast-cell pool(s) of histamine are of equivalent size. Tissue levels of 3H-histamine following 3H-histidine administration of NT and HT rats indicated that the capacity for histamine formation is unaffected by the hypertensive state. This conclusion was reinforced by the finding that histamine turnover rates were similar in tissues from NT and HT rats. Studies of 3H-histamine metabolism suggest that an alteration in histamine methylation capacity may exist in the hypertensive rat.The relationship of altered histamine disposition to the reduced magnitude of histaminergic reflex vasodilatation noted in the hypertensive rat is discussed.  相似文献   

19.
Histamine fish poisoning is caused by histamine-producing bacteria (HPB). Klebsiella pneumoniae and Klebsiella oxytoca are the best-known HPB in fish. However, 22 strains of HPB from fish first identified as K. pneumoniae or K. oxytoca by commercialized systems were later correctly identified as Raoultella planticola (formerly Klebsiella planticola) by additional tests. Similarly, five strains of Raoultella ornithinolytica (formerly Klebsiella ornithinolytica) were isolated from fish as new HPB. R. planticola and R. ornithinolytica strains were equal in their histamine-producing capabilities and were determined to possess the hdc genes, encoding histidine decarboxylase. On the other hand, a collection of 61 strains of K. pneumoniae and 18 strains of K. oxytoca produced no histamine.  相似文献   

20.
The binding of histamine to cultured microvascular endothelial cells and glycol methacrylate embedded ovarian tissue sections has been localized using fluorescein-albumin-histamine conjugate. Histamine conjugate was bound to the plasma membranes and nuclei of luteal, endothelial, and ovarian stromal cells. An apparent increase in the binding of histamine to nuclei was observed in the presence of cimetidine but the plasma membrane staining was still evident. Unlike cimetidine, pyrilamine completely inhibited the binding of histamine to the plasma membrane. Instead, in the presence of pyrilamine, histamine bound exclusively to the nuclei of endothelial, germinal epithelial, granulosa, and stromal cells. However, the nuclei of terminally differentiated luteal cells and oocytes were not labeled. The functional significance of these nuclear histamine binding sites remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号