首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.

Background

The primary objective of this study is to reconstruct the phylogeny of the hentzi species group and sister species in the North American tarantula genus, Aphonopelma, using a set of mitochondrial DNA markers that include the animal “barcoding gene”. An mtDNA genealogy is used to consider questions regarding species boundary delimitation and to evaluate timing of divergence to infer historical biogeographic events that played a role in shaping the present-day diversity and distribution. We aimed to identify potential refugial locations, directionality of range expansion, and test whether A. hentzi post-glacial expansion fit a predicted time frame.

Methods and Findings

A Bayesian phylogenetic approach was used to analyze a 2051 base pair (bp) mtDNA data matrix comprising aligned fragments of the gene regions CO1 (1165 bp) and ND1-16S (886 bp). Multiple species delimitation techniques (DNA tree-based methods, a “barcode gap” using percent of pairwise sequence divergence (uncorrected p-distances), and the GMYC method) consistently recognized a number of divergent and genealogically exclusive groups.

Conclusions

The use of numerous species delimitation methods, in concert, provide an effective approach to dissecting species boundaries in this spider group; as well they seem to provide strong evidence for a number of nominal, previously undiscovered, and cryptic species. Our data also indicate that Pleistocene habitat fragmentation and subsequent range expansion events may have shaped contemporary phylogeographic patterns of Aphonopelma diversity in the southwestern United States, particularly for the A. hentzi species group. These findings indicate that future species delimitation approaches need to be analyzed in context of a number of factors, such as the sampling distribution, loci used, biogeographic history, breadth of morphological variation, ecological factors, and behavioral data, to make truly integrative decisions about what constitutes an evolutionary lineage recognized as a “species”.  相似文献   

2.

Background

DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data.

Methodology/Principal Findings

The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n.

Conclusion/Significance

In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species.  相似文献   

3.

Background and Aims

The green algal class Chlorophyceae comprises five orders (Chlamydomonadales, Sphaeropleales, Chaetophorales, Chaetopeltidales and Oedogoniales). Attempts to resolve the relationships among these groups have met with limited success. Studies of single genes (18S rRNA, 26S rRNA, rbcL or atpB) have largely failed to unambiguously resolve the relative positions of Oedogoniales, Chaetophorales and Chaetopeltidales (the OCC taxa). In contrast, recent genomics analyses of plastid data from OCC exemplars provided a robust phylogenetic analysis that supports a monophyletic OCC alliance.

Methods

An ITS2 data set was assembled to independently test the OCC hypothesis and to evaluate the performance of these data in assessing green algal phylogeny at the ordinal or class level. Sequence-structure analysis designed for use with ITS2 data was employed for phylogenetic reconstruction.

Key Results

Results of this study yielded trees that were, in general, topologically congruent with the results from the genomic analyses, including support for the monophyly of the OCC alliance.

Conclusions

Not all nodes from the ITS2 analyses exhibited robust support, but our investigation demonstrates that sequence-structure analyses of ITS2 provide a taxon-rich means of testing phylogenetic hypotheses at high taxonomic levels. Thus, the ITS2 data, in the context of sequence-structure analysis, provide an economical supplement or alternative to the single-marker approaches used in green algal phylogeny.  相似文献   

4.

Background

Long-tailed macaques (Macaca fascicularis) are an important model species in biomedical research and reliable knowledge about their evolutionary history is essential for biomedical inferences. Ten subspecies have been recognized, of which most are restricted to small islands of Southeast Asia. In contrast, the common long-tailed macaque (M. f. fascicularis) is distributed over large parts of the Southeast Asian mainland and the Sundaland region. To shed more light on the phylogeny of M. f. fascicularis, we sequenced complete mitochondrial (mtDNA) genomes of 40 individuals from all over the taxon’s range, either by classical PCR-amplification and Sanger sequencing or by DNA-capture and high-throughput sequencing.

Results

Both laboratory approaches yielded complete mtDNA genomes from M. f. fascicularis with high accuracy and/or coverage. According to our phylogenetic reconstructions, M. f. fascicularis initially diverged into two clades 1.70 million years ago (Ma), with one including haplotypes from mainland Southeast Asia, the Malay Peninsula and North Sumatra (Clade A) and the other, haplotypes from the islands of Bangka, Java, Borneo, Timor, and the Philippines (Clade B). The three geographical populations of Clade A appear as paraphyletic groups, while local populations of Clade B form monophyletic clades with the exception of a Philippine individual which is nested within the Borneo clade. Further, in Clade B the branching pattern among main clades/lineages remains largely unresolved, most likely due to their relatively rapid diversification 0.93-0.84 Ma.

Conclusions

Both laboratory methods have proven to be powerful to generate complete mtDNA genome data with similarly high accuracy, with the DNA-capture and high-throughput sequencing approach as the most promising and only practical option to obtain such data from highly degraded DNA, in time and with relatively low costs. The application of complete mtDNA genomes yields new insights into the evolutionary history of M. f. fascicularis by providing a more robust phylogeny and more reliable divergence age estimations than earlier studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1437-0) contains supplementary material, which is available to authorized users.  相似文献   

5.
Chen J  Li Q  Kong L  Yu H 《PloS one》2011,6(6):e21326

Background

The species boundaries of some venerids are difficult to define based solely on morphological features due to their indistinct intra- and interspecific phenotypic variability. An unprecedented biodiversity crisis caused by human activities has emerged. Thus, to access the biological diversity and further the conservation of this taxonomically muddling bivalve group, a fast and simple approach that can efficiently examine species boundaries and highlight areas of unrecognized diversity is urgently needed. DNA barcoding has proved its effectiveness in high-volume species identification and discovery. In the present study, Chinese fauna was chosen to examine whether this molecular biomarker is sensitive enough for species delimitation, and how it complements taxonomy and explores species diversity.

Methodology/Principal Findings

A total of 315 specimens from around 60 venerid species were included, qualifying the present study as the first major analysis of DNA barcoding for marine bivalves. Nearly all individuals identified to species level based on morphological traits possessed distinct barcode clusters, except for the specimens of one species pair. Among the 26 individuals that were not assigned binomial names a priori, twelve respectively nested within a species genealogy. The remaining individuals formed five monophyletic clusters that potentially represent species new to science or at least unreported in China. Five putative hidden species were also uncovered in traditional morphospecies.

Conclusions/Significance

The present study shows that DNA barcoding is effective in species delimitation and can aid taxonomists by indicating useful diagnostic morphological traits, informing needful revision, and flagging unseen species. Moreover, the BOLD system, which deposits barcodes, morphological, geographical and other data, has the potential as a convenient taxonomic platform.  相似文献   

6.

Background and Aims

The role of flower specialization in plant speciation and evolution remains controversial. In this study the evolution of flower traits restricting access to pollinators was analysed in the bifid toadflaxes (Linaria sect. Versicolores), a monophyletic group of ∼30 species and subspecies with highly specialized corollas.

Methods

A time-calibrated phylogeny based on both nuclear and plastid DNA sequences was obtained using a coalescent-based method, and flower morphology was characterized by means of morphometric analyses. Directional trends in flower shape evolution and trait-dependent diversification rates were jointly analysed using recently developed methods, and morphological shifts were reconstructed along the phylogeny. Pollinator surveys were conducted for a representative sample of species.

Key Results

A restrictive character state (narrow corolla tube) was reconstructed in the most recent common ancestor of Linaria sect. Versicolores. After its early loss in the most species-rich clade, this character state has been convergently reacquired in multiple lineages of this clade in recent times, yet it seems to have exerted a negative influence on diversification rates. Comparative analyses and pollinator surveys suggest that the narrow- and broad-tubed flowers are evolutionary optima representing divergent strategies of pollen placement on nectar-feeding insects.

Conclusions

The results confirm that different forms of floral specialization can lead to dissimilar evolutionary success in terms of diversification. It is additionally suggested that opposing individual-level and species-level selection pressures may have driven the evolution of pollinator-restrictive traits in bifid toadflaxes.  相似文献   

7.

Background and Aims

Molecular phylogenetic studies of palms (Arecaceae) have not yet provided a fully resolved phylogeny of the family. There is a need to increase the current set of markers to resolve difficult groups such as the Neotropical subtribe Bactridinae (Arecoideae: Cocoseae). We propose the use of two single-copy nuclear genes as valuable tools for palm phylogenetics.

Methods

New primers were developed for the amplification of the AGAMOUS 1 (AG1) and PHYTOCHROME B (PHYB) genes. For the AGAMOUS gene, the paralogue 1 of Elaeis guineensis (EgAG1) was targeted. The region amplified contained coding sequences between the MIKC K and C MADS-box domains. For the PHYB gene, exon 1 (partial sequence) was first amplified in palm species using published degenerate primers for Poaceae, and then specific palm primers were designed. The two gene portions were sequenced in 22 species of palms representing all genera of Bactridinae, with emphasis on Astrocaryum and Hexopetion, the status of the latter genus still being debated.

Key Results

The new primers designed allow consistent amplification and high-quality sequencing within the palm family. The two loci studied produced more variability than chloroplast loci and equally or less variability than PRK, RPBII and ITS nuclear markers. The phylogenetic structure obtained with AG1 and PHYB genes provides new insights into intergeneric relationships within the Bactridinae and the intrageneric structure of Astrocaryum. The Hexopetion clade was recovered as monophyletic with both markers and was weakly supported as sister to Astrocaryum sensu stricto in the combined analysis. The rare Astrocaryum minus formed a species complex with Astrocaryum gynacanthum. Moreover, both AG1 and PHYB contain a microsatellite that could have further uses in species delimitation and population genetics.

Conclusions

AG1 and PHYB provide additional phylogenetic information within the palm family, and should prove useful in combination with other genes to improve the resolution of palm phylogenies.  相似文献   

8.

Background and Aims

European white oaks (Quercus petraea, Q. pubescens, Q. robur) have long puzzled plant biologists owing to disputed species differentiation. Extensive hybridization or shared ancestry have been proposed as alternative hypotheses to explain why genetic differentiation between these oak species is low. Species delimitation is usually weak and often shows gradual transitions in leaf morphology. Hence, individual identification may be difficult, but remains a critical step for both scientific work and practical management.

Methods

Multilocus genotype data (five nuclear microsatellites) were used from ten Swiss oak stands for taxon identification without a priori grouping of individuals or populations, using model-based Bayesian assignment tests.

Key Results

Three groups best structured the data, indicating that the taxonomical signal was stronger than the spatial signal. Most individuals showed high posterior probabilities for either of three genetic groups that were best circumscribed as taxonomical units. The assignment of a subset of trees, whose taxonomic status had been previously characterized in detail, supported this classification scheme.

Conclusions

Molecular-genetic assignment tests are useful in the identification of species status in critical taxon complexes such as the European white oaks. Such an approach is of practical importance for forest management, e.g. for stand certification or in seed trade to trace the origin of forest products.Key words: Assignment test, Bayesian inference, multilocus genotype, nuclear microsatellites, Quercus sp., species complex  相似文献   

9.

Background

Small and cryptic sponges associated with cold-water coral reefs are particularly numerous and challenging to identify, but their ecological and biochemical importance is likely to compete with megabenthic specimens.

Methodology/Principal Findings

Here we use a combination of the standard M1M6 and I3M11 partitions of the COI fragment, partial rDNA 28S sequences and morphology to delineate small encrusting Plocamionida species. In total, 46 specimens were retrieved from seven shallow to deep-water coral locations, crossing 3,000 km along the European margins. Our work provides evidence that the Plocamionida ambigua f. tylotata and f. grandichelata can be considered valid species, whereas Plocamionida ambigua f. tornata corresponds to the species P. ambigua. Within the monophyletic group of Plocamionida, P. microcionides is shown as really divergent from the other taxa, and four putative new Plocamionida species are suggested.

Conclusions/Significance

This study shows that the use of molecular and morphological information in an integrative approach is a powerful tool for the identification of sponge species, and suggests that an under-estimated biodiversity of sponges occurs in cold-water coral reefs.  相似文献   

10.

Background and Aims

It is known that the miniature inverted-repeat terminal element (MITE) preferentially inserts into low-copy-number sequences or genic regions. Characterization of the second largest subunit of low-copy nuclear RNA polymerase II (RPB2) has indicated that MITE and indels have shaped the homoeologous RPB2 loci in the St and H genome of Eymus species in Triticeae. The aims of this study was to determine if there is MITE in the RPB2 gene in Hordeum genomes, and to compare the gene evolution of RPB2 with other diploid Triticeae species. The sequences were used to reconstruct the phylogeny of the genus Hordeum.

Methods

RPB2 regions from all diploid species of Hordeum, one tetraploid species (H. brevisubulatum) and ten accessions of diploid Triticeae species were amplified and sequenced. Parsimony analysis of the DNA dataset was performed in order to reveal the phylogeny of Hordeum species.

Key Results

MITE was detected in the Xu genome. A 27–36 bp indel sequence was found in the I and Xu genome, but deleted in the Xa and some H genome species. Interestingly, the indel length in H genomes corresponds well to their geographical distribution. Phylogenetic analysis of the RPB2 sequences positioned the H and Xa genome in one monophyletic group. The I and Xu genomes are distinctly separated from the H and Xa ones. The RPB2 data also separated all New World H genome species except H. patagonicum ssp. patagonicum from the Old World H genome species.

Conclusions

MITE and large indels have shaped the RPB2 loci between the Xu and H, I and Xa genomes. The phylogenetic analysis of the RPB2 sequences confirmed the monophyly of Hordeum. The maximum-parsimony analysis demonstrated the four genomes to be subdivided into two groups.Key words: Molecular evolution, RPB2, Hordeum, transposable element, phylogeny  相似文献   

11.

Background and Aims

Since the advent of molecular phylogenetics, numerous attempts have been made to infer the evolutionary trajectories of chromosome numbers on DNA phylogenies. Ideally, such inferences should be evaluated against cytogenetic data. Towards this goal, we carried out phylogenetic modelling of chromosome number change and fluorescence in situ hybridization (FISH) in a medium sized genus of Araceae to elucidate if data from chromosomal markers would support maximum likelihood-inferred changes in chromosome numbers among close relatives. Typhonium, the focal genus, includes species with 2n = 65 and 2n = 8, the lowest known count in the family.

Methods

A phylogeny from nuclear and plastid sequences (96 taxa, 4252 nucleotides) and counts for all included species (15 of them first reported here) were used to model chromosome number evolution, assuming discrete events, such as polyploidization and descending or ascending dysploidy, occurring at different rates. FISH with three probes (5S rDNA, 45S rDNA and Arabidopsis-like telomeres) was performed on ten species with 2n = 8 to 2n = 24.

Key Results

The best-fitting models assume numerous past chromosome number reductions. Of the species analysed with FISH, the two with the lowest chromosome numbers contained interstitial telomeric signals (Its), which together with the phylogeny and modelling indicates decreasing dysploidy as an explanation for the low numbers. A model-inferred polyploidization in another species is matched by an increase in rDNA sites.

Conclusions

The combination of a densely sampled phylogeny, ancestral state modelling and FISH revealed that the species with n = 4 is highly derived, with the FISH data pointing to a Robertsonian fusion-like chromosome rearrangement in the ancestor of this species.  相似文献   

12.

Background and Aims

Tribe Arabideae are the most species-rich monophyletic lineage in Brassicaceae. More than 500 species are distributed in the majority of mountain and alpine regions worldwide. This study provides the first comprehensive phylogenetic analysis for the species assemblage and tests for association of trait and characters, providing the first explanations for the enormous species radiation since the mid Miocene.

Methods

Phylogenetic analyses of DNA sequence variation of nuclear encoded loci and plastid DNA are used to unravel a reliable phylogenetic tree. Trait and ancestral area reconstructions were performed and lineage-specific diversification rates were calculated to explain various radiations in the last 15 Myr in space and time.

Key Results

A well-resolved phylogenetic tree demonstrates the paraphyly of the genus Arabis and a new systematic concept is established. Initially, multiple radiations involved a split between lowland annuals and mountain/alpine perennial sister species. Subsequently, increased speciation rates occur in the perennial lineages. The centre of origin of tribe Arabideae is most likely the Irano-Turanian region from which the various clades colonized the temperate mountain and alpine regions of the world.

Conclusions

Mid Miocene early diversification started with increased speciation rates due to the emergence of various annual lineages. Subsequent radiations were mostly driven by diversification within perennial species during the Pliocene, but increased speciation rates also occurred during that epoch. Taxonomic concepts in Arabis are still in need of a major taxonomic revision to define monophyletic groups.  相似文献   

13.

Background and Aims

The phenolic composition of Coffea leaves has barely been studied, and therefore this study conducts the first detailed survey, focusing on mangiferin and hydroxycinnamic acid esters (HCEs).

Methods

Using HPLC, including a new technique allowing quantification of feruloylquinic acid together with mangiferin, and histochemical methods, mangiferin content and tissue localization were compared in leaves and fruits of C. pseudozanguebariae, C. arabica and C. canephora. The HCE and mangiferin content of leaves was evaluated for 23 species native to Africa or Madagascar. Using various statistical methods, data were assessed in relation to distribution, ecology, phylogeny and use.

Key Results

Seven of the 23 species accumulated mangiferin in their leaves. Mangiferin leaf-accumulating species also contain mangiferin in the fruits, but only in the outer (sporophytic) parts. In both leaves and fruit, mangiferin accumulation decreases with ageing. A relationship between mangiferin accumulation and UV levels is posited, owing to localization with photosynthetic tissues, and systematic distribution in high altitude clades and species with high altitude representatives. Analyses of mangiferin and HCE content showed that there are significant differences between species, and that samples can be grouped into species, with few exceptions. These data also provide independent support for various Coffea lineages, as proposed by molecular phylogenetic analyses. Sampling of the hybrids C. arabica and C. heterocalyx cf. indicates that mangiferin and HCE accumulation may be under independent parental influence.

Conclusions

This survey of the phenolic composition in Coffea leaves shows that mangiferin and HCE accumulation corresponds to lineage recognition and species delimitation, respectively. Knowledge of the spectrum of phenolic accumulation within species and populations could be of considerable significance for adaptation to specific environments. The potential health benefits of coffee-leaf tea, and beverages and masticatory products made from the fleshy parts of Coffea fruits, are supported by our phenolic quantification.Key words: Arabica coffee, C. arabica, C. canephora, chlorogenic acids, Crop Wild Relatives (CWRs), coffee-leaf tea, hybridization, hydroxycinnamic acids, mangiferin, phenolic compounds, phylogeny, robusta coffee  相似文献   

14.

Background and Aims

Pteris (Pteridaceae), comprising over 250 species, had been thought to be a monophyletic genus until the three monotypic genera Neurocallis, Ochropteris and Platyzoma were included. However, the relationships between the type species of the genus Pteris, P. longifolia, and other species are still unknown. Furthermore, several infrageneric morphological classifications have been proposed, but are debated. To date, no worldwide phylogenetic hypothesis has been proposed for the genus, and no comprehensive biogeographical history of Pteris, crucial to understanding its cosmopolitan distribution, has been presented.

Methods

A molecular phylogeny of Pteris is presented for 135 species, based on cpDNA rbcL and matK and using maximum parsimony, maximum likelihood and Bayesian inference approaches. The inferred phylogeny was used to assess the biogeographical history of Pteris and to reconstruct the evolution of one ecological and four morphological characters commonly used for infrageneric classifications.

Key Results

The monophyly of Pteris remains uncertain, especially regarding the relationship of Pteris with Actiniopteris + Onychium and Platyzoma. Pteris comprises 11 clades supported by combinations of ecological and morphological character states, but none of the characters used in previous classifications were found to be exclusive synapomorphies. The results indicate that Pteris diversified around 47 million years ago, and when species colonized new geographical areas they generated new lineages, which are associated with morphological character transitions.

Conclusions

This first phylogeny of Pteris on a global scale and including more than half of the diversity of the genus should contribute to a new, more reliable infrageneric classification of Pteris, based not only on a few morphological characters but also on ecological traits and geographical distribution. The inferred biogeographical history highlights long-distance dispersal as a major process shaping the worldwide distribution of the species. Colonization of different niches was followed by subsequent morphological diversification. Dispersal events followed by allopatric and parapatric speciation contribute to the species diversity of Pteris.  相似文献   

15.
Li QQ  Zhou SD  He XJ  Yu Y  Zhang YC  Wei XQ 《Annals of botany》2010,106(5):709-733

Background and Aims

The genus Allium comprises more than 800 species, placing it among the largest monocotyledonous genera. It is a variable group that is spread widely across the Holarctic region. Previous studies of Allium have been useful in identifying and assessing its evolutionary lineages. However, there are still many gaps in our knowledge of infrageneric taxonomy and evolution of Allium. Further understanding of its phylogeny and biogeography will be achieved only through continued phylogenetic studies, especially of those species endemic to China that have often been excluded from previous analyses. Earlier molecular studies have shown that Chinese Allium is not monophyletic, so the goal of the present study was to infer the phylogeny and biogeography of Allium and to provide a classification of Chinese Allium by placement of Chinese species in the context of the entire phylogeny.

Methods

Phylogenetic studies were based on sequence data of the nuclear ribosomal internal transcribed spacer (ITS) and chloroplast rps16 intron, analysed using parsimony and Bayesian approaches. Biogeographical patterns were conducted using statistical dispersal–vicariance analysis (S-DIVA).

Key Results

Phylogenetic analyses indicate that Allium is monophyletic and consists of three major clades. Optimal reconstructions have favoured the ancestors of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum as originating in eastern Asia.

Conclusions

Phylogenetic analyses reveal that Allium is monophyletic but that some subgenera are not. The large genetic distances imply that Allium is of ancient origin. Molecular data suggest that its evolution proceeded along three separate evolutionary lines. S-DIVA indicates that the ancestor of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum originated from eastern Asia and underwent different biogeographical pathways. A taxonomic synopsis of Chinese Allium at sectional level is given, which divides Chinese Allium into 13 subgenera and 34 sections.  相似文献   

16.

Background

We present a multi-locus phylogenetic analysis of the shallow water (high intertidal) barnacle genus Chthamalus, focusing on member species in the western hemisphere. Understanding the phylogeny of this group improves interpretation of classical ecological work on competition, distributional changes associated with climate change, and the morphological evolution of complex cirripede phenotypes.

Methodology and Findings

We use traditional and Bayesian phylogenetic and ‘deep coalescent’ approaches to identify a phylogeny that supports the monophyly of the mostly American ‘fissus group’ of Chthamalus, but that also supports a need for taxonomic revision of Chthamalus and Microeuraphia. Two deep phylogeographic breaks were also found within the range of two tropical American taxa (C. angustitergum and C. southwardorum) as well.

Conclusions

Our data, which include two novel gene regions for phylogenetic analysis of cirripedes, suggest that much more evaluation of the morphological evolutionary history and taxonomy of Chthamalid barnacles is necessary. These data and associated analyses also indicate that the radiation of species in the late Pliocene and Pleistocene was very rapid, and may provide new insights toward speciation via transient allopatry or ecological barriers.  相似文献   

17.

Background

Using gene order as a phylogenetic character has the potential to resolve previously unresolved species relationships. This character was used to resolve the evolutionary history within the genus Prochlorococcus, a group of marine cyanobacteria.

Methodology/Principal Findings

Orthologous gene sets and their genomic positions were identified from 12 species of Prochlorococcus and 1 outgroup species of Synechococcus. From this data, inversion and breakpoint distance-based phylogenetic trees were computed by GRAPPA and FastME. Statistical support of the resulting topology was obtained by application of a 50% jackknife resampling technique. The result was consistent and congruent with nucleotide sequence-based and gene-content based trees. Also, a previously unresolved clade was resolved, that of MIT9211 and SS120.

Conclusions/Significance

This is the first study to use gene order data to resolve a bacterial phylogeny at the genus level. It suggests that the technique is useful in resolving the Tree of Life.  相似文献   

18.

Background and Aims

The family Balsaminaceae is essentially herbaceous, except for some woodier species that can be described as ‘woody’ herbs or small shrubs. The family is nested within the so-called balsaminoid clade of Ericales, including the exclusively woody families Tetrameristaceae and Marcgraviaceae, which is sister to the remaining families of the predominantly woody order. A molecular phylogeny of Balsaminaceae is compared with wood anatomical observations to find out whether the woodier species are derived from herbaceous taxa (i.e. secondary woodiness), or whether woodiness in the family represents the ancestral state for the order (i.e. primary woodiness).

Methods

Wood anatomical observations of 68 Impatiens species and Hydrocera triflora, of which 47 are included in a multigene phylogeny, are carried out using light and scanning electron microscopy and compared with the molecular phylogenetic insights.

Key Results

There is much continuous variation in wood development between the Impatiens species studied, making the distinction between herbaceousness and woodiness difficult. However, the most woody species, unambiguously considered as truly woody shrubs, all display paedomorphic wood features pointing to secondary woodiness. This hypothesis is further supported by the molecular phylogeny, demonstrating that these most woody species are derived from herbaceous (or less woody) species in at least five independent clades. Wood formation in H. triflora is mostly confined to the ribs of the stems and shows paedomorphic wood features as well, suggesting that the common ancestor of Balsaminaceae was probably herbaceous.

Conclusions

The terms ‘herbaceousness’ and ‘woodiness’ are notoriously difficult to use in Balsaminaceae. However, anatomical observations and molecular sequence data show that the woodier species are derived from less woody or clearly herbaceous species, demonstrating that secondary woodiness has evolved in parallel.  相似文献   

19.
Goldman B  Bhat S  Shimkets LJ 《PloS one》2007,2(12):e1329

Background

Lateral gene transfer (LGT) is thought to promote speciation in bacteria, though well-defined examples have not been put forward.

Methodology/Principle Findings

We examined the evolutionary history of the genes essential for a trait that defines a phylogenetic order, namely fruiting body development of the Myxococcales. Seventy-eight genes that are essential for Myxococcus xanthus development were examined for LGT. About 73% of the genes exhibit a phylogeny similar to that of the 16S rDNA gene and a codon bias consistent with other M. xanthus genes suggesting vertical transmission. About 22% have an altered codon bias and/or phylogeny suggestive of LGT. The remaining 5% are unique. Genes encoding signal production and sensory transduction were more likely to be transmitted vertically with clear examples of duplication and divergence into multigene families. Genes encoding metabolic enzymes were frequently acquired by LGT. Myxobacteria exhibit aerobic respiration unlike most of the δ Proteobacteria. M. xanthus contains a unique electron transport pathway shaped by LGT of genes for succinate dehydrogenase and three cytochrome oxidase complexes.

Conclusions/Significance

Fruiting body development depends on genes acquired by LGT, particularly those involved in polysaccharide production. We suggest that aerobic growth fostered innovation necessary for development by allowing myxobacteria access to a different gene pool from anaerobic members of the δ Proteobacteria. Habitat destruction and loss of species diversity could restrict the evolution of new bacterial groups by limiting the size of the prospective gene pool.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号