首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deleterious mutations inevitably emerge in any evolutionary process and are speculated to decisively influence the structure of the genome. Meiosis, which is thought to play a major role in handling mutations on the population level, recombines chromosomes via non-randomly distributed hot spots for meiotic recombination. In many genomes, various types of genetic elements are distributed in patterns that are currently not well understood. In particular, important (essential) genes are arranged in clusters, which often cannot be explained by a functional relationship of the involved genes. Here we show by computer simulation that essential gene (EG) clustering provides a fitness benefit in handling deleterious mutations in sexual populations with variable levels of inbreeding and outbreeding. We find that recessive lethal mutations enforce a selective pressure towards clustered genome architectures. Our simulations correctly predict (i) the evolution of non-random distributions of meiotic crossovers, (ii) the genome-wide anti-correlation of meiotic crossovers and EG clustering, (iii) the evolution of EG enrichment in pericentromeric regions and (iv) the associated absence of meiotic crossovers (cold centromeres). Our results furthermore predict optimal crossover rates for yeast chromosomes, which match the experimentally determined rates. Using a Saccharomyces cerevisiae conditional mutator strain, we show that haploid lethal phenotypes result predominantly from mutation of single loci and generally do not impair mating, which leads to an accumulation of mutational load following meiosis and mating. We hypothesize that purging of deleterious mutations in essential genes constitutes an important factor driving meiotic crossover. Therefore, the increased robustness of populations to deleterious mutations, which arises from clustered genome architectures, may provide a significant selective force shaping crossover distribution. Our analysis reveals a new aspect of the evolution of genome architectures that complements insights about molecular constraints, such as the interference of pericentromeric crossovers with chromosome segregation.  相似文献   

2.
Two pairs of stable diploid clones were obtained as aberrant forms among F1 progeny of an intragroup (intraspecific) cross between R-11-4 (mating type +) and M-16-4b (mating type -) of Group A of Closterium ehrenbergii Menegh. Each pair was derived from the two germination products of a single zygospore, and both clones were mating type minus. The cell size range of these four diploid minus clones was considerably above that of normal (haploid) Group A clones. Chromosome counts at the second meiotic metaphase indicated that these clones were diploid with approximately 200 chromosomes, which was double the number for normal Group A clones. Diploid minus clones conjugated normally with any haploid Group A plus clones, and yielded many triploid zygospores. Triploid zygospores germinated normally as did intragroup diploid zygospores. In metaphase I preparations, only bivalents were observed except on a few occasions where some uni- and multivalents were also detected. Viability of F1 progeny from triploid zygospores (55–74%) was somewhat lower than from diploid zygospores of Japanese Group A populations (65–90%), but higher than intergroup (interspecific) hybrid zygospores from Groups A, B and H (0–12%). In addition to lower viability, some F1 progeny from triploid zygospores exhibited slow vegetative growth. Almost all pairs of F1 clones from single triploid zygospores were of opposite mating type, similar to normal diploid zygospores of the intragroup cross. Morphological variability of F1 progeny of triploid zygospores was great. The apparently normal meiosis of triploid zygospores and the high viability of F1 progeny suggested that the genome of Group A contains several sets of chromosome complements with mechanisms by which bivalents are regularly formed in the first meiotic division.  相似文献   

3.
Xu J 《Genetics》2002,162(3):1157-1167
Few events have evolutionary consequences as pervasive as changes in reproductive behavior. Among those changes, the loss of the ability to undergo sexual reproduction is probably the most profound. However, little is known about the rate of loss of sex. Here I describe an experimental system using the fungus Cryptococcus neoformans and provide the first empirical estimate of the spontaneous mutation rate of loss of sex in fungi. Two critical steps in sexual reproduction in C. neoformans were examined: mating and filamentation. Mating, the fusion of cells of opposite sexes, is a universal first step in eukaryotic sexual reproduction. In contrast, filamentation, a prerequisite process preceding meiosis and sexual spore development, is restricted to C. neoformans and a few other fungal species. After approximately 600 mitotic divisions under favorable asexual growth conditions, mean abilities for mating and filamentation decreased significantly by >67 and 24%, respectively. Similarly, though statistically not significant, the mean vegetative growth rates also decreased and among the mutation accumulation lines, the vegetative growth rates were negatively correlated to the mating ability. The estimated mutation rates to decreases in mating ability and filamentation were in excess of 0.0172 and 0.0036, respectively. The results show that C. neoformans can be a highly attractive model for analyses of reproductive system evolution in fungi.  相似文献   

4.
Mutator phenotypes accelerate the evolutionary process of neoplastic transformation. Historically, the measurement of mutation rates has relied on scoring the occurrence of rare mutations in target genes in large populations of cells. Averaging mutation rates over large cell populations assumes that new mutations arise at a constant rate during each cell division. If the mutation rate is not constant, an expanding mutator population may contain subclones with widely divergent rates of evolution. Here, we report mutation rate measurements of individual cell divisions of mutator yeast deficient in DNA polymerase ε proofreading and base-base mismatch repair. Our data are best fit by a model in which cells can assume one of two distinct mutator states, with mutation rates that differ by an order of magnitude. In error-prone cell divisions, mutations occurred on the same chromosome more frequently than expected by chance, often in DNA with similar predicted replication timing, consistent with a spatiotemporal dimension to the hypermutator state. Mapping of mutations onto predicted replicons revealed that mutations were enriched in the first half of the replicon as well as near termination zones. Taken together, our findings show that individual genome replication events exhibit an unexpected volatility that may deepen our understanding of the evolution of mutator-driven malignancies.  相似文献   

5.
Summary Kinetic experiments with synchronously sporulating cultures of a homothallic h90 strain of Schizosaccharomyces pombe showed that trehalase activity abruptly increased in the late sporulation process, coinciding with the appearance of visible spores. Trehalase activity was absent in vegetative cells. A set of strains different in genetic constitution at the mating type loci was tested for induction of trehalase on nitrogen-free sporulation medium. The appearance of trehalase activity on the sporulation medium was observed only in sporulating cultures; cultures of homothallic strains (h90) and diploid strains heterozygous for mating type (h+/h), and mixed cultures of heterothallic h+ and h strains. Trehalase activity was not induced in nonsporogenic strains: heterothallic haploid strains (h+ and h), diploid strains homozygous for mating type (h+/h+ and h/h) and the homothallic strain harboring the mutation in the mat2 gene, which was unable to undergo the first meiotic division. Trehalose accumulation on the sporulation medium was observed solely in the sporulating cultures. These results led us to conclude that the induction of trehalase activity as well as the accumulation of trehalose in the medium lacking nitrogen sources was a sporulation-specific event under the control of the mating type genes.  相似文献   

6.
A theoretical model is developed of the fate of mutations for organisms with such life-history characteristics as indeterminate growth and clonal reproduction. It focuses on how the fate of a particular mutant depends on whether it arises during mitotic cell division (somatic mutation) or during meiotic cell division (meiotic mutation). At gamete production, individuals carrying somatic mutations will produce some proportion of gametes reflecting the original, zygotic genotype and some proportion reflecting genotypes carrying the somatic mutation. Focusing on allele frequencies at gamete production allows the effects of growth and clonal reproduction to be summarized. The relative strengths of somatic and meiotic mutation can be determined, as well as the conditions under which the change in allele frequency due to one is greater than that due to the other. Examples from a published demographic study of clonal corals are used to compare somatic and meiotic mutation. When there is no selection acting on either type of mutation, only a few cell divisions per time unit on average are needed for the change in allele frequency due to somatic mutation to be greater, given empirically based mutation rates. When somatic selection is added, the most dramatic effect is seen with fairly strong negative selection acting against the somatic mutation within individuals. In this case, selection within organisms can effectively counteract the effects of somatic mutation, and the change in allele frequency due to somatic mutations will not be greater than that due to meiotic mutations for reasonable numbers of within-generation cell divisions. The majority of the mutation load, which would have been due to somatic mutation, is purged by selection within the individual organism.  相似文献   

7.
The mitochondrial genome of Chlamydomonas reinhardtii is a 15.8 kb linear DNA molecule present in multiple copies. In crosses, the meiotic products only inherit the mitochondrial genome of the mating type minus (paternal) parent. In contrast mitotic zygotes transmit maternal and paternal mitochondrial DNA copies to their diploid progeny and recombinational events between molecules of both origins frequently occur. Six mitochondrial mutants unable to grow in the dark (dk mutants) were crossed in various combinations and the percentages of wild-type dk+ recombinants were determined in mitotic zygotes when all progeny cells had become homoplasmic for the mitochondrial genome. In crosses between strains mutated in the COB (apocytochrome ) gene and strains mutated in the COX1 (subunit 1 of cytochrome oxidase) gene, the frequency of recombination was 13.7% (± 3.2%). The corresponding physical distance between the mutation sites was 4.3 kb. In crosses between strains carrying mutations separated by about 20 bp, a recombinational frequency of 0.04% (± 0.02%) was found. Two other mutants not yet characterized at the molecular level were also used for recombinational studies. From these data, a linear genetic map of the mitochondrial genome could be drawn. This map is consistent with the positions of the mutation sites on the mitochondrial DNA molecule and thereby validates the method used to generate the map. The frequency of recombination per physical distance unit (3.2% ± 0.7% per kilobase) is compared with those obtained for other organellar genomes in yeasts and Chlamydomonas.  相似文献   

8.
Mackay TF  Lyman RF  Lawrence F 《Genetics》2005,170(4):1723-1735
Our ability to predict long-term responses to artificial and natural selection, and understand the mechanisms by which naturally occurring variation for quantitative traits is maintained, depends on detailed knowledge of the properties of spontaneous polygenic mutations, including the quantitative trait loci (QTL) at which mutations occur, mutation rates, and mutational effects. These parameters can be estimated by mapping QTL that cause divergence between mutation-accumulation lines that have been established from an inbred base population and selected for high and low trait values. Here, we have utilized quantitative complementation to deficiencies to map QTL at which spontaneous mutations affecting Drosophila abdominal and sternopleural bristle number have occurred in 11 replicate lines during 206 generations of divergent selection. Estimates of the numbers of mutations were consistent with diploid per-character mutation rates for bristle traits of 0.03. The ratio of the per-character mutation rate to total mutation rate (0.023) implies that >2% of the genome could affect just one bristle trait and that there must be extensive pleiotropy for quantitative phenotypes. The estimated mutational effects were not, however, additive and exhibited dependency on genetic background consistent with diminishing epistasis. However, these inferences must be tempered by the potential for epistatic interactions between spontaneous mutations and QTL affecting bristle number on the deficiency-bearing chromosomes, which could lead to overestimates in numbers of QTL and inaccurate inference of gene action.  相似文献   

9.
To ensure genome stability, sexually reproducing organisms require that mating brings together exactly 2 haploid gametes and that meiosis occurs only in diploid zygotes. In the fission yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling cascade, which represses subsequent mating and initiates meiosis. Here, we establish a degron system to specifically degrade proteins postfusion and demonstrate that mating blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion attempts. Using long-term imaging and flow-cytometry approaches, we identify previously unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 promotes premeiotic S-phase independently of Mei2 and that cell cycle progression is both necessary and sufficient to reduce zygotic mating behaviors. Mei2 not only imposes the meiotic program and promotes the meiotic cycle, but also blocks mating behaviors independently of Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival by at least 2 mechanisms where the zygotic fate imposed by Mei2 and the cell cycle reentry triggered by Mei3 synergize to prevent zygotic mating.

During sexual reproduction, fertilization must happen between exactly two gametes to ensure genome stability. This study shows that two mechanisms – establishment of zygotic fate and re-entry to the cell cycle – combine to prevent fission yeast zygotes fusing with further gametes.  相似文献   

10.
Yeast is a highly tractable model system that is used to study many different cellular processes. The common laboratory strain Saccharomyces cerevisiae exists in either a haploid or diploid state. The ability to combine alleles from two haploids and the ability to introduce modifications to the genome requires the production and dissection of asci. Asci production from haploid cells begins with the mating of two yeast haploid strains with compatible mating types to produce a diploid strain. This can be accomplished in a number of ways either on solid medium or in liquid. It is advantageous to select for the diploids in medium that selectively promotes their growth compared to either of the haploid strains. The diploids are then allowed to sporulate on nutrient-poor medium to form asci, a bundle of four haploid daughter cells resulting from meiotic reproduction of the diploid. A mixture of vegetative cells and asci is then treated with the enzyme zymolyase to digest away the membrane sac surrounding the ascospores of the asci. Using micromanipulation with a microneedle under a dissection microscope one can pick up individual asci and separate and relocate the four ascopores. Dissected asci are grown for several days and tested for the markers or alleles of interest by replica plating onto appropriate selective media.  相似文献   

11.
Cis-acting regulatory mutations have been isolated that affect L-ornithine transaminase (OTAse), an enzyme catalyzing the second step of arginine breakdown in yeast. These mutations lead to constitutive synthesis of OTAse at various levels. Two different types of mutations have been recovered, both of which are tightly linked to the structural gene (cargB) for this enzyme. One type behaves as a classical operator-constitutive mutation similar to the cargB+O---1 mutation previously described (DUBOIS et al. 1978). The second type is peculiar in two respects: the higher level of constitutive OTAse synthesis and the expression of constitutivity in diploid cells. These mutations are designated cargB+Oh. They behave as usual operator-constitutive mutations in diploid strains homozygous for mating type (a/a or alpha/alpha), but the constitutivity is strongly reduced in a/alpha diploid cells.  相似文献   

12.
Recombination is an essential part of meiosis; in almost all organisms, including Saccharomyces cerevisiae, proper chromosome segregation and the viability of meiotic products is dependent upon normal levels of recombination. In this article we examine the kinetics of the meiotic divisions in four mutants defective in the initiation of recombination. We find that mutations in any of three Early Exchange genes (REC104, REC114 or REC102) confer a phenotype in which the reductional division occurs earlier than in an isogenic wild-type diploid. We also present data confirming previous reports that strains with a mutation in the Early Exchange gene MEI4 undergo the first division at about the same time as wild-type cells. The rec104 mutation is epistatic to the mei4 mutation for the timing of the first division. These observations suggest a possible relationship between the initiation of recombination and the timing of the reductional division. These data also allow these four Early Exchange genes examined to be distinguished in terms of their role in coordinating recombination with the reductional division.  相似文献   

13.
To test the hypothesis that mouse germline expanded simple tandem repeat (ESTR) mutations are associated with recombination events during spermatogenesis, crossover frequencies were compared with germline mutation rates at ESTR loci in male mice acutely exposed to 1 Gy of X-rays or to 10 mg/kg of the anticancer drug cisplatin. Ionising radiation resulted in a highly significant 2.7–3.6-fold increase in ESTR mutation rate in males mated 4, 5 and 6 weeks after exposure, but not 3 weeks after exposure. In contrast, irradiation had no effect on meiotic crossover frequencies assayed on six chromosomes using 25 polymorphic microsatellite loci spaced at approximately 20 cM intervals and covering 421 cM of the mouse genome. Paternal exposure to cisplatin did not affect either ESTR mutation rates or crossover frequencies, despite a report that cisplatin can increase crossover frequency in mice.

Correlation analysis did not reveal any associations between the paternal ESTR mutation rate and crossover frequency in unexposed males and in those exposed to X-rays or cisplatin. This study does not, therefore, support the hypothesis that mutation induction at mouse ESTR loci results from a general genome-wide increase in meiotic recombination rate.  相似文献   


14.
Giant endopolyploid nuclei (>16n) can spontaneously fragment by endomitosis (nuclear internal division) into near‐diploid cells with reproductive capacity (depolyploidization), and endotetra/octopolyploidy can undergo chromosome‐visible meiotic‐like genome reductional divisions also to replicative subcells. These unconventional divisions are associated with production of aneuploidy, which led to the question in this study of whether endopolyploidy, in general, can contribute genetic variability to tumorigenic potential. For this purpose, non‐proliferative endopolyploid cells (range: 4n–32n) in near‐senescence of normal diploid cell strains were analysed for nuclear–morphogenic changes associated with the presence of diploid‐sized nuclei in the cytoplasm. A one‐by‐one nuclear‐cutoff process gave rise to reproducing genome‐reduced cells. It was concluded that these unconventional cell divisions are, indeed, suspects of originating genetic variability. Details of these irregular mitoses were compared to ‘mitotic–meiosis’ in primitive organisms, which suggested activation of an ancestral trait in the mammalian cells.  相似文献   

15.
Summary In strain 137F ofChlamydomonas reinhardi, the zygospores undergo one round of nuclear DNA replication followed by three divisions to produce octospores. The third division without replication has been interpreted by Sueoka et al. (1967, 1969) to mean that the gametes and vegetative cells have at least binemic chromosomes. We have repeated their experiments using the same strain. However, the meiotic products were inviable — unable to undergo postmeiotic vegetative growth, DNA replication or division. On the other hand, using a variant of strain 137C which also has three divisions during germination we have shown that meiosis is normal. Zygospores from this strain undergo two rounds of nuclear DNA replication prior to the formation of octospores. These meiotic products are viable and capable of postmeiotic vegetative growth, replication and division. Since the third division without DNA replication subsequent to the two meiotic divisions leads to inviable products, and the strain which has viable products after three divisions does not lack the additional replication, meiosis inChlamydomonas reinhardi provides no evidence of a bineme chromosome structure.  相似文献   

16.
The mitochondrial genome of Chlamydomonas reinhardtii is a 15.8 kb linear DNA molecule present in multiple copies. In crosses, the meiotic products only inherit the mitochondrial genome of the mating type minus (paternal) parent. In contrast mitotic zygotes transmit maternal and paternal mitochondrial DNA copies to their diploid progeny and recombinational events between molecules of both origins frequently occur. Six mitochondrial mutants unable to grow in the dark (dk? mutants) were crossed in various combinations and the percentages of wild-type dk+ recombinants were determined in mitotic zygotes when all progeny cells had become homoplasmic for the mitochondrial genome. In crosses between strains mutated in the COB (apocytochrome ) gene and strains mutated in the COX1 (subunit 1 of cytochrome oxidase) gene, the frequency of recombination was 13.7% (± 3.2%). The corresponding physical distance between the mutation sites was 4.3 kb. In crosses between strains carrying mutations separated by about 20 bp, a recombinational frequency of 0.04% (± 0.02%) was found. Two other mutants not yet characterized at the molecular level were also used for recombinational studies. From these data, a linear genetic map of the mitochondrial genome could be drawn. This map is consistent with the positions of the mutation sites on the mitochondrial DNA molecule and thereby validates the method used to generate the map. The frequency of recombination per physical distance unit (3.2% ± 0.7% per kilobase) is compared with those obtained for other organellar genomes in yeasts and Chlamydomonas.  相似文献   

17.
The fission yeast Schizosaccharomyces pombe is a natural auxotroph for inositol and fails to grow in the complete absence of it. It was previously reported that a small concentration of inositol in the culture medium supports vegetative growth, but not mating and sporulation, and a tenfold of that concentration also supports mating and sporulation. The purpose of the present work was to investigate whether a moderate inositol starvation specifically affected events of the sexual program of development. A homothallic culture grown to the stationary phase in medium with a small inositol concentration was sterile but cells in the stationary phase of growth synchronously entered and completed the sexual cycle when inositol was added, without need of previous cell divisions. This suggests the involvement of inositol in a mechanism (or mechanisms) of the sexual program. The events of the program that were affected by inositol starvation were investigated. Commitment to mating and production of pheromone M were shown not to be inositol-dependent. A diploid strain homozygous at the mating-type locus and carrying a pat1-114 temperature-sensitive mutation in homozygous configuration sporulated under inositol starvation at the restrictive temperature; therefore starvation did not directly affect meiosis or sporulation. In contrast, production of pheromone P and the response of cells to pheromones were found to be inositol-dependent. The possibility that inositol or one of its derivative compounds is involved in pheromone P secretion and in pheromone signal reception is discussed.  相似文献   

18.
Spontaneous mutations play a central role in evolution. Despite their importance, mutation rates are some of the most elusive parameters to measure in evolutionary biology. The combination of mutation accumulation (MA) experiments and whole-genome sequencing now makes it possible to estimate mutation rates by directly observing new mutations at the molecular level across the whole genome. We performed an MA experiment with the social amoeba Dictyostelium discoideum and sequenced the genomes of three randomly chosen lines using high-throughput sequencing to estimate the spontaneous mutation rate in this model organism. The mitochondrial mutation rate of 6.76×10−9, with a Poisson confidence interval of 4.1×10−9 − 9.5×10−9, per nucleotide per generation is slightly lower than estimates for other taxa. The mutation rate estimate for the nuclear DNA of 2.9×10−11, with a Poisson confidence interval ranging from 7.4×10−13 to 1.6×10−10, is the lowest reported for any eukaryote. These results are consistent with low microsatellite mutation rates previously observed in D. discoideum and low levels of genetic variation observed in wild D. discoideum populations. In addition, D. discoideum has been shown to be quite resistant to DNA damage, which suggests an efficient DNA-repair mechanism that could be an adaptation to life in soil and frequent exposure to intracellular and extracellular mutagenic compounds. The social aspect of the life cycle of D. discoideum and a large portion of the genome under relaxed selection during vegetative growth could also select for a low mutation rate. This hypothesis is supported by a significantly lower mutation rate per cell division in multicellular eukaryotes compared with unicellular eukaryotes.  相似文献   

19.
Human genetic variation is distributed nonrandomly across the genome, though the principles governing its distribution are only partially known. DNA replication creates opportunities for mutation, and the timing of DNA replication correlates with the density of SNPs across the human genome. To enable deeper investigation of how DNA replication timing relates to human mutation and variation, we generated a high-resolution map of the human genome’s replication timing program and analyzed its relationship to point mutations, copy number variations, and the meiotic recombination hotspots utilized by males and females. DNA replication timing associated with point mutations far more strongly than predicted from earlier analyses and showed a stronger relationship to transversion than transition mutations. Structural mutations arising from recombination-based mechanisms and recombination hotspots used more extensively by females were enriched in early-replicating parts of the genome, though these relationships appeared to relate more strongly to the genomic distribution of causative sequence features. These results indicate differential and sex-specific relationship of DNA replication timing to different forms of mutation and recombination.  相似文献   

20.
Xu J 《Genetics》2004,168(3):1177-1188
Spontaneous mutation is the ultimate source of all genetic variation. By interacting with environmental factors, genetic variation determines the phenotype and fitness of individuals in natural populations. However, except in a few model organisms, relatively little is known about the patterns of genotype-environment interactions of spontaneous mutations. Here I examine the rates of spontaneous mutation and the patterns of genotype-environment interaction of mutations affecting vegetative growth in the human fungal pathogen Cryptococcus neoformans. Eight mutation accumulation (MA) lines were established from a single clone on the nutrient-rich medium YEPD for each of two temperatures, 25 degrees and 37 degrees. Cells from generations 100, 200, 400, and 600 for each of the 16 MA lines were stored and assayed for vegetative growth rates under each of four conditions: (i) 25 degrees on SD (a synthetic dextrose minimal medium); (ii) 25 degrees on YEPD; (iii) 37 degrees on SD; and (iv) 37 degrees on YEPD. Both MA conditions and assay environments for vegetative growth showed significant influence on the estimates of genomic mutation rates, average effect per mutation, and mutational heritability. Significant genotype-environment interactions were detected among the newly accumulated spontaneous mutations. Overall, clones from MA lines maintained at 37 degrees showed less decline in vegetative fitness than those maintained at 25 degrees. The result suggests that a high-temperature environment might be very important for the maintenance of the ability to grow at a high temperature. Results from comparisons between clinical and environmental samples of C. neoformans were consistent with laboratory experimental population analyses. This study calls into question our long-standing view that warm-blooded mammals were only occasional and accidental hosts of this human fungal pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号