首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
To investigate sepal/petal/lip formation in Oncidium Gower Ramsey, three paleoAPETALA3 genes, O. Gower Ramsey MADS box gene5 (OMADS5; clade 1), OMADS3 (clade 2), and OMADS9 (clade 3), and one PISTILLATA gene, OMADS8, were characterized. The OMADS8 and OMADS3 mRNAs were expressed in all four floral organs as well as in vegetative leaves. The OMADS9 mRNA was only strongly detected in petals and lips. The mRNA for OMADS5 was only strongly detected in sepals and petals and was significantly down-regulated in lip-like petals and lip-like sepals of peloric mutant flowers. This result revealed a possible negative role for OMADS5 in regulating lip formation. Yeast two-hybrid analysis indicated that OMADS5 formed homodimers and heterodimers with OMADS3 and OMADS9. OMADS8 only formed heterodimers with OMADS3, whereas OMADS3 and OMADS9 formed homodimers and heterodimers with each other. We proposed that sepal/petal/lip formation needs the presence of OMADS3/8 and/or OMADS9. The determination of the final organ identity for the sepal/petal/lip likely depended on the presence or absence of OMADS5. The presence of OMADS5 caused short sepal/petal formation. When OMADS5 was absent, cells could proliferate, resulting in the possible formation of large lips and the conversion of the sepal/petal into lips in peloric mutants. Further analysis indicated that only ectopic expression of OMADS8 but not OMADS5/9 caused the conversion of the sepal into an expanded petal-like structure in transgenic Arabidopsis (Arabidopsis thaliana) plants.The ABCDE model predicts the formation of any flower organ by the interaction of five classes of homeotic genes in plants (Yanofsky et al., 1990; Jack et al., 1992; Mandel et al., 1992; Goto and Meyerowitz, 1994; Jofuku et al., 1994; Pelaz et al., 2000, 2001; Theißen and Saedler, 2001; Pinyopich et al., 2003; Ditta et al., 2004; Jack, 2004). The A class genes control sepal formation. The A, B, and E class genes work together to regulate petal formation. The B, C, and E class genes control stamen formation. The C and E class genes work to regulate carpel formation, whereas the D class gene is involved in ovule development. MADS box genes seem to have a central role in flower development, because most ABCDE genes encode MADS box proteins (Coen and Meyerowitz, 1991; Weigel and Meyerowitz, 1994; Purugganan et al., 1995; Rounsley et al., 1995; Theißen and Saedler, 1995; Theißen et al., 2000; Theißen, 2001).The function of B group genes, such as APETALA3 (AP3) and PISTILLATA (PI), has been thought to have a major role in specifying petal and stamen development (Jack et al., 1992; Goto and Meyerowitz, 1994; Krizek and Meyerowitz, 1996; Kramer et al., 1998; Hernandez-Hernandez et al., 2007; Kanno et al., 2007; Whipple et al., 2007; Irish, 2009). In Arabidopsis (Arabidopsis thaliana), mutation in AP3 or PI caused identical phenotypes of second whorl petal conversion into a sepal structure and third flower whorl stamen into a carpel structure (Bowman et al., 1989; Jack et al., 1992; Goto and Meyerowitz, 1994). Similar homeotic conversions for petal and stamen were observed in the mutants of the AP3 and PI orthologs from a number of core eudicots such as Antirrhinum majus, Petunia hybrida, Gerbera hybrida, Solanum lycopersicum, and Nicotiana benthamiana (Sommer et al., 1990; Tröbner et al., 1992; Angenent et al., 1993; van der Krol et al., 1993; Yu et al., 1999; Liu et al., 2004; Vandenbussche et al., 2004; de Martino et al., 2006), from basal eudicot species such as Papaver somniferum and Aquilegia vulgaris (Drea et al., 2007; Kramer et al., 2007), as well as from monocot species such as Zea mays and Oryza sativa (Ambrose et al., 2000; Nagasawa et al., 2003; Prasad and Vijayraghavan, 2003; Yadav et al., 2007; Yao et al., 2008). This indicated that the function of the B class genes AP3 and PI is highly conserved during evolution.It has been thought that B group genes may have arisen from an ancestral gene through multiple gene duplication events (Doyle, 1994; Theißen et al., 1996, 2000; Purugganan, 1997; Kramer et al., 1998; Kramer and Irish, 1999; Lamb and Irish, 2003; Kim et al., 2004; Stellari et al., 2004; Zahn et al., 2005; Hernandez-Hernandez et al., 2007). In the gymnosperms, there was a single putative B class lineage that duplicated to generate the paleoAP3 and PI lineages in angiosperms (Kramer et al., 1998; Theißen et al., 2000; Irish, 2009). The paleoAP3 lineage is composed of AP3 orthologs identified in lower eudicots, magnolid dicots, and monocots (Kramer et al., 1998). Genes in this lineage contain the conserved paleoAP3- and PI-derived motifs in the C-terminal end of the proteins, which have been thought to be characteristics of the B class ancestral gene (Kramer et al., 1998; Tzeng and Yang, 2001; Hsu and Yang, 2002). The PI lineage is composed of PI orthologs that contain a highly conserved PI motif identified in most plant species (Kramer et al., 1998). Subsequently, there was a second duplication at the base of the core eudicots that produced the euAP3 and TM6 lineages, which have been subject to substantial sequence changes in eudicots during evolution (Kramer et al., 1998; Kramer and Irish, 1999). The paleoAP3 motif in the C-terminal end of the proteins was retained in the TM6 lineage and replaced by a conserved euAP3 motif in the euAP3 lineage of most eudicot species (Kramer et al., 1998). In addition, many lineage-specific duplications for paleoAP3 lineage have occurred in plants such as orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009), Ranunculaceae, and Ranunculales (Kramer et al., 2003; Di Stilio et al., 2005; Shan et al., 2006; Kramer, 2009).Unlike the A or C class MADS box proteins, which form homodimers that regulate flower development, the ability of B class proteins to form homodimers has only been reported in gymnosperms and in the paleoAP3 and PI lineages of some monocots. For example, LMADS1 of the lily Lilium longiflorum (Tzeng and Yang, 2001), OMADS3 of the orchid Oncidium Gower Ramsey (Hsu and Yang, 2002), and PeMADS4 of the orchid Phalaenopsis equestris (Tsai et al., 2004) in the paleoAP3 lineage, LRGLOA and LRGLOB of the lily Lilium regale (Winter et al., 2002), TGGLO of the tulip Tulipa gesneriana (Kanno et al., 2003), and PeMADS6 of the orchid P. equestris (Tsai et al., 2005) in the PI lineage, and GGM2 of the gymnosperm Gnetum gnemon (Winter et al., 1999) were able to form homodimers that regulate flower development. Proteins in the euAP3 lineage and in most paleoAP3 lineages were not able to form homodimers and had to interact with PI to form heterodimers in order to regulate petal and stamen development in various plant species (Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Riechmann et al., 1996; Moon et al., 1999; Winter et al., 2002; Kanno et al., 2003; Vandenbussche et al., 2004; Yao et al., 2008). In addition to forming dimers, AP3 and PI were able to interact with other MADS box proteins, such as SEPALLATA1 (SEP1), SEP2, and SEP3, to regulate petal and stamen development (Pelaz et al., 2000; Honma and Goto, 2001; Theißen and Saedler, 2001; Castillejo et al., 2005).Orchids are among the most important plants in the flower market around the world, and research on MADS box genes has been reported for several species of orchids during the past few years (Lu et al., 1993, 2007; Yu and Goh, 2000; Hsu and Yang, 2002; Yu et al., 2002; Hsu et al., 2003; Tsai et al., 2004, 2008; Xu et al., 2006; Guo et al., 2007; Kim et al., 2007; Chang et al., 2009). Unlike the flowers in eudicots, the nearly identical shape of the sepals and petals as well as the production of a unique lip in orchid flowers make them a very special plant species for the study of flower development. Four clades (1–4) of genes in the paleoAP3 lineage have been identified in several orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009). Several works have described the possible interactions among these four clades of paleoAP3 genes and one PI gene that are involved in regulating the differentiation and formation of the sepal/petal/lip of orchids (Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009). However, the exact mechanism that involves the orchid B class genes remains unclear and needs to be clarified by more experimental investigations.O. Gower Ramsey is a popular orchid with important economic value in cut flower markets. Only a few studies have been reported on the role of MADS box genes in regulating flower formation in this plant species (Hsu and Yang, 2002; Hsu et al., 2003; Chang et al., 2009). An AP3-like MADS gene that regulates both floral formation and initiation in transgenic Arabidopsis has been reported (Hsu and Yang, 2002). In addition, four AP1/AGAMOUS-LIKE9 (AGL9)-like MADS box genes have been characterized that show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis (Hsu et al., 2003; Chang et al., 2009). Compared with other orchids, the production of a large and well-expanded lip and five small identical sepals/petals makes O. Gower Ramsey a special case for the study of the diverse functions of B class MADS box genes during evolution. Therefore, the isolation of more B class MADS box genes and further study of their roles in the regulation of perianth (sepal/petal/lip) formation during O. Gower Ramsey flower development are necessary. In addition to the clade 2 paleoAP3 gene OMADS3, which was previously characterized in our laboratory (Hsu and Yang, 2002), three more B class MADS box genes, OMADS5, OMADS8, and OMADS9, were characterized from O. Gower Ramsey in this study. Based on the different expression patterns and the protein interactions among these four orchid B class genes, we propose that the presence of OMADS3/8 and/or OMADS9 is required for sepal/petal/lip formation. Further sepal and petal formation at least requires the additional presence of OMADS5, whereas large lip formation was seen when OMADS5 expression was absent. Our results provide a new finding and information pertaining to the roles for orchid B class MADS box genes in the regulation of sepal/petal/lip formation.  相似文献   

4.
5.
The membrane-bound BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1) is a common coreceptor in plants and regulates distinct cellular programs ranging from growth and development to defense against pathogens. BAK1 functions through binding to ligand-stimulated transmembrane receptors and activating their kinase domains via transphosphorylation. In the absence of microbes, BAK1 activity may be suppressed by different mechanisms, like interaction with the regulatory BIR (for BAK1-INTERACTING RECEPTOR-LIKE KINASE) proteins. Here, we demonstrated that BAK1 overexpression in Arabidopsis (Arabidopsis thaliana) could cause detrimental effects on plant development, including growth arrest, leaf necrosis, and reduced seed production. Further analysis using an inducible expression system showed that BAK1 accumulation quickly stimulated immune responses, even under axenic conditions, and led to increased resistance to pathogenic Pseudomonas syringae pv tomato DC3000. Intriguingly, our study also revealed that the plasma membrane-associated BAK1 ectodomain was sufficient to induce autoimmunity, indicating a novel mode of action for BAK1 in immunity control. We postulate that an excess of BAK1 or its ectodomain could trigger immune receptor activation in the absence of microbes through unbalancing regulatory interactions, including those with BIRs. Consistently, mutation of SUPPRESSOR OF BIR1-1, which encodes an emerging positive regulator of transmembrane receptors in plants, suppressed the effects of BAK1 overexpression. In conclusion, our findings unravel a new role for the BAK1 ectodomain in the tight regulation of Arabidopsis immune receptors necessary to avoid inappropriate activation of immunity.Plants rely on their innate immune system to detect microbes and mount an active defense against pathogens. The plant immune system is traditionally considered to be composed of two layers (Jones and Dangl, 2006). The first one is based on the activity of pattern-recognition receptors (PRRs) that can detect microbe-associated molecular patterns (MAMPs) and trigger what is termed pattern-triggered immunity (PTI; Boller and Felix, 2009). Many plant pathogens can suppress this basal defense response using virulence factors termed effectors. In a second layer of defense, plants can make use of resistance (R) proteins to recognize the presence of pathogen effectors resulting in effector-triggered immunity (ETI), which resembles an accelerated and amplified PTI response (Jones and Dangl, 2006).Plants utilize plasma membrane-associated receptor-like proteins (RLPs) or receptor-like kinases (RLKs) as PRRs to sense specific signals through their ectodomains (Böhm et al., 2014). RLPs and RLKs require the function of additional RLKs to form active receptor complexes and transfer the external signal to the inside of the cells (Zhang and Thomma, 2013; Cao et al., 2014; Liebrand et al., 2014). The best-known coreceptor is the leucine-rich repeat (LRR)-RLK BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1), which was originally identified as a positive regulator and partner for the brassinosteroid (BR) receptor BRASSINOSTEROID INSENSITIVE1 (BRI1; Li et al., 2002; Nam and Li, 2002). BRs refer to phytohormones that promote plant growth and development (Fujioka and Yokota, 2003). Thus, loss-of-function mutations in BAK1 negatively impact Arabidopsis (Arabidopsis thaliana) growth due to improper cell elongation. In short, bak1 mutants display compact rosettes with round-shaped leaves and shorter petioles and phenocopy weak bri1 mutations (Li et al., 2002; Nam and Li, 2002). Conversely, certain mutants affected in the BAK1 ectodomain show increased activity in the BR signaling pathway and share phenotypic similarities with BRI1-overexpressing lines (Wang et al., 2001), including elongated hypocotyls, petioles, and leaf blades and an overall increase in height (Jaillais et al., 2011; Chung et al., 2012).Furthermore, BAK1 is involved in the containment of cell death, independently of its function in BR signaling. Arabidopsis bak1 knockout mutants exhibit extensive cell death spreading after microbial infection (Kemmerling et al., 2007). In addition, spontaneous cell death develops in Arabidopsis double mutant plants lacking both BAK1 (also named SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 [SERK3]) and its closest homolog BAK1-LIKE1 (BKK1)/SERK4, causing seedling lethality even in the absence of microbes (He et al., 2007). Similar phenotypes are observed in Arabidopsis, rice (Oryza sativa), and Nicotiana benthamiana by lowering the expression of BAK1 and its homologs (Heese et al., 2007; Jeong et al., 2010; Park et al., 2011). Interestingly, typical defense responses, like the production of reactive oxygen species and constitutive callose deposition, are also detected in those plants, although the basis for this phenomenon remains poorly understood (He et al., 2007; Kemmerling et al., 2007; Park et al., 2011; Gao et al., 2013).On the other hand, BAK1 is widely studied as a key component of immune signaling pathways due to its known association with different PRRs, including RLKs and RLPs (Kim et al., 2013; Böhm et al., 2014). Upon MAMP perception, PRRs induce signaling and physiological defense responses like mitogen-activated protein kinase (MAPK) activation, reactive oxygen species and ethylene production, and modifications in gene expression, all of which contribute to PTI. Among the best-studied examples of BAK1-regulated PRRs are two LRR-receptor kinases, ELONGATION FACTOR Tu RECEPTOR (EFR), which senses the active epitope elf18 of the bacterial elongation factor Tu, and the flagellin receptor FLAGELLIN SENSING2 (FLS2), which senses the active epitope flg22 of bacterial flagellin (Gómez-Gómez and Boller, 2000; Chinchilla et al., 2006; Zipfel et al., 2006). Immediately after flg22 binding to its LRR ectodomain, FLS2 forms a tight complex with BAK1 (Chinchilla et al., 2007; Sun et al., 2013). This heteromerization step may bring the two kinase domains closer and thereby induce, within seconds, the phosphorylation of BAK1 and FLS2 (Schulze et al., 2010; Schwessinger et al., 2011). These steps are sufficient to initiate the immune signaling pathway, even if the ectodomains and kinase domains are switched between FLS2 and BAK1 (Albert et al., 2013).While PRRs, such as FLS2 and EFR, are extremely sensitive to even subnanomolar concentrations of their ligands, a tight control of these receptors is expected, since constitutive activation of defense responses in plants dramatically impairs fitness and growth (Tian et al., 2003; Korves and Bergelson, 2004). However, the mechanisms that underlie the attenuation of PRR activation or prevent these receptors from signaling constitutively remain largely unknown (Macho and Zipfel, 2014). Several independent observations indicate that BAK1 and FLS2 are present in close spatial proximity in preformed complexes at the plasma membrane (Chinchilla et al., 2007; Schulze et al., 2010; Roux et al., 2011). Negative regulation of immune signaling prior to ligand perception could happen within the PRR complex and depend on conformational changes following the association of FLS2 with flg22 (Meindl et al., 2000; Schulze et al., 2010; Mueller et al., 2012). Additionally, other partners might prevent the constitutive interaction of BAK1 with FLS2. Such could be the case for the LRR-RLK BAK1-INTERACTING RECEPTOR-LIKE KINASEs (BIRs): BIR2 was recently discovered as a substrate and negative regulator for BAK1, while the absence of BIR1 leads to the activation of defense induction and strong dwarfism (Gao et al., 2009; Halter et al., 2014b). Furthermore, MAMP signaling may be constrained by phosphatases, as suggested in earlier studies (Felix et al., 1994; Gómez-Gómez et al., 2001) and recently shown for the protein phosphatase 2A, which controls PRR activation likely by modulating the BAK1 phosphostatus (Segonzac et al., 2014). These examples illustrate the variety of mechanisms that may tightly control BAK1 activity.In this work, we show that regulation of BAK1 accumulation is crucial for Arabidopsis fitness, as its overexpression leads to dwarfism and premature death. The phenotype differs from BR mutants and is very reminiscent of or even identical to the autoimmune phenotype of plants showing constitutive activation of R proteins (Oldroyd and Staskawicz, 1998; Bendahmane et al., 2002; Zhang et al., 2003). BAK1 overexpression is associated with constitutive activation of defense pathway(s) involving the general coregulator of RLPs, SUPPRESSOR OF BIR1-1 (SOBIR1; Liebrand et al., 2013, 2014). To our knowledge, this is the first report and comprehensive characterization of such an autoimmunity phenotype for Arabidopsis plants overexpressing BAK1, and it highlights the importance of the regulation of PTI overactivation.  相似文献   

6.
7.
8.
The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.Drought and salinity cause osmotic stress in plants and severely affect crop productivity throughout the world. Plants respond to osmotic stress by changing a number of cellular processes (Xiong et al., 1999; Xiong and Zhu, 2002; Bartels and Sunkar, 2005; Boudsocq and Lauriére, 2005). Some of these changes include activation of stress-responsive genes, regulation of membrane transport at both plasma membrane (PM) and vacuolar membrane (tonoplast) to maintain water and ionic homeostasis, and metabolic changes to produce compatible osmolytes such as Pro (Stewart and Lee, 1974; Krasensky and Jonak, 2012). It has been well established that a specific calcium (Ca2+) signature is generated in response to a particular environmental stimulus (Trewavas and Malhó, 1998; Scrase-Field and Knight, 2003; Luan, 2009; Kudla et al., 2010). The Ca2+ changes are primarily perceived by several Ca2+ sensors such as calmodulin (Reddy, 2001; Luan et al., 2002), Ca2+-dependent protein kinases (Harper and Harmon, 2005), calcineurin B-like proteins (CBLs; Luan et al., 2002; Batistič and Kudla, 2004; Pandey, 2008; Luan, 2009; Sanyal et al., 2015), and other Ca2+-binding proteins (Reddy, 2001; Shao et al., 2008) to initiate various cellular responses.Plant CBL-type Ca2+ sensors interact with and activate CBL-interacting protein kinases (CIPKs) that phosphorylate downstream components to transduce Ca2+ signals (Liu et al., 2000; Luan et al., 2002; Batistič and Kudla, 2004; Luan, 2009). In several plant species, multiple members have been identified in the CBL and CIPK family (Luan et al., 2002; Kolukisaoglu et al., 2004; Pandey, 2008; Batistič and Kudla, 2009; Weinl and Kudla, 2009; Pandey et al., 2014). Involvement of specific CBL-CIPK pair to decode a particular type of signal entails the alternative and selective complex formation leading to stimulus-response coupling (D’Angelo et al., 2006; Batistič et al., 2010).Several CBL and CIPK family members have been implicated in plant responses to drought, salinity, and osmotic stress based on genetic analysis of Arabidopsis (Arabidopsis thaliana) mutants (Zhu, 2002; Cheong et al., 2003, 2007; Kim et al., 2003; Pandey et al., 2004, 2008; D’Angelo et al., 2006; Qin et al., 2008; Tripathi et al., 2009; Held et al., 2011; Tang et al., 2012; Drerup et al., 2013; Eckert et al., 2014). A few CIPKs have also been functionally characterized by gain-of-function approach in crop plants such as rice (Oryza sativa), pea (Pisum sativum), and maize (Zea mays) and were found to be involved in osmotic stress responses (Mahajan et al., 2006; Xiang et al., 2007; Yang et al., 2008; Tripathi et al., 2009; Zhao et al., 2009; Cuéllar et al., 2010).In this report, we examined the role of the Arabidopsis CIPK21 gene in osmotic stress response by reverse genetic analysis. The loss-of-function mutant plants became hypersensitive to salt and mannitol stress conditions, suggesting that CIPK21 is involved in the regulation of osmotic stress response in Arabidopsis. These findings are further supported by an enhanced tonoplast targeting of the cytoplasmic CIPK21 through interaction with the vacuolar Ca2+ sensors CBL2 and CBL3 under salt stress condition.  相似文献   

9.
The fibrillins are a large family of chloroplast proteins that have been linked with stress tolerance and disease resistance. FIBRILLIN4 (FIB4) is found associated with the photosystem II light-harvesting complex, thylakoids, and plastoglobules, which are chloroplast compartments rich in lipophilic antioxidants. For this study, FIB4 expression was knocked down in apple (Malus 3 domestica) using RNA interference. Plastoglobule osmiophilicity was decreased in fib4 knockdown (fib4 KD) tree chloroplasts compared with the wild type, while total plastoglobule number was unchanged. Compared with the wild type, net photosynthetic CO2 fixation in fib4 KD trees was decreased at high light intensity but was increased at low light intensity. Furthermore, fib4 KD trees produced more anthocyanins than the wild type when transferred from low to high light intensity, indicating greater sensitivity to high light stress. Relative to the wild type, fib4 KD apples were more sensitive to methyl viologen and had higher superoxide levels during methyl viologen treatment. Arabidopsis (Arabidopsis thaliana) fib4 mutants and fib4 KD apples were more susceptible than their wild-type counterparts to the bacterial pathogens Pseudomonas syringae pathovar tomato and Erwinia amylovora, respectively, and were more sensitive to ozone-induced tissue damage. Following ozone stress, plastoglobule osmiophilicity decreased in wild-type apple and remained low in fib4 KD trees; total plastoglobule number increased in fib4 KD apples but not in the wild type. These results indicate that FIB4 is required for plastoglobule development and resistance to multiple stresses. This study suggests that FIB4 is involved in regulating plastoglobule content and that defective regulation of plastoglobule content leads to broad stress sensitivity and altered photosynthetic activity.Increased production of reactive oxygen species (ROS) is among the first biochemical responses of plants when challenged by pathogens and harsh environmental conditions (Mehdy, 1994; Lamb and Dixon, 1997; Joo et al., 2005). ROS are implicated in tissue damage during environmental stress and in the promotion of disease development by necrotrophic and hemibiotrophic pathogens (Venisse et al., 2001; Apel and Hirt, 2004; Shetty et al., 2008). For example, ROS production is critical for host colonization and pathogenesis by the bacterium Erwinia amylovora, which causes fire blight disease in rosaceous plants such as apple (Malus 3 domestica) and pear (Pyrus communis; Venisse et al., 2001).The chloroplast is a site of ROS production during biotic and abiotic stress (Joo et al., 2005; Liu et al., 2007). The chloroplast has a battery of enzymes such as superoxide dismutase and ascorbate peroxidase, and antioxidants such as ascorbate, glutathione, and tocopherols, for protection against ROS (Noctor and Foyer, 1998; Asada, 2006). Plastoglobules are lipoprotein bodies attached to the thylakoids (Austin et al., 2006) that store lipids, including antioxidants such as tocopherols, carotenes, and plastoquinones (Steinmüller and Tevini, 1985; Tevini and Steinmüller, 1985). In addition to antioxidants, plastoglobules contain tocopherol cyclase, which is involved in γ-tocopherol synthesis (Austin et al., 2006; Vidi et al., 2006). The antioxidant content of plastoglobules and their apparent involvement in tocopherol biosynthesis imply that they could play a role in plant responses to oxidative stress.Plastoglobules contain fibrillins, which were initially described as protein components of chromoplast fibrils with a molecular mass of approximately 30 kD (Winkenbach et al., 1976; Knoth et al., 1986; Emter et al., 1990; Deruère et al., 1994). Fibrillins are ubiquitous proteins present from cyanobacteria to plants (Laizet et al., 2004). Fibrillins maintain plastoglobule structural integrity (Deruère et al., 1994; Pozueta-Romero et al., 1997; Langenkämper et al., 2001; Vidi et al., 2006; Bréhélin et al., 2007) and stabilize the photosynthetic apparatus during photooxidative stress (Gillet et al., 1998; Yang et al., 2006; Youssef et al., 2010), osmotic stress (Gillet et al., 1998), drought (Pruvot et al., 1996; Rey et al., 2000), and low temperature (Rorat et al., 2001). Fibrillins are involved in abscisic acid-mediated protection from photoinhibition (Yang et al., 2006), and a subfamily of Arabidopsis (Arabidopsis thaliana) fibrillins (FIB1a, -1b, and -2) conditions jasmonate production during low-temperature, photooxidative stress (Youssef et al., 2010). Arabidopsis plants lacking one fibrillin (At4g22240) and tomato (Solanum lycopersicum) plants with suppressed expression of a fibrillin (LeCHRC) are susceptible to Pseudomonas syringae and Botrytis cinerea, respectively (Cooper et al., 2003; Leitner-Dagan et al., 2006), indicating that fibrillins play a role in disease resistance.The Arabidopsis fibrillin encoded by At3g23400 has received various appellations, including FIBRILLIN4 (FIB4; Laizet et al., 2004), Harpin-Binding Protein1 (Song et al., 2002), AtPGL 30.4 (Vidi et al., 2006), and Fibrillin6 (Galetskiy et al., 2008); here, it will be referred to by its earliest published name, FIB4. FIB4 is found associated with the PSII light-harvesting complex (Galetskiy et al., 2008). FIB4 has also been detected in plastoglobules (Vidi et al., 2006; Ytterberg et al., 2006) and thylakoids (Friso et al., 2004; Peltier et al., 2004). However, the specific function of FIB4 is unknown. Several lines of evidence suggest that FIB4 may be involved in plant disease resistance responses: pathogen-associated molecular patterns trigger its phosphorylation (Jones et al., 2006); pathogen-associated molecular patterns stimulate the expression of its ortholog in tobacco (Nicotiana tabacum; Jones et al., 2006; Sanabria and Dubery, 2006); and it can physically interact with the HrpN (harpin) virulence protein of the fire blight pathogen E. amylovora in a yeast two-hybrid assay, suggesting that it could be a receptor or target of HrpN (Song et al., 2002). In addition, it is thought that FIB4 may be involved in the transport of small, hydrophobic molecules because it contains a conserved lipocalin signature (Jones et al., 2006). Here, we report a genetic analysis of FIB4 function in apple and Arabidopsis in terms of its role in plastoglobule development and plant resistance to biotic and abiotic stresses.  相似文献   

10.
11.
12.
13.
14.
15.
16.
The FLAGELLIN-SENSING2 (FLS2) receptor kinase recognizes bacterial flagellin and initiates a battery of downstream defense responses to reduce bacterial invasion through stomata in the epidermis and bacterial multiplication in the apoplast of infected plants. Recent studies have shown that during Pseudomonas syringae pv tomato (Pst) DC3000 infection of Arabidopsis (Arabidopsis thaliana), FLS2-mediated immunity is actively suppressed by effector proteins (such as AvrPto and AvrPtoB) secreted through the bacterial type III secretion system (T3SS). We provide evidence here that T3SS effector-based suppression does not appear to be sufficient to overcome FLS2-based immunity during Pst DC3000 infection, but that the phytotoxin coronatine (COR) produced by Pst DC3000 also plays a critical role. COR-deficient mutants of Pst DC3000 are severely reduced in virulence when inoculated onto the leaf surface of wild-type Columbia-0 plants, but this defect was rescued almost fully in fls2 mutant plants. Although bacteria are thought to carry multiple microbe-associated molecular patterns, stomata of fls2 plants are completely unresponsive to COR-deficient mutant Pst DC3000 bacteria. The responses of fls2 plants were similar to those of the Arabidopsis G-protein alpha subunit1-3 mutant, which is defective in abscisic acid-regulated stomatal closure, but were distinct from those of the Arabidopsis non-expressor of PR genes1 mutant, which is defective in salicylic acid-dependent stomatal closure and apoplast defense. Epistasis analyses show that salicylic acid signaling acts upstream of abscisic acid signaling in bacterium-triggered stomatal closure. Taken together, these results suggest a particularly important role of FLS2-mediated resistance to COR-deficient mutant Pst DC3000 bacteria, and nonredundant roles of COR and T3SS effector proteins in the suppression of FLS2-mediated resistance in the Arabidopsis-Pst DC3000 interaction.Stomata are microscopic pores formed by pairs of guard cells in the epidermis of terrestrial plants; they are essential for CO2 and water exchange with the environment. Plants regulate the stomatal aperture in response to changing abiotic environmental conditions (e.g. light, humidity, CO2 concentration) to optimize CO2 uptake and water transpiration. The molecular mechanisms underlying the stomatal regulation in response to abiotic signals are a subject of intense studies. Research in this area has uncovered many signaling components, indicating that stomatal guard cells have one of the most dynamic regulatory networks in plants (Schroeder et al., 2001; Shimazaki et al., 2007; Neill et al., 2008; Wang and Song, 2008).Stomatal openings are also a major route of pathogen entry into the plant (Melotto et al., 2006). Accordingly, guard cells have developed mechanisms to regulate stomatal aperture in response to pathogens. Melotto and colleagues found that the bacterial pathogen Pseudomonas syringae pv tomato (Pst) strain DC3000 induces stomatal closure in Arabidopsis (Arabidopsis thaliana) within 1 h post inoculation. However, after 3 to 4 h, stomata reopen (Melotto et al., 2006). The ability of Pst DC3000 to reopen stomata is dependent on the polyketide toxin coronatine (COR), a virulence factor that had previously been shown to be important for bacterial multiplication within the mesophyll space, disease symptom development, and induction of systemic susceptibility of infected plants (Mittal and Davis, 1995; Bender et al., 1999; Budde and Ullrich, 2000; Brooks et al., 2004; Cui et al., 2005; Melotto et al., 2008b). Stomatal reopening by Pst DC3000 was also shown to be dependent on the RPM1-INTERACTING PROTEIN4 in Arabidopsis (Liu et al., 2009). Recently, another bacterial pathogen, Xanthomonas campestris pv campestris, was shown to cause stomatal closure and subsequent reopening during infection (Gudesblat et al., 2009). In this case, a virulence factor of smaller than 2 kD was identified, but the molecular identity of this virulence factor is not yet known. In fungal pathogens, examples of virulence factors that inhibit stomatal closure include fusicoccin (Turner and Graniti, 1969; Assmann and Schwartz, 1992; Kinoshita and Shimazaki, 2001) and oxalic acid (Guimaraes and Stotz, 2004), although their role in pathogen invasion has not been established.Stomatal guard cells also respond to purified microbe-associated molecular patterns (MAMPs), such as chitosan, a polymer of β-1,4-glucosamine residues derived from fungal chitin (Lee et al., 1999; Amborabe et al., 2008), flg22, a 22-amino acid peptide derived from bacterial flagellin (Melotto et al., 2006; Cho et al., 2008; Desikan et al., 2008; Zhang et al., 2008), and bacterial lipopolysaccharides (LPSs; Melotto et al., 2006; Cho et al., 2008). Peptidoglycan, derived from Gram-positive bacteria, is shown to be able to induce plant innate immune responses (Gust et al., 2007; Erbs et al., 2008). However, peptidoglycan has not yet been shown to trigger stomatal responses. MAMPs are recognized by plant pattern-recognition receptors, such as Arabidopsis proteins FLAGELLIN-SENSING2 (FLS2) that recognizes bacterial flagellin (Gómez-Gómez and Boller, 2000), EF-TU RECEPTOR (EFR) that recognizes bacterial elongation factor TU (Zipfel et al., 2006), and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) that perceives an unknown MAMP from Pst DC3000 (Gimenez-Ibanez et al., 2009a, 2009b). In the case of flg22-induced stomatal closure, FLS2 is required (Melotto et al., 2006). Stomata from fls2 mutant plants, however, still respond to purified LPS (Melotto et al., 2006), illustrating both specificity in MAMP recognition by guard cells and the capacity of guard cells to recognize multiple MAMPs (Melotto et al., 2006). However, it has not been formally proven that the perception of any individual MAMPs actually contributes to stomatal closure induced by live bacteria, as bacteria produce many other factors in the context of an infection.Studies using purified MAMPs have shown that stomatal closure in response to biotic signals requires the phytohormone abscisic acid (ABA), the guard cell-specific OPEN STOMATA1 (OST1) kinase, the production of reactive oxygen species and nitric oxide, the heterotrimeric G protein, and the regulation of K+ channels—all of which are hallmarks of abiotic signal-induced stomatal closure (Melotto et al., 2006; Neill et al., 2008; Zhang et al., 2008). These findings suggest that the guard cell signal transductions in response to biotic and abiotic signals share common steps. Besides shared signaling components, however, MAMP-triggered stomatal closure also requires the plant defense hormone salicylic acid (SA; Melotto et al., 2006). At present, it is not clear whether SA per se or a downstream signaling component, such as the NON-EXPRESSOR OF PR GENES1 (NPR1), is required for stomatal closure. Nor do we understand the epistatic relationship between SA and ABA signaling in the regulation of bacterium/MAMP-triggered stomatal closure.In this study, we conducted experiments to further characterize stomatal regulation during Pst DC3000 infection of Arabidopsis plants. In particular, we sought to determine (1) whether the perception of well-documented MAMPs indeed contributes to stomatal closure in response to live bacteria, (2) the roles of the heterotrimeric G protein (involved in ABA signaling) and NPR1 (involved in SA signaling) in stomatal response during bacterial infection, and (3) the relationship between SA signaling and ABA signaling in regulating bacterium-triggered stomatal closure. These experiments revealed a critical role of FLS2 in mediating disease resistance against COR-deficient mutant Pst DC3000 bacteria.  相似文献   

17.
Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes.Rational and quantitative assessment of metabolic changes in response to genetic modification (GM) is an open question and in need of innovative solutions. Nontargeted metabolite profiling can detect thousands of compounds, but it is not easy to understand the significance of the changed metabolites in the biochemical and biological context of the organism. To better assess the changes in metabolites from nontargeted metabolomics studies, it is important to examine the changed metabolites in the context of the genome-scale metabolic network of the organism.Metabolomics is a technique that aims to quantify all the metabolites in a biological system (Nikolau and Wurtele, 2007; Nicholson and Lindon, 2008; Roessner and Bowne, 2009). It has been used widely in studies ranging from disease diagnosis (Holmes et al., 2008; DeBerardinis and Thompson, 2012) and drug discovery (Cascante et al., 2002; Kell, 2006) to metabolic reconstruction (Feist et al., 2009; Kim et al., 2012) and metabolic engineering (Keasling, 2010; Lee et al., 2011). Metabolomic studies have demonstrated the possibility of identifying gene functions from changes in the relative concentrations of metabolites (metabotypes or metabolic signatures; Ebbels et al., 2004) in various species including yeast (Saccharomyces cerevisiae; Raamsdonk et al., 2001; Allen et al., 2003), Arabidopsis (Arabidopsis thaliana; Brotman et al., 2011), tomato (Solanum lycopersicum; Schauer et al., 2006), and maize (Zea mays; Riedelsheimer et al., 2012). Metabolomics has also been used to better understand how plants interact with their environments (Field and Lake, 2011), including their responses to biotic and abiotic stresses (Dixon et al., 2006; Arbona et al., 2013), and to predict important agronomic traits (Riedelsheimer et al., 2012). Metabolite profiling has been performed on many plant species, including angiosperms such as Arabidopsis, poplar (Populus trichocarpa), and Catharanthus roseus (Sumner et al., 2003; Rischer et al., 2006), basal land plants such as Selaginella moellendorffii and Physcomitrella patens (Erxleben et al., 2012; Yobi et al., 2012), and Chlamydomonas reinhardtii (Fernie et al., 2012; Davis et al., 2013). With the availability of whole genome sequences of various species, metabolomics has the potential to become a useful tool for elucidating the functions of genes using large-scale systematic analyses (Fiehn et al., 2000; Saito and Matsuda, 2010; Hur et al., 2013).Although metabolomics data have the potential for identifying the roles of genes that are associated with metabolic phenotypes, the biochemical mechanisms that link functions of genes with metabolic phenotypes are still poorly characterized. For example, we do not yet know the principles behind how perturbing the expression of a single gene changes the metabolic system as a whole. Large-scale metabolomics data have provided useful resources for linking phenotypes to genotypes (Fiehn et al., 2000; Roessner et al., 2001; Tikunov et al., 2005; Schauer et al., 2006; Lu et al., 2011; Fukushima et al., 2014). For example, Lu et al. (2011) compared morphological and metabolic phenotypes from more than 5,000 Arabidopsis chloroplast mutants using gas chromatography (GC)- and liquid chromatography (LC)-mass spectrometry (MS). Fukushima et al. (2014) generated metabolite profiles from various characterized and uncharacterized mutant plants and clustered the mutants with similar metabolic phenotypes by conducting multidimensional scaling with quantified metabolic phenotypes. Nonetheless, representation and analysis of such a large amount of data remains a challenge for scientific discovery (Lu et al., 2011). In addition, these studies do not examine the topological and functional characteristics of metabolic changes in the context of a genome-scale metabolic network. To understand the relationship between genotype and metabolic phenotype, we need to investigate the metabolic changes caused by perturbing the expression of a gene in a genome-scale metabolic network perspective, because metabolic pathways are not independent biochemical factories but are components of a complex network (Berg et al., 2002; Merico et al., 2009).Much progress has been made in the last 2 decades to represent metabolism at a genome scale (Terzer et al., 2009). The advances in genome sequencing and emerging fields such as biocuration and bioinformatics enabled the representation of genome-scale metabolic network reconstructions for model organisms (Bassel et al., 2012). Genome-scale metabolic models have been built and applied broadly from microbes to plants. The first step toward modeling a genome-scale metabolism in a plant species started with developing a genome-scale metabolic pathway database for Arabidopsis (AraCyc; Mueller et al., 2003) from reference pathway databases (Kanehisa and Goto, 2000; Karp et al., 2002; Zhang et al., 2010). Genome-scale metabolic pathway databases have been built for several plant species (Mueller et al., 2005; Zhang et al., 2005, 2010; Urbanczyk-Wochniak and Sumner, 2007; May et al., 2009; Dharmawardhana et al., 2013; Monaco et al., 2013, 2014; Van Moerkercke et al., 2013; Chae et al., 2014; Jung et al., 2014). Efforts have been made to develop predictive genome-scale metabolic models using enzyme kinetics and stoichiometric flux-balance approaches (Sweetlove et al., 2008). de Oliveira Dal’Molin et al. (2010) developed a genome-scale metabolic model for Arabidopsis and successfully validated the model by predicting the classical photorespiratory cycle as well as known key differences between redox metabolism in photosynthetic and nonphotosynthetic plant cells. Other genome-scale models have been developed for Arabidopsis (Poolman et al., 2009; Radrich et al., 2010; Mintz-Oron et al., 2012), C. reinhardtii (Chang et al., 2011; Dal’Molin et al., 2011), maize (Dal’Molin et al., 2010; Saha et al., 2011), sorghum (Sorghum bicolor; Dal’Molin et al., 2010), and sugarcane (Saccharum officinarum; Dal’Molin et al., 2010). These predictive models have the potential to be applied broadly in fields such as metabolic engineering, drug target discovery, identification of gene function, study of evolutionary processes, risk assessment of genetically modified crops, and interpretations of mutant phenotypes (Feist and Palsson, 2008; Ricroch et al., 2011).Here, we interrogate the metabotypes caused by 136 single gene perturbations of Arabidopsis by analyzing the relative concentration changes of 1,348 chemically identified metabolites using a reconstructed genome-scale metabolic network. We examine the characteristics of the changed metabolites (the metabolites whose relative concentrations were significantly different in mutants relative to the wild type) in the metabolic network to uncover biological and topological consequences of the perturbed genes.  相似文献   

18.
Sinorhizobium meliloti cells were engineered to overexpress Anabaena variabilis flavodoxin, a protein that is involved in the response to oxidative stress. Nodule natural senescence was characterized in alfalfa (Medicago sativa) plants nodulated by the flavodoxin-overexpressing rhizobia or the corresponding control bacteria. The decline of nitrogenase activity and the nodule structural and ultrastructural alterations that are associated with nodule senescence were significantly delayed in flavodoxin-expressing nodules. Substantial changes in nodule antioxidant metabolism, involving antioxidant enzymes and ascorbate-glutathione cycle enzymes and metabolites, were detected in flavodoxin-containing nodules. Lipid peroxidation was also significantly lower in flavodoxin-expressing nodules than in control nodules. The observed amelioration of the oxidative balance suggests that the delay in nodule senescence was most likely due to a role of the protein in reactive oxygen species detoxification. Flavodoxin overexpression also led to high starch accumulation in nodules, without reduction of the nitrogen-fixing activity.Symbiotic nodules have a limited functional life that varies among different legume species. Nodule senescence is the sequence of structural, molecular, biochemical, and physiological events taking place in the process that a mature and functional nodule undergoes leading to the loss of the nitrogen-fixing activity and culminating in cell death of symbiotic tissue (Swaraj and Bishnoi, 1996; Puppo et al., 2005; Van de Velde et al., 2006).Various models have been proposed to explain the mechanisms that trigger the process of natural or stress-induced nodule senescence. However, it is generally accepted that a senescence-inducing signal from the plant causes a decrease in antioxidant levels and thus an increase in reactive oxygen species (ROS) up to a point of no return. Numerous studies have shown that ROS and antioxidant systems are involved in natural (Lucas et al., 1998; Evans et al., 1999; Hernández-Jiménez et al., 2002; Puppo et al., 2005) as well as induced (Dalton et al., 1993; Becana et al., 2000; Hernández-Jiménez et al., 2002; Matamoros et al., 2003) nodule senescence. Nitrogen fixation is very sensitive to ROS, and nitrogenase activity drastically decreases during nodule senescence (Dalton et al., 1986).Antioxidant systems that protect cells from oxidative damage have been described in symbiotic nodules (Dalton et al., 1986, 1993; Evans et al., 1999; Becana et al., 2000; Matamoros et al., 2003; Puppo et al., 2005). These include the enzymes superoxide dismutase (SOD), catalase, and peroxidase. Another enzymatic system associated with ROS detoxification is the ascorbate-glutathione pathway, which includes ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR; Dalton et al., 1986, 1992; Noctor and Foyer 1998; Becana et al., 2000). Ascorbate and reduced glutathione (GSH) in this pathway can also scavenge superoxide and hydrogen peroxide.During nodule senescence, several ultrastructural alterations in the nodule tissues and cells have been observed (Lucas et al., 1998; Hernández-Jiménez et al., 2002; Puppo et al., 2005, and refs. therein; Van de Velde et al., 2006). Cytosol becomes electron dense, altered vesicles proliferate, and eventually the cytosol undergoes lysis. The number of peroxisomes increases, mitochondria form complex elongated structures, and symbiosomes change in size and shape and fuse during natural and induced senescence of nodules (Hernández-Jiménez et al., 2002). Damage of the symbiosome membrane is also detected (Puppo et al., 2005; Van de Velde et al., 2006).A strategy of delayed nodule senescence could lead to increased nitrogen fixation and legume productivity. Delayed nodule senescence together with enhanced sustainability under field conditions are among the key aims of legume improvement programs (Puppo et al., 2005). An interesting approach proposed to achieve delayed senescence is to induce nodulation in legumes using rhizobial strains with modified redox capacity (Zahran, 2001).The protein flavodoxin contains a FMN group acting as a redox center transferring electrons at low potentials (Pueyo et al., 1991; Pueyo and Gómez-Moreno, 1991). The FMN cofactor of flavodoxin can exist in three different redox states: oxidized, one-electron-reduced semiquinone, and two-electron-reduced hydroquinone. This property confers high versatility to flavodoxins in electron transport systems (Simondsen and Tollin, 1980; McIver et al., 1998). To date, flavodoxin has not been described in plants, as flavodoxin-encoding genes were lost during the transition of algae to plants (Zurbriggen et al., 2007) and, consequently, no homologs have been identified in the sequenced genome of Arabidopsis (Arabidopsis thaliana; Arabidopsis Genome Initiative, 2000). Flavodoxin is present as a constitutive or inducible protein in different microorganisms (Klugkist et al., 1986). In the nitrogen-fixing cyanobacterium Anabaena variabilis PCC 7119, flavodoxin is expressed under conditions of limited iron availability, replacing ferredoxin in the photosynthetic electron transport from PSI to NADP+ and in nitrogenase reduction (Sandmann et al., 1990). Reversible electron transfer from flavodoxin to NADP+ is catalyzed by ferredoxin NADP+ reductase in different pathways of oxidative metabolism (Arakaki et al., 1997). In its reduced state, flavodoxin might be able to react with ROS and revert to its original redox state in the presence of an appropriate electron source. This could probably occur without the associated molecular damage that metallic complexes in catalases or SODs suffer (Keyer et al., 1995). The presence of flavodoxin has not been documented to date in the symbiotic bacterium Sinorhizobium meliloti. In Escherichia coli, however, flavodoxin induction is linked to the oxidative stress-responsive regulon soxRS (Zheng et al., 1999). It has been suggested that flavodoxin and ferredoxin (flavodoxin) NADP+ reductase might be induced and have a role in reestablishing the cell redox balance under oxidative stress conditions (Liochev et al., 1994). The properties of flavodoxin suggest that its presence in the cell may have a facilitating effect on ROS detoxification. In fact, an increase in the amount of flavodoxin has been observed in some bacterial species subjected to oxidative stress (Zheng et al., 1999; Yousef et al., 2003; Singh et al., 2004), and transgenic tobacco (Nicotiana tabacum) plants expressing flavodoxin in chloroplasts show enhanced tolerance to a broad range of stresses related to oxidative damage (Tognetti et al., 2006, 2007a, 2007b).In this work, Sinorhizobium meliloti was transformed with the A. variabilis flavodoxin gene and used to nodulate alfalfa (Medicago sativa) plants. The effects of flavodoxin expression on nodulation dynamics, on nodule development and senescence processes, and on nitrogen-fixing activity were analyzed. Mechanistic insights suggesting putative roles for flavodoxin in protection from ROS and the induced delay of nodule senescence are likewise discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号