首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multidomain pro-apoptotic Bcl-2 family proteins BAK and BAX are believed to form large oligomeric pores in the mitochondrial outer membrane during apoptosis. Formation of these pores results in the release of apoptotic factors including cytochrome c from the intermembrane space into the cytoplasm, where they initiate the cascade of events that lead to cell death. Using the site-directed spin labeling method of electron paramagnetic resonance (EPR) spectroscopy, we have determined the conformational changes that occur in BAK when the protein targets to the membrane and forms pores. The data showed that helices α1 and α6 disengage from the rest of the domain, leaving helices α2-α5 as a folded unit. Helices α2-α5 were shown to form a dimeric structure, which is structurally homologous to the recently reported BAX “BH3-in-groove homodimer.” Furthermore, the EPR data and a chemical cross-linking study demonstrated the existence of a hitherto unknown interface between BAK BH3-in-groove homodimers in the oligomeric BAK. This novel interface involves the C termini of α3 and α5 helices. The results provide further insights into the organization of the BAK oligomeric pores by the BAK homodimers during mitochondrial apoptosis, enabling the proposal of a BAK-induced lipidic pore with the topography of a “worm hole.”  相似文献   

2.
Bak and Bax are the essential effectors of the intrinsic pathway of apoptosis. Following an apoptotic stimulus, both undergo significant changes in conformation that facilitates their self-association to form pores in the mitochondrial outer membrane. However, the molecular structures of Bak and Bax oligomeric pores remain elusive. To characterize how Bak forms pores during apoptosis, we investigated its oligomerization under native conditions using blue native PAGE. We report that, in a healthy cell, inactive Bak is either monomeric or in a large complex involving VDAC2. Following an apoptotic stimulus, activated Bak forms BH3:groove homodimers that represent the basic stable oligomeric unit. These dimers multimerize to higher-order oligomers via a labile interface independent of both the BH3 domain and groove. Linkage of the α6:α6 interface is sufficient to stabilize higher-order Bak oligomers on native PAGE, suggesting an important role in the Bak oligomeric pore. Mutagenesis of the α6 helix disrupted apoptotic function because a chimera of Bak with the α6 derived from Bcl-2 could be activated by truncated Bid (tBid) and could form BH3:groove homodimers but could not form high molecular weight oligomers or mediate cell death. An α6 peptide could block Bak function but did so upstream of dimerization, potentially implicating α6 as a site for activation by BH3-only proteins. Our examination of native Bak oligomers indicates that the Bak apoptotic pore forms by the multimerization of BH3:groove homodimers and reveals that Bak α6 is not only important for Bak oligomerization and function but may also be involved in how Bak is activated by BH3-only proteins.  相似文献   

3.
In multicellular organisms the regulated cell death apoptosis is critically important for both ontogeny and homeostasis. Mitochondria are indispensable for stress-induced apoptosis. The BCL-2 protein family controls mitochondrial apoptosis and initiates cell death through the pro-apoptotic activities of BAX and BAK at the outer mitochondrial membrane (OMM). Cellular survival is ensured by the retrotranslocation of mitochondrial BAX and BAK into the cytosol by anti-apoptotic BCL-2 proteins. BAX/BAK-dependent OMM permeabilization releases the mitochondrial cytochrome c (cyt c), which initiates activation of caspase-9. The caspase cascade leads to cell shrinkage, plasma membrane blebbing, chromatin condensation, and apoptotic body formation. Although it is clear that ultimately complexes of active BAX and BAK commit the cell to apoptosis, the nature of these complexes is still enigmatic. Excessive research has described a range of complexes, varying from a few molecules to several 10,000, in different systems. BAX/BAK complexes potentially form ring-like structures that could expose the inner mitochondrial membrane. It has been suggested that these pores allow the efflux of small proteins and even mitochondrial DNA. Here we summarize the current state of knowledge for mitochondrial BAX/BAK complexes and the interactions between these proteins and the membrane.  相似文献   

4.
BH3 only proteins trigger cell death by interacting with pro- and anti-apoptotic members of the BCL-2 family of proteins. Here we report that BH3 peptides corresponding to the death domain of BH3-only proteins, which bind all the pro-survival BCL-2 family proteins, induce cell death in the absence of BAX and BAK. The BH3 peptides did not cause the release of cytochrome c from isolated mitochondria or from mitochondria in cells. However, the BH3 peptides did cause a decrease in mitochondrial membrane potential but did not induce the opening of the mitochondrial permeability transition pore. Interestingly, the BH3 peptides induced mitochondria to undergo fission in the absence of BAX and BAK. The binding of BCL-XL with dynamin-related protein 1 (DRP1), a GTPase known to regulate mitochondrial fission, increased in the presence of BH3 peptides. These results suggest that pro-survival BCL-2 proteins regulate mitochondrial fission and cell death in the absence of BAX and BAK.  相似文献   

5.
In Alzheimer’s disease, cytochrome c-dependent apoptosis is a crucial pathway in neuronal cell death. Although beta-amyloid (Aβ) oligomers are known to be the neurotoxins responsible for neuronal cell death, the underlying mechanisms remain largely elusive. Here, we report that the oligomeric form of synthetic Aβ of 42 amino acids elicits death of HT-22 cells. But, when expression of a bcl-2 family protein BAK is suppressed by siRNA, Aβ oligomer-induced cell death was reduced. Furthermore, significant reduction of cytochrome c release was observed with mitochondria isolated from BAK siRNA-treated HT-22 cells. Our in vitro experiments demonstrate that Aβ oligomers bind to BAK on the membrane and induce apoptotic BAK pores and cytochrome c release. Thus, the results suggest that Aβ oligomers function as apoptotic ligands and hijack the intrinsic apoptotic pathway to cause unintended neuronal cell death.  相似文献   

6.
We review data supporting a model in which activated tBID results in an allosteric activation of BAK, inducing its intramembranous oligomerization into a proposed pore for cytochrome c efflux. The BH3 domain of tBID is not required for targeting but remains on the mitochondrial surface where it is required to trigger BAK to release cytochrome c. tBID functions not as a pore-forming protein but as a membrane targeted and concentrated death ligand. tBID induces oligomerization of BAK, and both Bid and Bak knockout mice indicate the importance of this event in the release of cytochrome c. In parallel, the full pro-apoptotic member BAX, which is highly homologous to BAK, rapidly forms pores in liposomes that release intravesicular FITC-cytochrome c approximately 20A. A definable pore progressed from approximately 11A consisting of two BAX molecules to a approximately 22A pore comprised of four BAX molecules, which transported cytochrome c. Thus, an activation cascade of pro-apoptotic proteins from BID to BAK or BAX integrates the pathway from surface death receptors to the irreversible efflux of cytochrome c. Cell Death and Differentiation (2000) 7, 1166 - 1173  相似文献   

7.
Mitochondria are functionally and physically associated with heterotypic membranes, yet little is known about how these interactions impact mitochondrial outer-membrane permeabilization (MOMP) and apoptosis. We observed that dissociation of heterotypic membranes from mitochondria inhibited BAK/BAX-dependent cytochrome c (cyto c) release. Biochemical purification of neutral sphingomyelinases that correlated with MOMP sensitization suggested that sphingolipid metabolism coordinates BAK/BAX activation. Using purified lipids and enzymes, sensitivity to MOMP was achieved by in vitro reconstitution of the sphingolipid metabolic pathway. Sphingolipid metabolism inhibitors blocked MOMP from heavy membrane preparations but failed to influence MOMP in the presence of sphingolipid-reconstituted, purified mitochondria. Furthermore, the sphingolipid products, sphingosine-1-PO(4) and hexadecenal, cooperated specifically with BAK and BAX, respectively. Sphingolipid metabolism was also required for cellular responses to apoptosis. Our studies suggest that BAK/BAX activation and apoptosis are coordinated through BH3-only proteins and a specific lipid milieu that is maintained by heterotypic membrane-mitochondrial interactions.  相似文献   

8.
Execution of the intrinsic apoptotic pathway is controlled by the BCL-2 proteins at the level of the mitochondrial outer membrane (MOM). This family of proteins consists of prosurvival (e.g., BCL-2, MCL-1) and proapoptotic (e.g., BIM, BAD, HRK) members, the functional balance of which dictates the activation of BAX and BAK. Once activated, BAX/BAK form pores in the MOM, resulting in cytochrome c release from the mitochondrial intermembrane space, leading to apoptosome formation, caspase activation, and cleavage of intracellular targets. This pathway is induced by cellular stress including DNA damage, cytokine and growth factor withdrawal, and chemotherapy/drug treatment. A well-documented defense of leukemia cells is to shift the balance of the BCL-2 family in favor of the prosurvival proteins to protect against such intra- and extracellular stimuli. Small molecule inhibitors targeting the prosurvival proteins, named ‘BH3 mimetics’, have come to the fore in recent years to treat hematological malignancies, both as single agents and in combination with standard-of-care therapies. The most significant example of these is the BCL-2-specific inhibitor venetoclax, given in combination with standard-of-care therapies with great success in AML in clinical trials. As the number and variety of available BH3 mimetics increases, and investigations into applying these novel inhibitors to treat myeloid leukemias continue apace the need to evaluate where we currently stand in this rapidly expanding field is clear.Subject terms: Targeted therapies, Acute myeloid leukaemia, Chronic myeloid leukaemia  相似文献   

9.
The BCL-2 protein family plays a critical role in regulating cellular commitment to mitochondrial apoptosis. Pro-apoptotic Bcl-2-associated X protein (BAX) is an executioner protein of the BCL-2 family that represents the gateway to mitochondrial apoptosis. Following cellular stresses that induce apoptosis, cytosolic BAX is activated and translocates to the mitochondria, where it inserts into the mitochondrial outer membrane to form a toxic pore. How the BAX activation pathway proceeds and how this may be inhibited is not yet completely understood. Here we describe synthetic antibody fragments (Fabs) as structural and biochemical probes to investigate the potential mechanisms of BAX regulation. These synthetic Fabs bind with high affinity to BAX and inhibit its activation by the BH3-only protein tBID (truncated Bcl2 interacting protein) in assays using liposomal membranes. Inhibition of BAX by a representative Fab, 3G11, prevented mitochondrial translocation of BAX and BAX-mediated cytochrome c release. Using NMR and hydrogen-deuterium exchange mass spectrometry, we showed that 3G11 forms a stoichiometric and stable complex without inducing a significant conformational change on monomeric and inactive BAX. We identified that the Fab-binding site on BAX involves residues of helices α1/α6 and the α1-α2 loop. Therefore, the inhibitory binding surface of 3G11 overlaps with the N-terminal activation site of BAX, suggesting a novel mechanism of BAX inhibition through direct binding to the BAX N-terminal activation site. The synthetic Fabs reported here reveal, as probes, novel mechanistic insights into BAX inhibition and provide a blueprint for developing inhibitors of BAX activation.  相似文献   

10.
Most intrinsic death signals converge into the activation of pro-apoptotic BCL-2 family members BAX and BAK at the mitochondria, resulting in the release of cytochrome c and apoptosome activation. Chronic endoplasmic reticulum (ER) stress leads to apoptosis through the upregulation of a subset of pro-apoptotic BH3-only proteins, activating BAX and BAK at the mitochondria. Here we provide evidence indicating that the full resistance of BAX and BAK double deficient (DKO) cells to ER stress is reverted by stimulation in combination with mild serum withdrawal. Cell death under these conditions was characterized by the appearance of classical apoptosis markers, caspase-9 activation, release of cytochrome c, and was inhibited by knocking down caspase-9, but insensitive to BCL-X(L) overexpression. Similarly, the resistance of BIM and PUMA double deficient cells to ER stress was reverted by mild serum withdrawal. Surprisingly, BAX/BAK-independent cell death did not require Cyclophilin D (CypD) expression, an important regulator of the mitochondrial permeability transition pore. Our results suggest the existence of an alternative intrinsic apoptosis pathway emerging from a cross talk between the ER and the mitochondria.  相似文献   

11.
Hollville E  Martin SJ 《Cell》2012,148(5):845-846
BAX/BAK activation leading to mitochondrial outer-membrane permeabilization is a key commitment point in apoptosis. Chipuk et al. now identify two sphingolipids as specific cofactors for BAX/BAK activation that lower the threshold for apoptosis-associated cytochrome c release. Association of mitochondria with other cellular membrane compartments is required for BAK/BAX exposure to these sphingolipids.  相似文献   

12.
During apoptosis, the BCL-2 protein family controls mitochondrial outer membrane permeabilization (MOMP), but the dynamics of this regulation remain controversial. We employed chimeric proteins composed of exogenous BH3 domains inserted into a tBID backbone that can activate the proapoptotic effectors BAX and BAK to permeabilize membranes without being universally sequestered by all antiapoptotic BCL-2 proteins. We thus identified two "modes" whereby prosurvival BCL-2 proteins can block MOMP, by sequestering direct-activator BH3-only proteins ("MODE 1") or by binding active BAX?and BAK ("MODE 2"). Notably, we found that MODE 1 sequestration is less efficient and more easily derepressed to promote MOMP than MODE 2. Further, MODE 2 sequestration prevents mitochondrial fusion. We provide a unified model of BCL-2 family function that helps to explain otherwise paradoxical observations relating to MOMP, apoptosis, and mitochondrial dynamics.  相似文献   

13.
The multidomain pro-apoptotic proteins BAX and BAK constitute an essential gateway to mitochondrial dysfunction and programmed cell death. Among the "BCL-2 homology (BH) 3-only" members of pro-apoptotic proteins, truncated BID (tBID) has been implicated in direct BAX activation, although an explicit molecular mechanism remains elusive. We find that BID BH3 peptide alone at submicromolar concentrations cannot activate BAX or complement BID BH3 mutant-tBID in mitochondrial and liposomal release assays. Because tBID contains structurally defined membrane association domains, we investigated whether membrane targeting of BID BH3 peptide would be sufficient to restore its pro-apoptotic activity. We developed a Ni(2+)-nitrilotriacetic acid liposomal assay system that efficiently conjugates histidine-tagged peptides to a simulated outer mitochondrial membrane surface. Strikingly, nanomolar concentrations of a synthetic BID BH3 peptide that is chemically tethered to the liposomal membrane activated BAX almost as efficiently as tBID itself. These results highlight the importance of membrane targeting of the BID BH3 domain in tBID-mediated BAX activation and support a model in which tBID engages BAX to trigger its pro-apoptotic activity.  相似文献   

14.
The BCL-2 family of proteins is comprised of proapoptotic as well as antiapoptotic members (S. N. Farrow and R. Brown, Curr. Opin. Genet. Dev. 6:45–49, 1996). A prominent death agonist, BAX, forms homodimers and heterodimerizes with multiple antiapoptotic members. Death agonists have an amphipathic α helix, called BH3; however, the initial assessment of BH3 in BAX has yielded conflicting results. Our BAX deletion constructs and minimal domain constructs indicated that the BH3 domain was required for BAX homodimerization and heterodimerization with BCL-2, BCL-XL, and MCL-1. An extensive site-directed mutagenesis of BH3 revealed that substitutions along the hydrophobic face of BH3, especially charged substitutions, had the greatest affects on dimerization patterns and death agonist activity. Particularly instructive was the BAX mutant mIII-1 (L63A, G67A, L70A, and M74A), which replaced the hydrophobic face of BH3 with alanines, preserving its amphipathic nature. BAXmIII-1 failed to form heterodimers or homodimers by yeast two-hybrid or immunoprecipitation analysis yet retained proapoptotic activity. This suggests that BAX’s killing function reflects mechanisms beyond its binding to BCL-2 or BCL-XL to inhibit them or simply displace other protein partners. Notably, BAXmIII-1 was found predominantly in mitochondrial membranes, where it was homodimerized as assessed by homobifunctional cross-linkers. This characteristic of BAXmIII-1 correlates with its capacity to induce mitochondrial dysfunction, caspase activation, and apoptosis. These data are consistent with a model in which BAX death agonist activity may require an intramembranous conformation of this molecule that is not assessed accurately by classic binding assays.

Programmed cell death and its morphologic equivalent, apoptosis, are orchestrated by a distinct genetic pathway that is apparently possessed by all multicellular organisms (22). Moreover, the biochemical details of how encoded proteins function are beginning to emerge. The BCL-2 family of proteins constitutes a central decisional point within the common portion of the apoptotic pathway. This family possesses both proapoptotic (BAX, BAK, BCL-XS, BAD, BIK, BID, HRK, and BIM) and antiapoptotic (BCL-2, BCL-XL, MCL-1, and A1) molecules (5, 11). The ratio of antiapoptotic to proapoptotic molecules such as BCL-2/BAX determines the response to a proximal apoptotic signal (14). A striking characteristic of many family members is their propensity to form homo- and heterodimers (16, 19). The BCL-2 family has homology clustered principally within four conserved domains called BH1, BH2, BH3, and BH4 (5, 11). The multidimensional nuclear magnetic resonance (NMR) and X-ray crystallographic structure of a BCL-XL monomer indicates that the BH1-4 domains correspond to α helices 1 to 7. Notably, the BH1, -2, and -3 domains are in close proximity and create a hydrophobic pocket presumably involved in interactions with other BCL-2 family members (13). The NMR analysis of a BCL-XL-BAK BH3 peptide complex revealed both hydrophobic and electrostatic interactions between the BCL-XL pocket and a BH3 amphipathic α-helical peptide from BAK (17).Prior mutagenesis studies of BCL-2 and BCL-XL revealed the importance of BH1 and BH2 domains for both their antiapoptotic function and the capacity to heterodimerize with proapoptotic molecules like BAX or BAK (2, 19, 26). In general, most mutations that disrupt heterodimerization with BAX also lose their death repressor function. However, exceptions do exist; some mutants of BCL-XL fail to bind BAX or BAK but still repress cell death, suggesting that these functions can be separated for antiapoptotic molecules (2). Moreover, a genetic approach with Bcl-2-deficient and Bax-deficient mice also suggested that BCL-2 and BAX could function independently of one another (10).Deletion studies of the death agonist BAK first implicated the BH3 domain as having the capacity to bind BCL-XL and promote apoptosis (3). However, the functional significance of BH3 in BAX is uncertain as indicated in the literature. Three deletion analyses indicated the necessity of the BH3 domain in BAX to promote cell death as well as to heterodimerize with BCL-2 (3, 9, 28). Yet, two recent studies reported that BAX functions as a death activator independent of its heterodimerization (21, 27). Moreover, substitution mutants within the BH3 domain showed conflicting specificities of heterodimerization (20, 21, 27).Our initial screen of yeast two-hybrid libraries with BCL-2 as bait yielded multiple clones that possess only the NH2 terminus of BAX, bearing the BH3 but not the BH1 or the BH2 domains. A similar set of isolates was obtained when BCL-2 (G145A) was used as bait (15). We also noted by deletion analysis and assessment of minimal domains of BAX that the BH3 domain was required for both homodimerization and heterodimerization. Consequently, we undertook an extensive site-directed mutagenesis of the BH3 domain of BAX. These studies demonstrate the importance of the hydrophobic face of the amphipathic α helix of BH3 for the dimerization and cell death activities of BAX. Furthermore, analysis of a BAX mutant indicates that its retained conformation as a cross-linkable dimer at mitochondrial membranes correlates with its intact apoptotic function.  相似文献   

15.
16.
MCL-1 inhibits BAX in the absence of MCL-1/BAX Interaction   总被引:1,自引:0,他引:1  
The BCL-2 family of proteins plays a major role in the control of apoptosis as the primary regulator of mitochondrial permeability. The pro-apoptotic BCL-2 homologues BAX and BAK are activated following the induction of apoptosis and induce cytochrome c release from mitochondria. A second class of BCL-2 homologues, the BH3-only proteins, is required for the activation of BAX and BAK. The activity of both BAX/BAK and BH3-only proteins is opposed by anti-apoptotic BCL-2 homologues such as BCL-2 and MCL-1. Here we show that anti-apoptotic MCL-1 inhibits the function of BAX downstream of its initial activation and translocation to mitochondria. Although MCL-1 interacted with BAK and inhibited its activation, the activity of MCL-1 against BAX was independent of an interaction between the two proteins. However, the anti-apoptotic function of MCL-1 required the presence of BAX. These results suggest that the pro-survival activity of MCL-1 proceeds via inhibition of BAX function at mitochondria, downstream of its activation and translocation to this organelle.  相似文献   

17.
Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging cytolytic toxin that belongs to the family of β barrel pore-forming protein toxins. VCC induces lysis of its target eukaryotic cells by forming transmembrane oligomeric β barrel pores. The mechanism of membrane pore formation by VCC follows the overall scheme of the archetypical β barrel pore-forming protein toxin mode of action, in which the water-soluble monomeric form of the toxin first binds to the target cell membrane, then assembles into a prepore oligomeric intermediate, and finally converts into the functional transmembrane oligomeric β barrel pore. However, there exists a vast knowledge gap in our understanding regarding the intricate details of the membrane pore formation process employed by VCC. In particular, the membrane oligomerization and membrane insertion steps of the process have only been described to a limited extent. In this study, we determined the key residues in VCC that are critical to trigger membrane oligomerization of the toxin. Alteration of such key residues traps the toxin in its membrane-bound monomeric state and abrogates subsequent oligomerization, membrane insertion, and functional transmembrane pore-formation events. The results obtained from our study also suggest that the membrane insertion of VCC depends critically on the oligomerization process and that it cannot be initiated in the membrane-bound monomeric form of the toxin. In sum, our study, for the first time, dissects membrane binding from the subsequent oligomerization and membrane insertion steps and, thus, defines the exact sequence of events in the membrane pore formation process by VCC.  相似文献   

18.
The Bcl-2 family proteins regulate mitochondria-mediated apoptosis through intricate molecular mechanisms. One of the pro-apoptotic proteins, tBid, can induce apoptosis by promoting Bax activation, Bax homo-oligomerization, and mitochondrial outer membrane permeabilization. Association of tBid on the mitochondrial outer membrane is key to its biological function. Therefore knowing the conformation of tBid on the membrane will be the first step toward understanding its crucial role in triggering apoptosis. Here, we present NMR characterization of the structure and dynamics of human tBid in 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-RAC-(1-glycerol)] micelles. Our data showed that tBid is monomeric with six well defined α-helices in the micelles. Compared with the full-length Bid structure, a longer flexible loop between tBid helix α4 and α5 was observed. Helices in tBid do not pack into a compact-fold but form an extended structure with a C-shape configuration in the micelles. All six tBid helices were shown to interact with LPPG micelles, with helix α6 and α7 being more embedded. Of note, the BH3-containing helix α3, which was previously believed to be exposed above the membrane surface, is also membrane associated, suggesting an “on the membrane” binding mode for tBid interaction with Bax. Our data provided structural details on the membrane-associated state of tBid and the functional implications of its membrane-associated BH3 domain.  相似文献   

19.
Caspase-8 cleaves BID to tBID, which targets mitochondria and induces oligomerization of BAX and BAK within the outer membrane, resulting in release of cytochrome c from the organelle. Here, we have initiated these steps in isolated mitochondria derived from control and BCL-2-overexpressing cells using synthetic BH3 peptides and subsequently analyzed the BCL members by chemical cross-linking. The results show that the BH3 domain of BID interacts with and induces an "open" conformation of BAK, exposing the BAK N terminus. This open (activated) conformer of BAK potently induces oligomerization of non-activated ("closed") conformers, causing a cascade of BAK auto-oligomerization. Induction of the open conformation of BAK occurs even in the presence of excess BCL-2, but BCL-2 selectively interacts with this open conformer and blocks BAK oligomerization and cytochrome c release, dependent on the ratio of BID BH3 and BCL-2. This mechanism of inhibition by BCL-2 also occurs in intact cells stimulated with Fas or expressing tBID. Although BID BH3 interacts with both BCL-2 and BAK, the results indicate that when BCL-2 is in excess it can sequester the BID BH3-induced activated conformer of BAK, effectively blocking downstream events. This model suggests that the primary mechanism for BCL-2 blockade targets activated BAK rather than sequestering tBID.  相似文献   

20.
BAK is a key effector of mitochondrial outer membrane permeabilization (MOMP) whose molecular mechanism of action remains to be fully dissected in intact cells, mainly due to the inherent complexity of the intracellular apoptotic machinery. Here we show that the core features of the BAK-driven MOMP pathway can be reproduced in a highly simplified in vitro system consisting of recombinant human BAK lacking the carboxyl-terminal 21 residues (BAKΔC) and tBID in combination with liposomes bearing an appropriate lipid environment. Using this minimalist reconstituted system we established that tBID suffices to trigger BAKΔC membrane insertion, oligomerization, and pore formation. Furthermore, we demonstrate that tBID-activated BAKΔC permeabilizes the membrane by forming structurally dynamic pores rather than a large proteinaceous channel of fixed size. We also identified two distinct roles played by mitochondrial lipids along the molecular pathway of BAKΔC-induced membrane permeabilization. First, using several independent approaches, we showed that cardiolipin directly interacts with BAKΔC, leading to a localized structural rearrangement in the protein that "primes" BAKΔC for interaction with tBID. Second, we provide evidence that selected curvature-inducing lipids present in mitochondrial membranes specifically modulate the energetic expenditure required to create the BAKΔC pore. Collectively, our results support the notion that BAK functions as a direct effector of MOMP akin to BAX and also adds significantly to the growing evidence indicating that mitochondrial membrane lipids are actively implicated in BCL-2 protein family function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号