首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Multiple transitions to obligate parthenogenesis have occurred in the Daphnia pulex complex in North America. These newly formed asexual lineages are differentially distributed being found predominantly at high latitudes. This conforms to the rule of geographical parthenogenesis postulating prevalence of asexuals at high latitudes and altitudes. While the reproductive mode of high-latitude populations is relatively well studied, little is known about the reproduction mode in high altitudes. This study aimed to assess the reproductive mode of Daphnia pulicaria, a species of the D. pulex complex, from high altitude lakes in Europe.

Methodology/Principal Findings

Variation at eight microsatellite loci revealed that D. pulicaria from the High Tatra Mountains (HTM) had low genotype richness and showed excess of heterozygotes and significant deviations from Hardy-Weinberg expectations, and was thus congruent with reproduction by obligate parthenogenesis. By contrast, populations from the Pyrenees (Pyr) were generally in Hardy-Weinberg equilibrium and had higher genotypic richness, suggesting that they are cyclic parthenogens. Four lakes from lowland areas (LLaP) had populations with an uncertain or mixed breeding mode. All D. pulicaria had mtDNA ND5 haplotypes of the European D. pulicaria lineage. Pyr were distinct from LLaP and HTM at the ND5 gene. By contrast, HTM shared two haplotypes with LLaP and one with Pyr. Principal Coordinate Analysis of the microsatellite data revealed clear genetic differentiation into three groups. HTM isolates were intermediate to Pyr and LLaP, congruent with a hybrid origin.

Conclusion/Significance

Inferred transitions to obligate parthenogenesis have occurred only in HTM, most likely as a result of hybridizations. In contrast to North American populations, these transitions do not appear to involve meiosis suppressor genes and have not been accompanied by polyploidy. The absence of obligate parthenogenesis in Pyr, an environment highly similar to the HTM, may be due to the lack of opportunities for hybridization.  相似文献   

2.

Background

Understanding the evolutionary origin and the phylogeographic patterns of asexual taxa can shed light on the origin and maintenance of sexual reproduction. We assessed the geographic origin, genetic diversity, and phylogeographic history of obligate parthenogen diploid Artemia parthenogenetica populations, a widespread halophilic crustacean.

Methodology/Principal Findings

We analysed a partial sequence of the Cytochrome c Oxidase Subunit I mitochondrial gene from an extensive set of localities (including Eurasia, Africa, and Australia), and examined their phylogeographic patterns and the phylogenetic relationships of diploid A. parthenogenetica and its closest sexual relatives. Populations displayed an extremely low level of mitochondrial genetic diversity, with one widespread haplotype shared by over 79% of individuals analysed. Phylogenetic and phylogeographic analyses indicated a multiple and recent evolutionary origin of diploid A. parthenogenetica, and strongly suggested that the geographic origin of parthenogenesis in Artemia was in Central Asia. Our results indicate that the maternal sexual ancestors of diploid A. parthenogenetica were an undescribed species from Kazakhstan and A. urmiana.

Conclusions/Significance

We found evidence for multiple origin of parthenogenesis in Central Asia. Our results indicated that, shortly after its origin, diploid A. parthenogenetica populations underwent a rapid range expansion from Central Asia towards the Mediterranean region, and probably to the rest of its current geographic distribution. This contrasts with the restricted geographic distribution, strong genetic structure, and regional endemism of sexual Artemia lineages and other passively dispersed sexual continental aquatic invertebrates. We hypothesize that diploid parthenogens might have reached their current distribution in historical times, with a range expansion possibly facilitated by an increased availability of suitable habitat provided by anthropogenic activities, such as the spread of solar saltworks, aided by their natural dispersal vectors (i.e., waterbirds).  相似文献   

3.
Transitions to asexuality have occurred in many animals and plants, yet the biological mechanisms causing such transitions have often remained unclear. Cyclical parthenogens, such as cladocerans, rotifers or aphids often give rise to obligate asexual lineages. In many rotifers, chemical signals that accumulate during population crowding trigger the induction of sexual stages. In this study, I tested two hypotheses on the origin of obligate parthenogenesis in the rotifer Brachionus calyciflorus: (i) that obligate parthenogens have lost the responsiveness to the sexual signal; and (ii) that obligate parthenogens have lost the ability to produce the sexual signal. Pairwise cross-induction assays among three obligate parthenogenetic strains and two cyclically parthenogenetic (sexual) strains were used to test these hypotheses. I found that obligate parthenogens can induce sexual reproduction in sexual strains, but not vice versa. This demonstrates that obligate parthenogens do still produce the sexual signal, but have lost responsiveness to that signal.  相似文献   

4.
Asexual organisms are thought to gain an advantage by avoiding the cost of producing males. In the cladoceran Daphnia pulex (Leydig), male production is determined by the environment and is independent of the origin of the asexual obligate parthenogens from the sexual cyclical parthenogens. If there is a cost to producing males, successful obligate parthenogens should have reduced or eliminated male production. Field and laboratory observations showed that obligate parthenogens have much-reduced male production compared to cyclical parthenogens. Although the reduction or elimination of males in the obligate parthenogens suggests that the cost of males is avoided, the coexistence of sexual and asexual forms of D. pulex may be partially explained by cyclical parthenogens compensating for the cost of males by having greater fecundity. In addition, the absence of a mating constraint for the obligate parthenogens may favour an increased allocation to asexual diapausing eggs earlier in the season compared to the cyclical parthenogens which require mating with males to produce sexual diapausing eggs. No difference in the production of diapausing eggs was observed, probably because males were abundant in populations of cyclical parthenogens and do not appear to limit the production of sexual diapausing eggs. D. pulex is a useful system for determining the ecological consequences of abandoning sexual reproduction and explaining the coexistence of sexual and asexual forms of a species.  相似文献   

5.
Transitions from sexual reproduction to parthenogenesis may occur along multiple evolutionary pathways and involve various cytological mechanisms to produce diploid eggs. Here, we investigate routes to parthenogenesis in Timema stick insects, a genus comprising five obligate parthenogens. By combining information from microsatellites and karyotypes with a previously published mitochondrial phylogeny, we show that all five parthenogens likely evolved spontaneously from sexually reproducing species, and that the sexual ancestor of one of the five parthenogens was probably of hybrid origin. The complete maintenance of heterozygosity between generations in the five parthenogens strongly suggests that eggs are produced by apomixis. Virgin females of the sexual species were also able to produce parthenogenetic offspring, but these females produced eggs by automixis. High heterozygosity levels stemming from conserved ancestral alleles in the parthenogens suggest, however, that automixis has not generated the current parthenogenetic Timema lineages but that apomixis appeared abruptly in several sexual species. A direct transition from sexual reproduction to (at least functional) apomixis results in a relatively high level of allelic diversity and high efficiency for parthenogenesis. Because both of these traits should positively affect the demographic success of asexual lineages, spontaneous apomixis may have contributed to the origin and maintenance of asexuality in Timema .  相似文献   

6.
Asexual organisms that naturally coexist with sexual relatives may hold the key to understanding the maintenance of sex and recombination, a long-standing problem in evolutionary biology. This situation applies to the peach-potato aphid, Myzus persicae, in southeastern Australia where cyclical parthenogens form mixed populations with obligate parthenogens. We collected M. persicae from several areas across Victoria, genotyped them at seven microsatellite loci and experimentally determined their reproductive mode. The geographic distribution of reproductive modes was correlated with two environmental variables that differentially affect obligate and cyclical parthenogens; obligate parthenogens were less frequent in areas with cold winters because they cannot produce frost-resistant eggs while cyclical parthenogens were limited by the availability of their primary host, peach, on which sexual reproduction takes place. Clonal diversity increased with the proportion of cyclical parthenogens in a sample because they tended to have unique microsatellite genotypes, whereas many obligate parthenogens were copies of the same genotype. Two obligately asexual genotypes stood out as being very abundant and widespread, one constituting 24% and the other 17.4% of the entire collection. Both of these highly successful genotypes were present in the majority of all collection sites. Genetic population structure was weak, albeit significant, with a multilocus FST of only 0.021 when samples were reduced to only one representative of each genotype. Interestingly, obligate parthenogens were, on average, more heterozygous and exhibited larger allele size differences between the two alleles at individual loci than cyclical parthenogens. This striking pattern could result from hybridization, for which we have no evidence, or may reflect the previously proposed model of biased mutational divergence of microsatellite alleles within asexual aphid lineages.  相似文献   

7.
The ubiquity of sexual reproduction is an evolutionary puzzle because asexuality should have major reproductive advantages. Theoretically, transitions to asexuality should confer substantial benefits in population growth and lead to rapid displacement of all sexual ancestors. So far, there have been few rigorous tests of one of the most basic assumptions of the paradox of sex: that asexuals are competitively superior to sexuals immediately after their origin. Here I examine the fitness consequences of very recent transitions to obligate parthenogenesis in the cyclical parthenogenetic rotifer Brachionus calyciflorus. This experimental system differs from previous animal models, since obligate parthenogens were derived from the same maternal genotype as cyclical parthenogens. Obligate parthenogens had similar fitness compared with cyclical parthenogens in terms of the intrinsic rate of increase (calculated from life tables). However, population growth of cyclical parthenogens was predicted to be much lower: sexual female offspring do not contribute to immediate population growth in Brachionus, since they produce either males or diapausing eggs. Hence, if cyclical parthenogens constantly produce a high proportion of sexual offspring, there is a cost of sex, and obligate parthenogens can invade. This prediction was confirmed in laboratory competition experiments.  相似文献   

8.
Transposable elements (TEs) are major sources of genetic variation, and mating systems are believed to play a significant role in their dynamics. For example, insertion number is expected to be higher in sexual than in asexual organisms due to the inability of TEs to colonize new genomes in the absence of sex. The goal of this study was to determine the impact of the loss of sexual reproduction on TE load. Daphnia pulex has two reproductive modes, obligate and cyclical parthenogenesis, which differ with respect to the production of diapausing eggs. Cyclical parthenogens produce them meiotically, while obligate parthenogens produce them clonally. Pokey is a TTAA-specific DNA transposon, and is a stable component of Daphnia genomes. We used a PCR-based approach, TE-Display, to estimate the number of Pokey insertions in 22 cyclic and 22 obligate isolates of D. pulex. As expected, the copy number of Pokey insertions is significantly higher in cyclic than in obligate isolates. However, the distribution of elements among isolates within each breeding system is similar, which is congruent with the recent establishment of obligate lineages from a cyclic ancestor. We also assayed 46 isolates from eight cyclic populations and found that very few Pokey insertions were observed in more than one isolate, suggesting that Pokey has been active recently. Sequencing of PCR products from the TE-Display analysis shows that Pokey inserts into both coding and noncoding regions of the genome. However, there is no obvious similarity among sequences downstream of the TTAA Pokey insertion site.  相似文献   

9.

Background and Aims

Expected life history trade-offs associated with sex differences in reproductive investment are often undetected in seed plants, with the difficulty arising from logistical issues of conducting controlled experiments. By controlling genotype, age and resource status of individuals, a bryophyte was assessed for sex-specific and location-specific patterns of vegetative, asexual and sexual growth/reproduction across a regional scale.

Methods

Twelve genotypes (six male, six female) of the dioecious bryophyte Bryum argenteum were subcultured to remove environmental effects, regenerated asexually to replicate each genotype 16 times, and grown over a period of 92 d. Plants were assessed for growth rates, asexual and sexual reproductive traits, and allocation to above- and below-ground regenerative biomass.

Key Results

The degree of sexual versus asexual reproductive investment appears to be under genetic control, with three distinct ecotypes found in this study. Protonemal growth rate was positively correlated with asexual reproduction and sexual reproduction, whereas asexual reproduction was negatively correlated (appeared to trade-off) with vegetative growth (shoot production). No sex-specific trade-offs were detected. Female sex-expressing shoots were longer than males, but the sexes did not differ in growth traits, asexual traits, sexual induction times, or above- and below-ground biomass. Males, however, had much higher rates of inflorescence production than females, which translated into a significantly higher (24x) prezygotic investment for males relative to females.

Conclusions

Evidence for three distinct ecotypes is presented for a bryophyte based on regeneration traits. Prior to zygote production, the sexes of this bryophyte did not differ in vegetative growth traits but significantly differed in reproductive investment, with the latter differences potentially implicated in the strongly biased female sex ratio. The disparity between males and females for prezygotic reproductive investment is the highest known for bryophytes.  相似文献   

10.
Abstract.  1. Microorganisms that manipulate the reproduction of their hosts through diverse mechanisms including the induction of parthenogenesis are widespread among arthropods.
2. The pea aphid, Acyrthosiphon pisum , shows a variation in its reproductive mode, with lineages reproducing by cyclical parthenogenesis (obligate alternation of parthenogenetic and sexual generations each year) and others by obligate parthenogenesis (continuous asexual reproduction all year round). In addition, the pea aphid harbours, along with Buchnera the primary aphid endosymbiont, several facultative symbionts whose prevalence differs among host populations.
3. The possible influence of a Rickettsia facultative symbiont on the reproductive mode of its host was tested on two pea aphid clones by comparing the response of infected and uninfected individuals with the same genetic background to conditions that typically induce the production of sexual morphs.
4. No significant effect of the Rickettsia infection was found on the type of reproductive morphs produced (sexual vs. asexual) or on their quantities for the two clones.
5. However, the Rickettsia had a detrimental effect on the fitness of its aphid host, in apparent contradiction to the high prevalence of this symbiont in some host populations. It is suggested that this negative impact may disappear under specific environmental conditions, transforming a parasitic association into a mutualistic one.  相似文献   

11.
Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages.  相似文献   

12.
Cyclical parthenogens, including aphids, are important models for studying the evolution of sex. However, little is known about transitions to asexuality in aphids, although the mode of origin of asexual lineages has important consequences for their level of genetic diversity, ecological adaptability and the outcome of competition with their sexual relatives. Thus, we surveyed nuclear, mitochondrial and biological data obtained on cyclical and obligate parthenogens of the bird cherry-oat aphid, Rhopalosiphum padi (L), to investigate the frequency of transitions from sexuality to permanent asexuality. Many instances of asexual lineages retaining the ability to produce males are known in aphids, so particular attention was paid to the existence of occasional matings between females from sexual lineages and males produced by asexual lineages, which have the potential to produce new asexual lineages. Phylogenetic inference based on microsatellite and mitochondrial data indicates at least three independent origins of asexuality in R. padi, yielding the strongest evidence to date for multiple origins of asexuality in an aphid. Moreover, several lines of evidence demonstrate that transitions to asexuality result from two mechanisms: a complete spontaneous loss of sex and repeated gene flow from essentially asexual lineages into sexual ones.  相似文献   

13.
T Wang  Y Su  Y Li 《PloS one》2012,7(7):e41780

Background

Essentially all ferns can perform both sexual and asexual reproduction. Their populations represent suitable study objects to test the population genetic effects of different reproductive systems. Using the diploid homosporous fern Alsophila spinulosa as an example species, the main purpose of this study was to assess the relative impact of sexual and asexual reproduction on the level and structure of population genetic variation.

Methodology/Principal Findings

Inter-simple sequence repeats analysis was conducted on 140 individuals collected from seven populations (HSG, LCH, BPC, MPG, GX, LD, and ZHG) in China. Seventy-four polymorphic bands discriminated a total of 127 multilocus genotypes. Character compatibility analysis revealed that 50.0 to 70.0% of the genotypes had to be deleted in order to obtain a tree-like structure in the data set from populations HSG, LCH, MPG, BPC, GX, and LD; and there was a gradual decrease of conflict in the data set when genotypes with the highest incompatibility counts were successively deleted. In contrast, in population ZHG, only 33.3% of genotypes had to be removed to achieve complete compatibility in the data set, which showed a sharp decline in incompatibility upon the deletion of those genotypes. All populations examined possessed similar levels of genetic variation. Population ZHG was not found to be more differentiated than the other populations.

Conclusions/Significance

Sexual recombination is the predominant source of genetic variation in most of the examined populations of A. spinulosa. However, somatic mutation contributes most to the genetic variation in population ZHG. This change of the primary mode of reproduction does not cause a significant difference in the population genetic composition. Character compatibility analysis represents an effective approach to separate the role of sexual and asexual components in shaping the genetic pattern of fern populations.  相似文献   

14.

Background

Despite the fact that coffee rust was first investigated scientifically more than a century ago, and that the disease is one of the major constraints to coffee production - constantly changing the socio-economic and historical landscape of the crop - critical aspects of the life cycle of the pathogen, Hemileia vastatrix, remain unclear. The asexual urediniospores are regarded as the only functional propagule: theoretically, making H. vastatrix a clonal species. However, the well-documented emergence of new rust pathotypes and the breakdown in genetic resistance of coffee cultivars, present a paradox.

Methods and Results

Here, using computer-assisted DNA image cytometry, following a modified nuclear stoichiometric staining technique with Feulgen, we show that meiosis occurs within the urediniospores. Stages of spore development were categorised based on morphology, from the spore-mother cell through to the germinating spore, and the relative nuclear DNA content was quantified statistically at each stage.

Conclusions

Hidden sexual reproduction disguised within the asexual spore (cryptosexuality) could explain why new physiological races have arisen so often and so quickly in Hemileia vastatrix. This could have considerable implications for coffee breeding strategies and may be a common event in rust fungi, especially in related genera occupying the same basal phylogenetic lineages.  相似文献   

15.
Sexual generations in cyclical parthenogens are typically separated by multiple generations of clonal reproduction. In contrast to sexual reproduction, during parthenogenesis the genome of the parent is passed on to the offspring as a unit. The absence of recombination during parthenogenesis leads to differences in the action of natural selection in the two reproductive phases. In addition, since recombination is a sampling process, random genetic drift is potentially more important in sexual reproduction than in parthenogenesis. A recent development in the study of rotifer population genetics is the use of microsatellites to characterize natural populations. Microsatellites are selectively neutral, show patterns of Mendelian inheritance and tend to be much more variable than allozymes. An advantage over allozymes is that microsatellite DNA can be cloned with PCR and thus multiple loci can be assayed from a single individual. We use a new computer model in this paper to investigate the response of selectively active and selectively neutral genes to evolutionary forces during cyclical parthenogenesis. Selectively active alleles may respond differently to selection in the parthenogenetic and sexual phases of cyclical parthenogenesis. Even when strong clonal selection is acting on loci associated with adaptation, the view that emerges with microsatellites may be one of Hardy-Weinberg and linkage equilibrium. Thus studies using selectively neutral loci may fail to detect clonal selection even when it is an important feature of the rotifer population's adaptive structure.  相似文献   

16.

Background

Inbreeding depression is an important evolutionary factor, particularly when new habitats are colonized by few individuals. Then, inbreeding depression by drift could favour the establishment of later immigrants because their hybrid offspring would enjoy higher fitness. Rotifers are the only major zooplanktonic group where information on inbreeding depression is still critically scarce, despite the fact that in cyclical parthenogenetic rotifers males are haploid and could purge deleterious recessive alleles, thereby decreasing inbreeding depression.

Methodology/Principal Findings

We studied the effects of inbreeding in two populations of the cyclical parthenogenetic rotifer Brachionus plicatilis. For each population, we compared both the parental fertilization proportion and F1 fitness components from intraclonal (selfed) and interclonal (outcrossed) crosses. The parental fertilization proportion was similar for both types of crosses, suggesting that there is no mechanism to avoid selfing. In the F1 generation of both populations, we found evidence of inbreeding depression for the fitness components associated with asexual reproduction; whereas inbreeding depression was only found for one of the two sexual reproduction fitness components measured.

Conclusions/Significance

Our results show that rotifers, like other major zooplanktonic groups, can be affected by inbreeding depression in different stages of their life cycle. These results suggest that haplodiploidy does not purge efficiently deleterious recessive alleles. The inbreeding depression detected here has important implications when a rotifer population is founded and intraclonal crossing is likely to occur. Thus, during the foundation of new populations inbreeding depression may provide opportunities for new immigrants, increasing gene flow between populations, and affecting genetic differentiation.  相似文献   

17.
The increased interest in asexual organisms calls for in-depth studies of asexual complexes that actively give rise to new clones. We present an extensive molecular study of the Otiorhynchus scaber (Coleoptera, Curculionidae) weevil system. Three forms have traditionally been recognized: diploid sexuals, triploid, and tetraploid parthenogens. All forms coexist in a small central area, but only the polyploid parthenogens have colonized marginal areas. Analyzing the phylogenetic relationship, based on three partial mitochondrial genes, of 95 individuals from 19 populations, we find that parthenogenesis and polyploidy have originated at least three times from different diploid lineages. We observe two major mitochondrial lineages, with over 2.5% sequence divergence between the most basal groups within them, and find that current distribution and phylogenetic relationships are weakly correlated. Quite unexpectedly, we also discover diploid clones that coexist with, and are morphologically indistinguishable from, the diploid sexual females. Our results support that these diploid clones are derived directly from the diploid sexuals. We also find that it is mainly an increase in ploidy level and not the benefits of asexual reproduction that confers to polyploid parthenogens the advantage over their diploid sexual relatives.  相似文献   

18.
Sperm-dependent (or pseudogamous) forms of parthenogenetic reproduction occur in a wide variety of animals. Inheritance is typically clonal and matroclinous (of female descent), but sperm are needed to initiate normal development. As opposed to true parthenogenesis (i.e., sperm-independent reproduction), pseudogamous parthenogenetic lineages must coexist with a ‘sperm donor’— e.g., males from a conspecific sexual lineage, conspecific hermaphrodites, or males from a closely related sexual species. Such sperm donors do not contribute genetically to the next generation. The parasitic nature of sperm-dependent parthenogenesis raises numerous ecological and evolutionary questions. How do they arise? What factors help stabilize coexistence between the pseudogamous parthenogens and their sperm donors (i.e., ‘sexual hosts’)? Why do males waste sperm on the asexual females? Why does true parthenogenesis not evolve in pseudogamous lineages and free them from their dependency on sperm donors? Does pseudogamous parthenogenesis provide compensatory benefits that outweigh the constraints of sperm-dependence? Herein, we consider some genetic, ecological, and geographical consequences of sperm-dependent parthenogenesis in animals.  相似文献   

19.
Beatty GE  Provan J 《Annals of botany》2011,107(4):663-670

Background and Aims

Peripheral populations of plant species are often characterized by low levels of genetic diversity as a result of genetic drift, restricted gene flow, inbreeding and asexual reproduction. These effects can be exacerbated where range-edge populations are fragmented. The main aim of the present study was to assess the levels of genetic diversity in remnant populations of Hypopitys monotropa (syn. Monotropa hypopitys; yellow bird''s nest) at the edge of the species'' European range in Northern Ireland, since these remnant populations are small and highly fragmented.

Methods

Every plant found through surveys of 21 extant populations was genotyped for eight microsatellite loci to estimate levels and patterns of genetic diversity and clonality.

Key Results

Levels of genetic diversity were relatively high in the populations studied, and the incidence of clonal reproduction was generally low, with a mean of only 14·45 % of clonal individuals. Clones were small and highly spatially structured. Levels of inbreeding, however, were high.

Conclusions

The observed low levels of clonality suggest that the majority of genets in the populations of H. monotropa studied are fertile and that reproduction is predominantly sexual. As the species is highly self-compatible, it is likely that the high levels of inbreeding observed in the populations in the present study are the result of self-pollination, particularly given the small numbers of individuals in most of the patches. Given this extent of inbreeding, further genetic monitoring would be advisable to ensure that genetic diversity is maintained.  相似文献   

20.

Background  

Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The Daphnia pulex genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes D. pulex an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号