首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benthic macroalgae can be abundant on present-day coral reefs, especially where rates of herbivory are low and/or dissolved nutrients are high. This study investigated the impact of macroalgal extracts on both coral-associated bacterial assemblages and sublethal stress response of corals. Crude extracts and live algal thalli from common Caribbean macroalgae were applied onto the surface of Montastraea faveolata and Porites astreoides corals on reefs in both Florida and Belize. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons was used to examine changes in the surface mucus layer (SML) bacteria in both coral species. Some of the extracts and live algae induced detectable shifts in coral-associated bacterial assemblages. However, one aqueous extract caused the bacterial assemblages to shift to an entirely new state (Lobophora variegata), whereas other organic extracts had little to no impact (e.g. Dictyota sp.). Macroalgal extracts more frequently induced sublethal stress responses in M. faveolata than in P. astreoides corals, suggesting that cellular integrity can be negatively impacted in selected corals when comparing co-occurring species. As modern reefs experience phase-shifts to a higher abundance of macroalgae with potent chemical defenses, these macroalgae are likely impacting the composition of microbial assemblages associated with corals and affecting overall reef health in unpredicted and unprecedented ways.  相似文献   

2.
Coral populations have precipitously declined on Caribbean reefs while algal abundance has increased, leading to enhanced competitive damage to corals, which likely is mediated by the potent allelochemicals produced by both macroalgae and benthic cyanobacteria. Allelochemicals may affect the composition and abundance of coral-associated microorganisms that control host responses and adaptations to environmental change, including susceptibility to bacterial diseases. Here, we demonstrate that extracts of six Caribbean macroalgae and two benthic cyanobacteria have both inhibitory and stimulatory effects on bacterial taxa cultured from the surfaces of Caribbean corals, macroalgae, and corals exposed to macroalgal extracts. The growth of 54 bacterial isolates was monitored in the presence of lipophilic and hydrophilic crude extracts derived from Caribbean macroalgae and cyanobacteria using 96-well plate bioassays. All 54 bacterial cultures were identified by ribotyping. Lipophilic extracts from two species of Dictyota brown algae inhibited >50% of the reef coral bacteria assayed, and hydrophilic compounds from Dictyota menstrualis particularly inhibited Vibrio bacteria, a genus associated with several coral diseases. In contrast, both lipo- and hydrophilic extracts from 2 species of Lyngbya cyanobacteria strongly stimulated bacterial growth. The brown alga Lobophora variegata produced hydrophilic compounds with broad-spectrum antibacterial effects, which inhibited 93% of the bacterial cultures. Furthermore, bacteria cultured from different locations (corals vs. macroalgae vs. coral surfaces exposed to macroalgal extracts) responded differently to algal extracts. These results reveal that extracts from macroalgae and cyanobacteria have species-specific effects on the composition of coral-microbial assemblages, which in turn may increase coral host susceptibility to disease and result in coral mortality.  相似文献   

3.
Maintaining coral reef resilience against increasing anthropogenic disturbance is critical for effective reef management. Resilience is partially determined by how processes, such as herbivory and nutrient supply, affect coral recovery versus macroalgal proliferation following disturbances. However, the relative effects of herbivory versus nutrient enrichment on algal proliferation remain debated. Here, we manipulated herbivory and nutrients on a coral-dominated reef protected from fishing, and on an adjacent macroalgal-dominated reef subject to fishing and riverine discharge, over 152 days. On both reefs, herbivore exclusion increased total and upright macroalgal cover by 9-46 times, upright macroalgal biomass by 23-84 times, and cyanobacteria cover by 0-27 times, but decreased cover of encrusting coralline algae by 46-100% and short turf algae by 14-39%. In contrast, nutrient enrichment had no effect on algal proliferation, but suppressed cover of total macroalgae (by 33-42%) and cyanobacteria (by 71% on the protected reef) when herbivores were excluded. Herbivore exclusion, but not nutrient enrichment, also increased sediment accumulation, suggesting a strong link between herbivory, macroalgal growth, and sediment retention. Growth rates of the corals Porites cylindrica and Acropora millepora were 30-35% greater on the protected versus fished reef, but nutrient and herbivore manipulations within a site did not affect coral growth. Cumulatively, these data suggest that herbivory rather than eutrophication plays the dominant role in mediating macroalgal proliferation, that macroalgae trap sediments that may further suppress herbivory and enhance macroalgal dominance, and that corals are relatively resistant to damage from some macroalgae but are significantly impacted by ambient reef condition.  相似文献   

4.
Coral reef degradation is often associated with regime shifts from coral‐ to macroalgal‐dominated reefs. These shifts demonstrate that under certain conditions (e.g. coral mortality, decrease in herbivory, increased nutrients supply) some macroalgae may overgrow corals. The outcome of the competition is dependent on algal aggressiveness and the coral susceptibility. In undisturbed reefs, herbivore grazing is regulating macroalgal cover, thus preventing the latter from overgrowing corals. However, some macroalgae have evolved strategies not only to outcompete corals but also to escape herbivory to some extent, allowing overgrowth of some coral species in undisturbed reefs. Epizoism represents one of those successful strategies, and has been previously documented with red algae, cyanobacteria and Lobophora variegata (Dictyotales, Phaeophyceae). Here we report a new case of epizoism leading to coral mortality, involving a recently described species of Lobophora, L. hederacea, overgrowing the coral Seriatopora caliendrum (Pocilloporidae) in undisturbed reefs in New Caledonia.  相似文献   

5.
On tropical reefs where macroalgae are subjected to continuous herbivore pressure, spatial refuges typically are identified as large-scale, landscape interfaces that limit foraging behavior. However, algal distributions and community assemblages may also rely on the availability of smaller scale spatial refuges within the reef. The results of this study demonstrate that the patterns of macroalgal distribution across the back reef of Moorea, French Polynesia, are maintained by herbivores interacting with the small-scale structural complexities of the coral reef landscape. Although the majority of space available for colonization is composed of exposed surfaces, macroalgae rarely are found in the open. Instead, macroalgal occurrence is highest in the protected narrow crevices and hole microhabitats provided by massive Porites spp. coral heads. These distributions are determined initially by post-settlement mortality of young algal recruits in exposed habitats. Rates of consumption for two of the most common macroalgal species found in refuges across the back reef, Halimeda minima and Amansia rhodantha, indicate that algal recruits in exposed habitats are limited by herbivory. While algal abundance and community structure are highly dependent upon herbivore grazing, the availability of small-scale spatial refuges ultimately shapes the distinct community patterns and distributional boundaries of coral reef macroalgae in the back reefs of Moorea.  相似文献   

6.
The role of herbivorous fishes in maintaining low macroalgal cover was evaluated on coral reefs on several reef sites from Guadeloupe, either protected or not. Grazing by herbivorous fishes was assessed on different algal facies using fish-bite counts. Algal consumption by fish was estimated as well as algal production. Bite counts revealed that herbivorous fishes feed preferentially on algal turf and avoid brown macroalgae. The algal consumption varied between 0.4 and 2.8 g m−2 days−1 and was higher inside marine protected areas than outside. Comparison with algal production revealed that herbivorous fishes did not succeed in regulating algal growth. The insufficient number of grazers may lead to the dominance of stable assemblages of macroalgae on coral reefs, preventing the recovery of reef into previous coral-dominated ecosystems.  相似文献   

7.
Indirect biotic effects arising from multispecies interactions can alter the structure and function of ecological communities—often in surprising ways that can vary in direction and magnitude. On Pacific coral reefs, predation by the crown-of-thorns sea star, Acanthaster planci, is associated with broad-scale losses of coral cover and increases of macroalgal cover. Macroalgal blooms increase coral–macroalgal competition and can generate further coral decline. However, using a combination of manipulative field experiments and observations, we demonstrate that macroalgae, such as Sargassum polycystum, produce associational refuges for corals and dramatically reduce their consumption by Acanthaster. Thus, as Acanthaster densities increase, macroalgae can become coral mutualists, despite being competitors that significantly suppress coral growth. Field feeding experiments revealed that the protective effects of macroalgae were strong enough to cause Acanthaster to consume low-preference corals instead of high-preference corals surrounded by macroalgae. This highlights the context-dependent nature of coral–algal interactions when consumers are common. Macroalgal creation of associational refuges from Acanthaster predation may have important implications for the structure, function and resilience of reef communities subject to an increasing number of biotic disturbances.  相似文献   

8.
The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the shipwreck debris are characterized by high benthic cover of turf algae, macroalgae, cyanobacterial mats and corallimorphs, as well as particulate-laden, cloudy water. These sites also have very low coral and crustose coralline algal cover and are call black reefs because of the dark-colored benthic community and reduced clarity of the overlying water column. Here we use a combination of benthic surveys, chemistry, metagenomics and microcosms to investigate if and how shipwrecks initiate and maintain black reefs. Comparative surveys show that the live coral cover was reduced from 40 to 60% to <10% on black reefs on Millennium, Tabuaeran and Kingman. These three sites are relatively large (>0.75 km2). The phase shift occurs rapidly; the Kingman black reef formed within 3 years of the ship grounding. Iron concentrations in algae tissue from the Millennium black reef site were six times higher than in algae collected from reference sites. Metagenomic sequencing of the Millennium Atoll black reef-associated microbial community was enriched in iron-associated virulence genes and known pathogens. Microcosm experiments showed that corals were killed by black reef rubble through microbial activity. Together these results demonstrate that shipwrecks and their associated iron pose significant threats to coral reefs in iron-limited regions.  相似文献   

9.
Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2)), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1)), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.  相似文献   

10.
Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.  相似文献   

11.
Caribbean coral reefs are widely thought to exhibit two alternate stable states with one being dominated by coral and the other by macroalgae. However, the observation of linear empirical relationships among grazing, algal cover and coral recruitment has led the existence of alternate stable states to be questioned; are reefs simply exhibiting a continuous phase shift in response to grazing or are the alternate states robust to certain changes in grazing? Here, a model of a Caribbean forereef is used to reconcile the existence of two stable community states with common empirical observations. Coral-depauperate and coral-dominated reef states are predicted to be stable on equilibrial time scales of decades to centuries and their emergence depends on the presence or absence of a bottleneck in coral recruitment, which is determined by threshold levels of grazing intensity and other process variables. Under certain physical and biological conditions, corals can be persistently depleted even while increases in grazing reduce macroalgal cover and enhance coral recruitment; only once levels of recruitment becomes sufficient to overwhelm the population bottleneck will the coral-dominated state begin to emerge. Therefore, modest increases in grazing will not necessarily allow coral populations to recover, whereas large increases, such as those associated with recovery of the urchin Diadema antillarum, are likely to exceed threshold levels of grazing intensity and set a trajectory of coral recovery. The postulated existence of alternate stable states is consistent with field observations of linear relationships between grazing, algal cover and coral recruitment when coral cover is low and algal exclusion when coral cover is high. The term ‘macroalgal dominated’ is potentially misleading because the coral-depauperate state can be associated with various levels of macroalgal cover. The term ‘coral depauperate’ is preferable to ‘macroalgal dominated’ when describing alternate states of Caribbean reefs.  相似文献   

12.
Tropical reefs are dynamic ecosystems that host diverse coral assemblages with different life-history strategies. Here, we quantified how juvenile (<50 mm) coral demographics influenced benthic coral structure in reef flat and reef slope habitats on the southern Great Barrier Reef, Australia. Permanent plots and settlement tiles were monitored every six months for three years in each habitat. These environments exhibited profound differences: the reef slope was characterised by 95% less macroalgal cover, and twice the amount of available settlement substrata and rates of coral settlement than the reef flat. Consequently, post-settlement coral survival in the reef slope was substantially higher than that of the reef flat, and resulted in a rapid increase in coral cover from 7 to 31% in 2.5 years. In contrast, coral cover on the reef flat remained low (~10%), whereas macroalgal cover increased from 23 to 45%. A positive stock-recruitment relationship was found in brooding corals in both habitats; however, brooding corals were not directly responsible for the observed changes in coral cover. Rather, the rapid increase on the reef slope resulted from high abundances of broadcast spawning Acropora recruits. Incorporating our results into transition matrix models demonstrated that most corals escape mortality once they exceed 50 mm, but for smaller corals mortality in brooders was double those of spawners (i.e. acroporids and massive corals). For corals on the reef flat, sensitivity analysis demonstrated that growth and mortality of larger juveniles (21–50 mm) highly influenced population dynamics; whereas the recruitment, growth and mortality of smaller corals (<20 mm) had the highest influence on reef slope population dynamics. Our results provide insight into the population dynamics and recovery trajectories in disparate reef habitats, and highlight the importance of acroporid recruitment in driving rapid increases in coral cover following large-scale perturbation in reef slope environments.  相似文献   

13.
Herbivory is an important mechanism affecting algal succession, particularly on coral reefs where the relationship between algae and corals is largely controlled by herbivores. However, different functional groups of herbivores may have contrasting effects on succession, which may explain different trajectories of coral reef recovery after disturbance. Here, the effects of different herbivore groups (roving herbivores = foragers and territorial damselfish = farmers) were isolated by a multi-factorial experiment carried out on a coastal coral reef with high macroalgal cover, high farmer densities and relatively low forager abundance. The effects of foragers and farmers were distinguished by monitoring algal succession on settlement tiles placed inside and outside exclusion cages, with orthogonal treatments established inside and outside damselfish territories (with appropriate cage controls). Within 12 months, algal assemblages on ungrazed tiles inside exclusion cages proceeded rapidly from fine filamentous turfs, to corticated algae, to tough erect (e.g. Amphiroa spp.) and foliose (e.g. Peyssonnellidae) calcified algae. Farmers had a dramatic impact on succession, essentially arresting the development of the algal community at a point where it was dominated by palatable filamentous algae of the genus Polysiphonia. Fleshy macroalgae such as Sargassum spp. were excluded from farmer territories. In contrast, foragers did not suppress fleshy macroalgae, but rather, appeared to decelerate succession and promote a relatively diverse assemblage. In contrast to forager-dominated reefs, farmer territories did not appear to function solely as forager exclusion areas or promote algal diversity as a result of intermediate grazing pressure. The relatively strong effects of farmers observed here may represent a future scenario for coral reefs that are increasingly subject to overfishing of large grazing fishes.  相似文献   

14.
 Degradation of coral reefs often involves a “phase shift” from abundant coral to abundant macroalgae. This paper critically reviews the roles of nutrient increases in such phase shifts. I conclude that nutrient overloads can contribute to reef degradation, but that they are unlikely to lead to phase shifts simply by enhancing algal growth rates and hence allowing overgrowth of corals, unless herbivory is unusually or artificially low. Concentrations of dissolved inorganic nutrients are poor indicators of reef status, and the concept of a simple threshold concentration that indicates eutrophication has little validity. I discuss the significance and consequences of these assessments for reef management, focusing on the Great Barrier Reef, and conclude with some specific recommendations, including protection of herbivorous fishes, minimisation of terrestrial runoff, and protection of coastal reefs. Accepted: 13 August 1999  相似文献   

15.
A single ecosystem can exhibit great biogeographic and environmental variability. While a given ecological driver might have a strong impact in one region, it does not necessarily hold that its importance will extend elsewhere. Coral reefs provide a striking example in that coral communities have low resilience in the Atlantic and remarkable resilience in parts of the species‐rich Pacific. Recent experimental evidence from the Atlantic finds that fishing of large herbivorous fish can be a strong driver of coral resilience. Here, we repeat the Atlantic experiment in the highly resilient forereef of Moorea (French Polynesia), which has repeatedly recovered from disturbances. A combination of cages, fish deterrents (FDs), and controls allowed us to simulate the consequences of fishing large herbivores on algal assemblages, coral recruitment, and the demographic rates of coral juveniles. We find that the impacts of removing large herbivorous reef fish vary with early coral ontogeny. Reduced herbivore access led to a modest macroalgal bloom and reduction in coral recruitment. However, larger juvenile corals (> 1 cm diameter) survived better and grew faster under these conditions because of a reduction in corallivory. To determine the net impact of losing larger herbivorous fish, we combined experimental results with estimated demographic parameters in an individual‐based model. Simulating coral recovery trajectories for five years, we find that protecting larger reef fish led to better recovery in 66–99% of simulations, depending on underlying assumptions (with the more credible assumptions being associated with greater likelihood of net positive impacts). While we find that fishing effects are detrimental to corals in both the Atlantic and Pacific systems studied, the nature of the interactions varied markedly. In the identical previously‐published study in the Atlantic, macroalgae exhibited a rapid bloom and caused a sufficiently large reduction in coral recruitment to force a predicted ecosystem shift to an alternative attractor. The commensurate macroalgal bloom in Moorea was weak yet the corals were two orders of magnitude more sensitive to its presence. We do not suggest that a reduction in recruitment in Moorea will lead to alternative attractors but the long‐term risks of a reduction in recovery rate are cause for concern as rates of coral mortality are projected to increase. The emerging picture is that Pacific reefs are less likely to experience macroalgal blooms but are surprisingly sensitive to such blooms if they occur.  相似文献   

16.
With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs.  相似文献   

17.
Algal contact as a trigger for coral disease   总被引:4,自引:0,他引:4  
Diseases are causing alarming declines in reef‐building coral species, the foundation blocks of coral reefs. The emergence of these diseases has occurred simultaneously with large increases in the abundance of benthic macroalgae. Here, we show that physical contact with the macroalga Halimeda opuntia can trigger a virulent disease known as white plague type II that has caused widespread mortality in most Caribbean coral species. Colonies of the dominant coral Montastraea faveolata exposed to algal transplants developed the disease whereas unexposed colonies did not. The bacterium Aurantimonas coralicida, causative agent of the disease, was present on H. opuntia sampled close to, and away from diseased corals, indicating that the alga serves as a reservoir for this pathogen. Our results suggest that the spread of macroalgae on coral reefs could account for the elevated incidence of coral diseases over past decades and that reduction of macroalgal abundance could help control coral epizootics.  相似文献   

18.
Empirical relationships among resilience indicators on Micronesian reefs   总被引:1,自引:0,他引:1  
A process-orientated understanding of ecosystems usually starts with an exploratory analysis of empirical relationships among potential drivers and state variables. While relationships among herbivory, algal cover, and coral recruitment, have been explored in the Caribbean, the nature of such relationships in the Pacific appears to be variable or unclear. Here, we examine potential drivers structuring the benthos and herbivorous fish assemblages of outer-shelf reefs in Micronesia (Palau, Guam and Pohnpei). Surveys were stratified by wave exposure and protection from fishing. High biomass of most herbivores was favoured by high wave exposure. High abundance of large-bodied scarids was associated with low turf abundance, high coral cover, and marine reserves. The remaining herbivores were more abundant in reefs with low coral cover, possibly because space and hence food limitation occur in high-coral-cover reefs. Rugosity had no detectable effect on herbivorous fish abundance once differences in exposure and coral cover were accounted for. At identical depths, high wave exposure was associated with greater volumes (cover × canopy height) of macroalgae and algal turfs, which most likely resulted from high primary productivity driven by flow. In exposed areas, macroalgal cover declined as the acanthurid biomass increased. The volume of algal turfs was negatively associated with coral cover and herbivore biomass. In turn, high coral cover and herbivore biomass are likely to intensify grazing. The density of juvenile corals was variable where macroalgal cover was low but was confined to lower densities where macroalgal cover was high. High coral cover and density of juvenile corals were favoured in sheltered habitats. While a weak positive relationship was found between scarid biomass and juvenile coral density, we hypothesise that high scarid densities may hinder juvenile density through increased corallivory. New hypotheses emerged that will help clarify the role of acanthurids, wave exposure, and corallivory in driving the recovery of Pacific coral communities.  相似文献   

19.
Sarah C. Lee 《Oikos》2006,112(2):442-447
Theoretical and empirical evidence suggest that positive feedbacks can increase resilience in ecological communities. On Caribbean coral reefs, there have been striking shifts from physically complex communities with high coral cover to relatively homogenous communities dominated by macroalgae, which have persisted for decades. However, little is known about positive feedbacks that may maintain coral reef community states. Here, I explore a potential consumer-mediated feedback on a Jamaican reef by examining how grazing by a keystone herbivore ( Diadema antillarum ) is enhanced by physical structure, which offer refugia from predation. Surveys revealed that habitat complexity and Diadema density were positively related. Increasing habitat complexity by adding physical structure significantly decreased macroalgal cover and increased the proportion of urchins in algal habitats in field manipulations. Experimental increases in urchin density also decreased macroalgal cover, but did not affect the proportion of urchins in algal habitats. These results suggest that the low habitat complexity of macroalgal-dominated reefs may inhibit an urchin-mediated shift to coral dominance and that positive feedbacks must be considered in reef restoration efforts.  相似文献   

20.
The Northwestern Hawaiian Islands (NWHI) are considered to be among the most pristine coral reef ecosystems remaining on the planet. These reefs naturally contain a high percent cover of algal functional groups with relatively low coral abundance and exhibit thriving fish communities dominated by top predators. Despite their highly protected status, these reefs are at risk from both direct and indirect anthropogenic sources. This study provides the first comprehensive data on percent coverage of algae, coral, and non-coral invertebrates at the species level, and investigates spatial diversity patterns across the archipelago to document benthic communities before further environmental changes occur in response to global warming and ocean acidification. Monitoring studies show that non-calcified macroalgae cover a greater percentage of substrate than corals on many high latitude reef sites. Forereef habitats in atoll systems often contain high abundances of the green macroalga Microdictyon setchellianum and the brown macroalga Lobophora variegata, yet these organisms were uncommon in forereefs of non-atoll systems. Species of the brown macroalgal genera Padina, Sargassum, and Stypopodium and the red macroalgal genus Laurencia became increasingly common in the two northernmost atolls of the island chain but were uncommon components of more southerly islands. Conversely, the scleractinian coral Porites lobata was common on forereefs at southern islands but less common at northern islands. Currently accepted paradigms of what constitutes a “healthy” reef may not apply to the subtropical NWHI, and metrics used to gauge reef health (e.g., high coral cover) need to be reevaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号