首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Double-strand breaks (DSBs) are harmful DNA lesions that can generate chromosomal rearrangements or chromosome losses if not properly repaired. Despite their association with a number of genetic diseases and cancer, the mechanisms by which DSBs cause rearrangements remain unknown. Using a newly developed experimental assay for the analysis of translocations occurring between two chromosomes in Saccharomyces cerevisiae, we found that a single DSB located on one chromosome uses a short homologous sequence found in a third chromosome as a bridge to complete DSB repair, leading to chromosomal translocations. Such translocations are dramatically reduced when the short homologous sequence on the third chromosome is deleted. Translocations rely on homologous recombination (HR) proteins, such as Rad51, Rad52, and Rad59, as well as on the break-induced replication-specific protein Pol32 and on Srs2, but not on Ku70. Our results indicate that a single chromosomal DSB efficiently searches for short homologous sequences throughout the genome for its repair, leading to triparental translocations between heterologous chromosomes. Given the abundance of repetitive DNA in eukaryotic genomes, the results of this study open the possibility that HR rather than nonhomologous end joining may be a major source of chromosomal translocations.Genomic instability can be a source of cell death and cancer (3, 34). It is usually manifested as mutations and chromosomal rearrangements, including translocations, deletions, inversions, and duplications, often leading to gene fusions that may play a key role in the initial steps of tumorigenesis and subsequent cancer development (41, 42, 44). It is widely assumed that all rearrangement events are initiated by DNA double-strand breaks (DSBs) (1, 27, 49). In somatic cells, DSBs generally occur during DNA replication or by the action of environmental agents, such as genotoxic chemicals or ionizing radiation. Nevertheless, the mechanisms responsible for chromosomal rearrangements are not completely understood.Eukaryotic cells have evolved two main pathways to repair DSBs: nonhomologous end joining (NHEJ) and homologous recombination (HR). NHEJ involves processing of the two break ends so that either addition or deletion of nucleotides can occur prior to ligation and, consequently, mutations may be introduced. The involvement of NHEJ in the generation of chromosomal rearrangements has been extensively studied (9, 32, 62), and a number of NHEJ-mediated chromosomal rearrangements associated with cancer have been reported (4, 35). HR requires significant amounts of homology between the broken DNA ends and the intact DNA sequence to be used for repair. For this reason, HR is typically error free. However, HR can also be a source of chromosomal rearrangements when occurring between DNA repeats located in different chromosomes (33, 54).HR may occur via different mechanisms, depending on the nature of the DNA ends, the location of the homologous partners, and the length of homology (reviewed in reference 46). After a chromosome break, cells carry out a genome-wide search for homologous sequences that are used as template for the repair of the broken chromosome. When both ends of the DSB (two-ended DSB) are homologous to sequences present in an intact chromosome, HR may proceed by DSB repair (DSBR) or synthesis-dependent strand annealing (SDSA) mechanisms (reviewed in reference 21). When only one end of the DSB (one-ended DSB) is homologous to sequences elsewhere in the genome, break-induced replication (BIR) becomes the alternative HR repair mechanism, as shown for yeast (39). Whereas HR repair of two-ended DSBs is completed with the capture of the second end, repair of one-ended DSBs relies on DNA synthesis primed by the invading end all the way to the end of the chromosome or until it encounters a barrier (43).In yeast, both DSBR/SDSA and BIR require the DSB repair genes of the RAD52 epistasis group, including the RAD51 strand exchange factor and the RAD52 single-stranded DNA binding protein (reviewed in reference 30). However, RAD51 may be dispensable in BIR occurring between particular substrates, such as inverted repeats (5, 12, 58). BIR requires additional specific replication proteins, such as Pol32, one of the subunits of DNA polymerase δ that is dispensable for replication and DSB repair mechanisms other than BIR (36).To gain further insight into the mechanisms of chromosomal translocations, we devised an intron-based chromosomal translocation assay in Saccharomyces cerevisiae, in which a DSB is generated in a single chromosome by the HO endonuclease. We show that DSB-induced translocations occur via triparental recombination events. A short homologous sequence in a third chromosome serves as a bridge template for HR events occurring between two nonhomologous chromosomes. The triparental HR events that occur in our assays give rise mainly to reciprocal translocations that require Rad52, Rad51, and importantly, Pol32. Rad59, as well as the nonreplicative DNA helicase Srs2, are also required, although to a lesser extent, whereas Ku70 or Mus81 endonuclease play no role. We conclude that BIR-mediated triparental recombination could be a major mechanism for chromosomal translocations in eukaryotic cells.  相似文献   

2.
3.
4.
5.
6.
Nitrofurazone is reduced by cellular nitroreductases to form N2-deoxyguanine (N2-dG) adducts that are associated with mutagenesis and lethality. Much attention recently has been given to the role that the highly conserved polymerase IV (Pol IV) family of polymerases plays in tolerating adducts induced by nitrofurazone and other N2-dG-generating agents, yet little is known about how nitrofurazone-induced DNA damage is processed by the cell. In this study, we characterized the genetic repair pathways that contribute to survival and mutagenesis in Escherichia coli cultures grown in the presence of nitrofurazone. We find that nucleotide excision repair is a primary mechanism for processing damage induced by nitrofurazone. The contribution of translesion synthesis to survival was minor compared to that of nucleotide excision repair and depended upon Pol IV. In addition, survival also depended on both the RecF and RecBCD pathways. We also found that nitrofurazone acts as a direct inhibitor of DNA replication at higher concentrations. We show that the direct inhibition of replication by nitrofurazone occurs independently of DNA damage and is reversible once the nitrofurazone is removed. Previous studies that reported nucleotide excision repair mutants that were fully resistant to nitrofurazone used high concentrations of the drug (200 μM) and short exposure times. We demonstrate here that these conditions inhibit replication but are insufficient in duration to induce significant levels of DNA damage.Replication in the presence of DNA damage is thought to produce most of the mutagenesis, genomic rearrangements, and lethality that occur in all cells. UV-induced photoproducts, X-ray-induced strand breaks, psoralen- or cis-platin-interstrand cross-links, oxidized bases from reactive oxygen species, and base depurination are just a few of the structurally distinct challenges that the replication machinery must overcome. It seems likely that the mechanisms that process these lesions will vary depending on the nature of the impediment.While a number of the lesions described above are known to block replication, the events associated with UV-induced damage have been the most extensively characterized. UV irradiation causes the formation of cyclobutane pyrimidine dimers and 6-4 photoproducts in DNA that block the progression of the replication fork (16, 29, 30, 37). Following the arrest of replication at UV-induced damage, RecA and several RecF pathway proteins are required to process the replication fork such that the blocking lesion is removed or bypassed (2, 5, 6, 8-10). Cells lacking either RecA or any of several RecF pathway proteins are hypersensitive to UV-induced damage and fail to recover replication following disruption by the lesions (2, 6, 10). RecBCD is an exonuclease/helicase complex that is involved in repairing double-strand breaks (38). It also is required for resistance to UV-induced damage, although it is not required to process or restore disrupted replication forks, and the substrates it acts upon after UV irradiation currently remain unclear (3, 10, 19).Survival and the ability to resume DNA synthesis following UV-induced damage depend predominantly on the removal of the lesions by nucleotide excision repair (5, 7, 36). Cells deficient in nucleotide excision repair are unable to remove UV-induced DNA lesions and exhibit elevated levels of mutagenesis, strand exchanges, rearrangements, and cell lethality (16, 33, 34). In cases where replication fork processing or lesion repair is prevented, the recovery of replication and survival become entirely dependent on translesion synthesis by DNA polymerase V (Pol V) (6). However, in repair-proficient cells, the contribution of translesion synthesis to recovery and survival is minor and is detected only following UV doses that exceed the repair capacity of the cell (5, 6).Less is known about how replication recovers from other forms of DNA damage. We chose to characterize nitrofurazone, because a number of studies suggested that N2-deoxyguanine (N2-dG) adducts induced by this and other agents would be processed differently than UV-induced lesions. Nitrofurazone is a topical antibacterial agent that historically has been used for treating burns and skin grafts in patients and animals (14, 15, 32). Nitrofurazone toxicity is known to require activation by cellular nitroreductases (25, 42). However, the mechanism and targets of its antimicrobial properties have yet to be fully elucidated. In addition to its antimicrobial properties, the reduced nitrofurazone metabolites also target DNA and have been shown to induce free radical damage, strand breaks, and N2-dG adducts (26, 40, 42, 45), and they are mutagenic and carcinogenic in rodent models (1, 15, 24, 39).Whereas nucleotide excision repair is the predominant mechanism required for survival after UV-induced damage, a number of studies suggest that translesion synthesis plays a larger role in survival after nitrofurazone-induced DNA damage. dinB mutants lacking Pol IV were shown to be hypersensitive to nitrofurazone compared to cells that constitutively express the polymerase (17). Biochemically, Pol IV and a number of Pol IV homologs from other organisms have been shown to efficiently replicate over a range of N2-dG adducts in vitro (17, 35, 44). In addition, several studies have reported that uvrA mutants, which are defective in nucleotide excision repair, do not exhibit any hypersensitivity to nitrofurazone or other agents that induce similar adducts in vivo (12, 21, 27). Early studies also observed a direct correlation between nitrofurazone-induced mutations and lethality, suggesting that mutagenic lesions persist in the DNA to cause toxicity (21, 23, 27, 43). Consistent with these observations, nitrofuran-induced lesions were found to be poor substrates for nucleotide excision repair in vitro (46).Taken together, these observations suggest to us that the cellular response to nitrofurazone will be distinct from its response to UV irradiation. However, no study has examined the relative contributions that nucleotide excision repair, translesion synthesis, or recombination has in recovering from nitrofurazone-induced damage. In this study, we characterized the mechanism by which nitrofurazone inhibits DNA replication and identified the genes that contribute to the recovery, survival, and mutagenesis of Escherichia coli treated with nitrofurazone. In contrast to previous studies, we found that survival following nitrofurazone-induced damage depends predominantly on nucleotide excision repair. Similarly to UV-induced DNA damage, both the RecF and RecBC pathways contribute to survival following nitrofurazone-induced DNA damage. The contribution of translesion polymerases to survival was minor and was mediated by Pol IV. In addition, we found that nitrofurazone can act to inhibit DNA replication directly when used at higher concentrations. The direct inhibition of replication is reversible and occurs independently of DNA damage, suggesting that DNA is not the primary target of its antimicrobial properties.  相似文献   

7.
8.
DNA double-strand breaks can result from closely opposed breaks induced directly in complementary strands. Alternatively, double-strand breaks could be generated during repair of clustered damage, where the repair of closely opposed lesions has to be well coordinated. Using single and multiple mutants of Saccharomyces cerevisiae (budding yeast) that impede the interaction of DNA polymerase δ and the 5′-flap endonuclease Rad27/Fen1 with the PCNA sliding clamp, we show that the lack of coordination between these components during long-patch base excision repair of alkylation damage can result in many double-strand breaks within the chromosomes of nondividing haploid cells. This contrasts with the efficient repair of nonclustered methyl methanesulfonate-induced lesions, as measured by quantitative PCR and S1 nuclease cleavage of single-strand break sites. We conclude that closely opposed single-strand lesions are a unique threat to the genome and that repair of closely opposed strand damage requires greater spatial and temporal coordination between the participating proteins than does widely spaced damage in order to prevent the development of double-strand breaks.Endogenous metabolism or environmental factors such as oxidizing and alkylating agents can produce a wide variety of lesions in DNA. The genomes of mammalian cells experience from 10,000 to as many as 200,000 modifications per day (37, 44). Most lesions are repaired by a complex network of proteins that are part of an elaborate, multistep base excision repair (BER) system that generates single-strand break (SSB) intermediates. Importantly, defects in BER can lead to malignancies and can be associated with age-associated disease, especially neurodegeneration (60).BER is initiated by specific DNA N-glycosylases that remove damaged bases, yielding apurinic/apyrimidinic (AP) sites. Subsequent incision by AP endonucleases results in SSBs, and excision results in a single base gap as a repair intermediate (33, 53). SSBs are expected to be frequent in the genome due to the abundance of base damage as well as intermediates of repair, recombination, replication, and other DNA transactions (15, 16). Because they are generally repaired efficiently by BER and SSB repair enzymes (16, 57), SSBs per se may not be a major source of genome instability. However, if lesions are clustered, the formation of two closely spaced SSBs on opposing strands (or a single SSB and a modified nucleotide or AP site) might pose a special risk in terms of the potential to generate mutations or the possibility of conversion to double-strand breaks (DSBs), which are potent genotoxic lesions. Clustered lesions can arise within cells by chance association of random DNA lesions in a small region or the induction of multiple events in a narrow region, as found for ionizing radiation and various chemicals, such as those used in cancer treatments (47, 58, 59). While efficient BER is important for genome integrity, the repair must be well coordinated to avoid the generation of closely opposed SSB intermediates at closely spaced lesions that could result in the secondary generation of DSBs, especially since cells have limited DSB repair capacity (<50 DSBs/cell in the case of Saccharomyces cerevisiae) (48). While the impact of clustered lesions on repair of DNA has been examined in vitro by use of purified enzymes or cell extracts (13, 14, 27, 39, 56), there has been little opportunity to address specifically the repair of clustered lesions, except for those arising from UV damage (49).Whether formed directly from sugar damage or as BER intermediates, SSBs formed during the repair of base damage often possess 5′-deoxyribose phosphate (5′-dRP) ends that are not suitable for rejoining by DNA ligases (9, 15). In humans, removal and repair of 5′-dRP are accomplished by different combinations of proteins (3, 15) that result in short-patch repair, involving replacement of a single nucleotide (nt), or long-patch repair, involving 2 to 10 nt. The budding yeast Saccharomyces cerevisiae lacks a DNA polymerase β that provides AP lyase activity required for short-patch repair in mammalian cells. Instead, removal and repair of a 5′-dRP rely on the long-patch pathway, involving the successive actions of DNA polymerase δ (Pol δ) for strand displacement, the Rad27/Fen1 endonuclease to remove 5′ flaps, and DNA ligase (Cdc9) to rejoin the resulting nicks (9). The sliding clamp protein PCNA, which interacts with all three players, has been proposed to play a central role in coordinating these processes (18, 19, 34). The coupling between the strand displacement reaction by Pol δ and the flap cutting reaction by Fen1 is highly efficient, with over 90% of the products released by Fen1 being mononucleotides (17).Although the coordination of Pol δ, PCNA, and Rad27/Fen1 provides efficient processing of individual lesions in DNA, closely opposed SSBs that arise during repair of base damage could manifest as DSBs, either directly or as a result of SSB processing. A DNA damaging agent that has been used frequently to characterize long- and short-patch BER is methyl methanesulfonate (MMS). Recently, we described the detection of closely opposed MMS-induced lesions in yeast (42). Since the closely opposed lesions might represent a special challenge to BER, we considered the possibility that they might specifically impact long-patch repair through Pol δ and/or coordination of events with Rad27/Fen1. Pol δ of S. cerevisiae is a heterotrimeric enzyme consisting of Pol3, Pol31, and Pol32 (23). The nonessential Pol32 subunit is involved in translesion DNA synthesis (TLS) (24, 30) and also break-induced replication (41). However, its role in other types of DNA repair remains unclear. Using our in vivo assay for specifically detecting closely spaced methylated DNA lesions (42) and SSBs, we examined the role of Pol32 as well as the cooperation between Pol δ, Rad27/Fen1, and PCNA in the repair of clustered DNA lesions induced by MMS in G1 stationary-phase haploid yeast. We found that Pol32 plays an important role in ensuring that clustered lesions are efficiently repaired and do not transition to DSBs.  相似文献   

9.
The interactions of the herpes simplex virus processivity factor UL42 with the catalytic subunit of the viral polymerase (Pol) and DNA are critical for viral DNA replication. Previous studies, including one showing that substitution of glutamine residue 282 with arginine (Q282R) results in an increase of DNA binding in vitro, have indicated that the positively charged back surface of UL42 interacts with DNA. To investigate the biological consequences of increased DNA binding by UL42 mutations, we constructed two additional UL42 mutants, including one with a double substitution of alanine for aspartic acid residues (D270A/D271A) and a triple mutant with the D270A/D271A and Q282R substitutions. These UL42 mutants exhibited increased and prolonged DNA binding without an effect on binding to a peptide corresponding to the C terminus of Pol. Plasmids expressing any of the three UL42 mutants with an increased positive charge on the back surface of UL42 were qualitatively competent for complementation of growth and DNA replication of a UL42 null mutant on Vero cells. We then engineered viruses expressing these mutant proteins. The UL42 mutants were more resistant to detergent extraction than wild-type UL42, suggesting that they are more tightly associated with DNA in infected cells. All three UL42 mutants formed smaller plaques on Vero cells and replicated to reduced yields compared with results for a control virus expressing wild-type UL42. Moreover, mutants with double and triple mutations, which contain D270A/D271A mutations, exhibited increased mutation frequencies, and mutants containing the Q282R mutation exhibited elevated ratios of virion DNA copies per PFU. These results suggest that herpes simplex virus has evolved so that UL42 neither binds DNA too tightly nor too weakly to optimize virus production and replication fidelity.Processivity factors of DNA polymerases promote long-chain DNA synthesis by preventing dissociation of the DNA polymerase from the primer/template. Processivity factors also can influence DNA replication fidelity, as indicated by numerous in vivo and in vitro studies (1-3, 5, 6, 11, 12, 18, 28, 36). A major class of processivity factors known as “sliding clamps” includes proliferating cell nuclear antigen (PCNA) of eukaryotic cells (23) and gp45 of T4 bacteriophage (27). Sliding clamps are homodimers or homotrimers that encircle DNA and interact with the catalytic subunits (Pols) of their cognate DNA polymerases to promote processive DNA synthesis.A second class of processivity factors includes those encoded by herpesviruses and is exemplified by herpes simplex virus (HSV) UL42. UL42 forms a heterodimer with the HSV Pol. Both subunits are essential for production of infectious virus and for viral DNA replication (20, 26). UL42 can stimulate long-chain DNA synthesis by Pol, and template challenge experiments established that this stimulation is due to increased processivity (15). In addition to its interaction with Pol, which is mediated by the C terminus of Pol, UL42 also binds DNA directly with high affinity (14, 15, 30, 37). This mode of DNA binding differs from that of sliding clamps, which do not form high-affinity direct interactions with DNA (13) but must be loaded onto DNA with the aid of ATP-dependent clamp loaders for their normal functioning (16). Nevertheless, the structure of UL42 is very similar to a monomer of the sliding clamp PCNA (39). Like other processivity factors, UL42 also plays a role in maintaining DNA replication fidelity both in vivo and in vitro (5, 18).The “back face” (opposite face to the side that binds Pol) of a UL42 molecule contains several positively charged residues. By titrating the effects of cations on UL42 DNA binding, it was determined that charge-charge interactions are involved in the interaction (22). Substitutions of alanine for any of four arginine residues on the back face of UL42 resulted in substantial reductions in DNA binding without affecting the binding to peptide corresponding to the C terminus of Pol in vitro (31), while substitutions of lysine for arginine had little or no effect on DNA binding affinity (22). A UL42 mutant (Q282R) containing a substitution of arginine for a negatively charged glutamine residue on the back face of UL42 exhibited a fourfold increase in DNA binding without altering the interaction with the Pol C-terminal peptide in vitro (22). Therefore, the positively charged surface of UL42 is important for the interaction between UL42 and DNA. A question raised by these studies is whether UL42 could bind DNA so tightly as to affect HSV replication.Mutant viruses engineered to encode individual arginine-to-alanine substitution mutations in UL42 exhibit several phenotypes, including a delayed onset of viral DNA replication, reduced virus yields, and reduced fidelity of DNA replication (18). Recombinant viruses expressing UL42 with multiple substitutions of alanine for arginine residues exhibit even greater effects on viral DNA replication and virus yields (19). Thus, reducing DNA binding by UL42 deleteriously affects viral growth and DNA replication fidelity. However, these studies did not address whether increasing DNA binding by UL42 would have any effects on viral DNA replication, replication fidelity, or virus production.In this study we engineered two new UL42 mutant proteins (with the D270A/D271A or Q282R/D270A/D271A mutations) that contain less negative charge on the back face and examined the effects of these substitutions on DNA and Pol peptide binding. In addition, recombinant viruses were constructed to examine the effect of these multiple substitutions and the single Q282R substitution on virus production, DNA replication, and the fidelity of DNA replication.  相似文献   

10.
11.
12.
Transposon mutagenesis is a tool that is widely used for the identification of genes involved in the virulence of bacteria. Until now, transposon mutagenesis in Clostridium perfringens has been restricted to the use of Tn916-based methods with laboratory reference strains. This system yields primarily multiple transposon insertions in a single genome, thus compromising its use for the identification of virulence genes. The current study describes a new protocol for transposon mutagenesis in C. perfringens, which is based on the bacteriophage Mu transposition system. The protocol was successfully used to generate a single-insertion mutant library both for a laboratory strain and for a field isolate. Thus, it can be used as a tool in large-scale screening to identify virulence genes of C. perfringens.Clostridium perfringens is a gram-positive, anaerobic bacterium that forms heat-resistant spores. It is widespread in the soil and commonly found in the gastrointestinal tract of mammals. It has been implicated in several medical conditions in humans, ranging from mild food poisoning to necrotic enteritis and gas gangrene. C. perfringens strains also cause a variety of important diseases in domestic animals, including several enteric syndromes, such as enterotoxemia in cattle, sheep, and pigs, necrotic enteritis in poultry, and typhocolitis in equines (17, 40).Understanding the pathogenesis of these infections is of crucial importance for the development of new tools for the prevention and control of C. perfringens-related diseases. Genetic modification is a valuable approach to identify new virulence factors and to study their role in the pathogenesis of C. perfringens.Since the 1980s, several tools for manipulation of C. perfringens at the molecular level have been developed (1, 5, 28, 35, 38). Among these tools, transposon mutagenesis is a method that is widely used for identification of virulence genes. Until now, the only reproducible method for transposon mutagenesis in C. perfringens was based on Tn916, a tetracycline resistance-encoding conjugative transposon originally isolated from Enterococcus faecalis (10, 11, 13). Tn916 has been used extensively for transposon mutagenesis due to its broad host range and has been proven to be valuable for the identification of genes in C. perfringens (3, 7, 22). Nevertheless, this method has major disadvantages; multiple Tn916 insertion events occur with an incidence of 65% to 75%, severely complicating identification of genes responsible for phenotype changes (3, 7, 19). Furthermore, Tn916 is still active after insertion, resulting in unstable mutants (6, 39, 42). To our knowledge, generation of Tn916-derived transposon mutants in C. perfringens field strains has never been described.Although a variety of transposon mutagenesis methods are available for gram-positive bacteria (4, 37, 41, 43), the inherent species nonspecificity, as well as the lack of mobility of the integrated transposon, makes the bacteriophage Mu-based transposon delivery system a system of choice for a variety of species (16, 26, 46). The Mu transposition approach includes in vitro assembly of a complex between the transposon DNA and the transposase enzyme, the transpososome, followed by delivery of the transpososome into the recipient cells. Once inside a cell, the Mu transpososome becomes activated in the presence of divalent cations, resulting in genomic integration of the delivered transposon. The bacteriophage Mu transposition system is also functional in vitro (15, 32, 33), in contrast to the Tn916 mutagenesis strategy, which is restricted to transposon mobilization in vivo following conjugation or electroporation. Under the optimal in vitro conditions, the Mu transposition reaction requires only the MuA transposase, a mini-Mu transposon, and target DNA as macromolecular components (15).In this study, a novel protocol is described for transposon mutagenesis in C. perfringens that exploits the bacteriophage Mu transposition system. To our knowledge, this report is the first report describing a mutagenesis method generating single-insertion transposon mutants in laboratory and field isolates of C. perfringens. This method is important for the identification of C. perfringens virulence factors involved in the numerous diseases caused by this bacterium.  相似文献   

13.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

14.
15.
16.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

17.
18.
The environment encountered by Mycobacterium tuberculosis during infection is genotoxic. Most bacteria tolerate DNA damage by engaging specialized DNA polymerases that catalyze translesion synthesis (TLS) across sites of damage. M. tuberculosis possesses two putative members of the DinB class of Y-family DNA polymerases, DinB1 (Rv1537) and DinB2 (Rv3056); however, their role in damage tolerance, mutagenesis, and survival is unknown. Here, both dinB1 and dinB2 are shown to be expressed in vitro in a growth phase-dependent manner, with dinB2 levels 12- to 40-fold higher than those of dinB1. Yeast two-hybrid analyses revealed that DinB1, but not DinB2, interacts with the β-clamp, consistent with its canonical C-terminal β-binding motif. However, knockout of dinB1, dinB2, or both had no effect on the susceptibility of M. tuberculosis to compounds that form N2-dG adducts and alkylating agents. Similarly, deletion of these genes individually or in combination did not affect the rate of spontaneous mutation to rifampin resistance or the spectrum of resistance-conferring rpoB mutations and had no impact on growth or survival in human or mouse macrophages or in mice. Moreover, neither gene conferred a mutator phenotype when expressed ectopically in Mycobacterium smegmatis. The lack of the effect of altering the complements or expression levels of dinB1 and/or dinB2 under conditions predicted to be phenotypically revealing suggests that the DinB homologs from M. tuberculosis do not behave like their counterparts from other organisms.The emergence and global spread of multi- and extensively drug-resistant strains of Mycobacterium tuberculosis have further complicated the already daunting challenge of controlling tuberculosis (TB) (15). The mechanisms that underlie the evolution of drug resistance in M. tuberculosis by chromosomal mutagenesis and their association with the conditions that tubercle bacilli encounter during the course of infection are poorly understood (6). It has been postulated that hypoxia, low pH, nutrient deprivation, and nitrosative and oxidative stress impose environmental and host immune-mediated DNA-damaging insults on infecting bacilli (64). In addition, the observed importance of excision repair pathways for the growth and survival of M. tuberculosis in murine models of infection (13, 55) and the upregulation of M. tuberculosis genes involved in DNA repair and modification in pulmonary TB in humans provide compelling evidence that the in vivo environment is DNA damaging (51).Damage tolerance constitutes an integral component of an organism''s response to genotoxic stress, preventing collapse of the replication fork at persisting, replication-blocking lesions through the engagement of specialized DNA polymerases that are able to catalyze translesion synthesis (TLS) across the sites of damage (19, 21, 60). Most TLS polymerases belong to the Y family, which comprises a wide range of structurally related proteins present in bacteria, archaea, and eukaryotes (44). Of these, the DinB subfamily of Y family polymerases, whose founder member is Escherichia coli Pol IV (63), is conserved among all domains of life (44). The association of Y family polymerases with inducible mutagenesis has implicated these enzymes in the adaptation of bacteria to environmental stress (17, 20, 39, 54, 58, 59, 66). Their key properties are exemplified in E. coli Pol IV: the polymerase catalyzes efficient and accurate TLS across certain N2-dG adducts (27, 28, 34, 40, 45, 67) and has been implicated in the tolerance of alkylation damage (4); furthermore, overexpression of Pol IV significantly increases mutation rates in E. coli (reviewed in references 21 and 26), and dinB is the only SOS-regulated gene required at induced levels for stress-induced mutagenesis in this organism (20). Furthermore, overproduction of E. coli Pol IV inhibits replication fork progression through replacement of the replicative polymerase to form an alternate replisome in which Pol IV modulates the rate of unwinding of the DnaB helicase (25) and also reduces colony-forming ability (61).The M. tuberculosis genome encodes two Y family polymerase homologs belonging to the DinB subfamily, designated herein as DinB1 (DinX, encoded by Rv1537) and DinB2 (DinP, encoded by Rv3056), as well as a third, distantly related homolog encoded by Rv3394c (see Fig. S1 in the supplemental material) (9). On the basis of sequence similarity with their counterparts from E. coli (63) and Pseudomonas aeruginosa (54), including the complete conservation of key acidic residues essential for catalysis, DinB1 and DinB2 may be functional DNA polymerases (see Fig. S1). In contrast, Rv3394c lacks these residues and as such is unlikely to have polymerase activity (see Fig. S1). Unlike most Y family polymerase-encoding genes investigated with other bacteria (17, 26, 54, 58), dinB1 and dinB2 expression in M. tuberculosis is not dependent on RecA, the SOS response, or the presence of DNA damage (5, 7, 52). That these genes are regulated by other mechanisms and so may serve distinct roles in DNA metabolism in M. tuberculosis is suggested by the observation that dinB1 is differentially expressed in pulmonary TB (51) and is a member of the SigH regulon (30), whereas expression of dinB2 is induced following exposure to novobiocin (5).In this study, we adopted a genetic approach to investigate the function of dinB1 and dinB2 in M. tuberculosis. Mutants with altered complements or expression levels of dinB1 and/or dinB2 were analyzed in vitro and in vivo under conditions predicted to be phenotypically revealing based on DinB function established with other model organisms. The lack of discernible phenotypes in any of the assays employed suggests that the DinB homologs from M. tuberculosis do not behave like their counterparts from other organisms.  相似文献   

19.
20.
Wzx belongs to a family of membrane proteins involved in the translocation of isoprenoid lipid-linked glycans, which is loosely related to members of the major facilitator superfamily. Despite Wzx homologs performing a conserved function, it has been difficult to pinpoint specific motifs of functional significance in their amino acid sequences. Here, we elucidate the topology of the Escherichia coli O157 Wzx (WzxEcO157) by a combination of bioinformatics and substituted cysteine scanning mutagenesis, as well as targeted deletion-fusions to green fluorescent protein and alkaline phosphatase. We conclude that WzxEcO157 consists of 12 transmembrane (TM) helices and six periplasmic and five cytosolic loops, with N and C termini facing the cytoplasm. Four TM helices (II, IV, X, and XI) contain polar residues (aspartic acid or lysine), and they may form part of a relatively hydrophilic core. Thirty-five amino acid replacements to alanine or serine were targeted to five native cysteines and most of the aspartic acid, arginine, and lysine residues. From these, only replacements of aspartic acid-85, aspartic acid-326, arginine-298, and lysine-419 resulted in a protein unable to support O-antigen production. Aspartic acid-85 and lysine-419 are located in TM helices II and XI, while arginine-298 and aspartic acid-326 are located in periplasmic and cytosolic loops 4, respectively. Further analysis revealed that the charge at these positions is required for Wzx function since conservative substitutions maintaining the same charge polarity resulted in a functional protein, whereas those reversing or eliminating polarity abolished function. We propose that the functional requirement of charged residues at both sides of the membrane and in two TM helices could be important to allow the passage of the Und-PP-linked saccharide substrate across the membrane.Lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, plays critical roles in bacterial cell physiology (36) and in disease (53). The structure of LPS is complex and consists at a minimum of lipid A and core oligosaccharide (OS) (42). Many Gram-negative bacteria also have an O-specific antigen polysaccharide (or O antigen) attached to one of the terminal residues of the core OS (42). The O antigen is the most variable portion of the LPS molecule and arises from the polymerization of discrete oligosaccharide units (42, 54).The biosynthesis of LPS requires many enzymes and assembly proteins and generally involves two separate pathways. One pathway results in the synthesis of the lipid A-core OS (42), which is translocated across the inner membrane by the lipid A flippase MsbA, an ABC transporter (14, 15, 60). The other pathway involves the synthesis and assembly of the O-antigen polysaccharide, which also begins at the cytosolic side of the inner membrane resulting in the formation of a lipid-linked molecule that is further translocated across the inner membrane. The formation of a complete LPS molecule containing O antigen is catalyzed by the O-antigen ligase WaaL (41). LPS molecules are further translocated to the outer leaflet of the outer membrane by the Lpt transport system involving a number of inner membrane, periplasmic, and outer membrane proteins (44, 45, 48, 49).There are at least three known mechanisms for the assembly and translocation of lipid-linked O antigens (42, 54). One of them involves a synthase protein that is homologous to processive glycosyltransferases for the synthesis of cellulose and chitin (24, 42). The other mechanism requires ATP hydrolysis for the translocation step, which is mediated by a two-component ABC transporter. This mechanism was initially described for homopolymeric O antigens (42) but also occurs with heteropolymeric O antigens (38). The third mechanism, known as the Wzy-dependent pathway (42, 54), requires three proteins: Wzx (O-antigen translocase), Wzy (O-antigen polymerase), and Wzz (regulator of O-antigen chain-length distribution). This mechanism, used primarily for the synthesis of heteropolymeric O antigens, differs from the other two in that each O unit is separately synthesized and individually translocated across the inner membrane, while the polymerization takes place at the periplasmic side of the membrane (42, 54). The O-antigen precursors are always synthesized as oligosaccharides covalently attached by a phospho-anhydride linkage to an isoprenoid lipid known as undecaprenyl phosphate (Und-P). The formation of the phospho-anhydride linkage is the first committed step toward the synthesis of O antigens and is catalyzed by two classes of membrane enzymes whose prototypes are WecA and WbaP (3, 26, 39, 46, 54). Remarkably, the involvement of an isoprenoid phosphate lipid for these reactions is a common theme in nature and also appears in the synthesis of glycan precursors for cell wall peptidoglycan and in protein glycosylation in bacteria and eukaryotic cells (9, 10). Furthermore, the Wzy-dependent pathway is functionally analogous to the initial steps of dolichol-PP-linked glycans at the endoplasmic reticulum, which are involved in protein N glycosylation (21, 54). Indeed, a membrane protein with roughly similar features as Wzx has been identified in eukaryotic cells as the dolichol-PP-linked glycan flippase and named Rft1 (22).Our laboratory focuses on the characterization of the Wzy-dependent pathway, and we have previously shown that a single Und-PP-sugar is the minimal substrate for translocation (19, 33). Consistent with this notion, Wzx proteins appear to recognize the Und-PP-bound sugar of the O-antigen unit, irrespective of the composition and structure of the remainder O unit (19, 33). Based on these observations, Wzx proteins can be loosely separated among those that can function with Und-PP-linked N-acetylhexosamines versus those that can function with Und-PP-linked N-hexoses (33). However, comparisons among Wzx primary amino acid sequences do not provide any hints on putative functional residues conserved across the members of this family. It is generally accepted that the translocation process mediated by members of Wzx and Rft1 families does not involve ATP hydrolysis (21, 54), which agrees with the absence of features in the protein that are characteristic of ATP binding or hydrolysis domains. Another complication to investigate functionally the members of these families is the lack of solid topological models that accurately predict transmembrane helices and solvent-exposed loops. Currently, experimentally based topological models have only been established for the Salmonella enterica serovar Typhimurium group B Wzx protein (12), and the Wzx-like protein PssL from Rhizobium leguminosarum (35), which is involved in exopolysaccharide capsule production. However, these studies did not identify any regions or specific amino acids from the protein that could play a functional role in the translocation process. In the present study, we have experimentally characterized the topology of the Wzx protein from Escherichia coli O157 (WzxEcO157) and subjected this protein to extensive mutagenesis by alanine and serine replacements targeting native cysteines and most of the aspartic acid, arginine, and lysine residues. Complementation experiments measuring the ability of each mutant protein to restore O-antigen synthesis in an E. coli K-12 Δwzx mutant resulted in the identification of four charged residues that are required for function, two of which occur in transmembrane helices. Additional replacement mutagenesis revealed that charge but not the nature of the residue is important for Wzx function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号