首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The purpose of this investigation was to determine if alterations in extracellular calcium (Ca2+) influx by the dihydropyridine derivatives Bay K 8644 and nifedipine affected skeletal muscle fatigue. 2. Tetanic contractions (80 Hz, 100 msec) of frog sartorius muscles were evoked every sec for 3 min. Muscles were fatigued in normal Ringer's solution (NR), in NR containing 1 microM nifedipine of 10 microM Bay K 8644 or in low Ca2+ Ringer's. 3. In each case, the experimental conditions increased the rate and magnitude of fatigue. Rate constants of fatigue obtained during Bay K 8644, nifedipine and low Ca2+ conditions (-.0122 +/- .0016, -.0397 +/- 0022 and 0.0169 +/- .0064 sec-1, respectively) were significantly greater than NR (-.0104 +/- .0006 sec-1, p less than .05). In addition, tetanic forces developed at the end of the stimulation period under the experimental conditions (3.90 +/- 0.81, 1.21 +/- 1.40 and 2.04 +/- 1.10% of initial) were significantly less than NR (7.18 +/- 1.27%, p less than .05). 4. Caffeine contracture forces (10 mM) evoked immediately after stimulation were not significantly different between conditions. 5. These results suggest that alterations in sarcolemmal Ca2+ exchange has some influence on the fatigue process.  相似文献   

2.
Recent progress in tissue engineering has made it possible to build contractile bio-hybrid materials that undergo conformational changes by growing a layer of cardiac muscle on elastic polymeric membranes. Further development of such muscular thin films for building actuators and powering devices requires exploring several design parameters, which include the alignment of the cardiac myocytes and the thickness/Young's modulus of elastomeric film. To more efficiently explore these design parameters, we propose a 3-D phenomenological constitutive model, which accounts for both the passive deformation including pre-stretch and the active behavior of the cardiomyocytes. The proposed 3-D constitutive model is implemented within a finite element framework, and can be used to improve the current design of bio-hybrid thin films and help developing bio-hybrid constructs capable of complex conformational changes.  相似文献   

3.
When skeletal muscle is stretched during a tetanic contraction, the resulting force is greater than the purely isometric force obtained at the corresponding final length. Several mechanisms have been proposed to explain this phenomenon, but the most accepted mechanism is the sarcomere length non-uniformity theory. This theory is associated with the notion of instability of sarcomeres on the descending limb of the force–length relationship. However, recent evidence suggests that this theory cannot account solely for the stretch-induced force enhancement. Some of this evidence is presented in this paper, and a new mechanism for force enhancement is proposed: one that is associated with the engagement of a passive force during stretch. We speculate that this passive force enhancement may be caused by titin, a protein associated with passive force production at long sarcomere lengths.  相似文献   

4.
5.
The effect of acid-base balance on fatigue of skeletal muscle   总被引:5,自引:0,他引:5  
H+ ions are generated rapidly when muscles are maximally activated. This results in an intracellular proton load. Typical proton loads in active muscles reach a level of 20-25 mumol X g-1, resulting in a fall in intracellular pH of 0.3-0.5 units in mammalian muscle and 0.6-0.8 units in frog muscle. In isolated frog muscles stimulated to fatigue a proton load of this magnitude is developed, and at the same time maximum isometric force is suppressed by 70-80%. Proton loss is slowed when external pH is kept low. This is paralleled by a slow recovery of contractile tension and seems to support the idea that suppression results from intracellular acidosis. Nonfatigued muscles subjected to similar intracellular proton loads by high CO2 levels show a suppression of maximal tension by only about 30%. This indicates that only a part of the suppression during fatigue is normally due to the direct effect of intracellular acidosis. Further evidence for a component of fatigue that is not due to intracellular acidosis is provided by the fact that some muscle preparations (rat diaphragm) can be fatigued with very little lactate accumulation and very low proton loads. Even under these conditions, a low external pH (6.2) can slow recovery of tension development 10-fold compared with normal pH (7.4). We must conclude that there are at least two components to fatigue. One, due to a direct effect of intracellular acidosis, acting directly on the myofibrils, accounts for a part of the suppression of contractile force. A second, which in many cases may be the major component, is not dependent on intracellular acidosis. This component seems to be due to a change of state in one or more of the steps of the excitation-contraction coupling process. Reversal of this state is sensitive to external pH which suggests that this component is accessible from the outside of the cell.  相似文献   

6.
Increasing stimulation frequency has been shown to increase fatigue but not when the changes in force associated with changes in frequency have been controlled. An effect of frequency, independent of force, may be associated with the metabolic cost resulting from the additional activations. Here, two separate experiments were performed on human medial gastrocnemius muscles. The first experiment (n = 8) was designed to test the effect of the number of pulses on fatigue. The declines in force during two repetitive, 150-train stimulation protocols that produced equal initial forces, one using 80-Hz trains and the other using 100-Hz trains, were compared. Despite a difference of 600 pulses (23.5%), the protocols produced similar rates and amounts of fatigue. In the second experiment, designed to test the effect of the number of pulses on the metabolic cost of contraction, 31P-NMR spectra were collected (n = 6) during two ischemic, eight-train stimulation protocols (80- and 100-Hz) that produced comparable forces despite a difference of 320 pulses (24.8%). No differences were found in the changes in P(i) concentration, phosphocreatine concentration, and intracellular pH or in the ATP turnover produced by the two trains. These results suggest that the effect of stimulation frequency on fatigue is related to the force produced, rather than to the number of activations. In addition, within the range of frequencies tested, increasing total activations did not increase metabolic cost.  相似文献   

7.
The functional correlates of fatigue observed in both animals and humans during exercise include a decline in peak force (P0), maximal velocity, and peak power. Establishing the extent to which these deleterious functional changes result from direct effects on the myofilaments is facilitated through understanding the molecular mechanisms of the cross-bridge cycle. With actin-myosin binding, the cross-bridge transitions from a weakly bound low-force state to a strongly bound high-force state. Low pH reduces the number of high-force cross bridges in fast fibers, and the force per cross bridge in both fast and slow fibers. The former is thought to involve a direct inhibition of the forward rate constant for transition to the strong cross-bridge state. In contrast, inorganic phosphate (Pi) is thought to reduce P0 by accelerating the reversal of this step. Both H+ and Pi decrease myofibrillar Ca2+ sensitivity. This effect is particularly important as the amplitude of the Ca2+ transient falls with fatigue. The inhibitory effects of low pH and high Pi on P0 are reduced as temperature increases from 10 to 30 degrees C. However, the H+-induced depression of peak power in the slow fiber type, and Pi inhibition of myofibrillar Ca2+ sensitivity in slow and fast fibers, are greater at high compared with low temperature. Thus the depressive effects of H+ and Pi at in vivo temperatures cannot easily be predicted from data collected below 25 degrees C. In vitro, reactive oxygen species reduce myofibrillar Ca2+ sensitivity; however, the importance of this mechanism during in vivo exercise is unknown.  相似文献   

8.
We studied the effect of caffeine on voluntary and electrically stimulated contractions of the adductor pollicis muscle in five adult volunteers. Caffeine (500 mg) was administered orally in a double-blind fashion. Electrical stimulation of the ulnar nerve was performed at 10, 20, 30, 50, and 100 Hz before and after a sustained voluntary contraction held at 50% of the maximal voluntary contraction (MVC). A brief tetanus at 30 Hz was also performed to calculate relaxation rate in the fresh muscle. Contractile properties, relaxation rate, and endurance were then assessed after caffeine and placebo, as well as the response of the fatigued muscle to different frequencies of stimulation. There was no difference in the maximal tension obtained with electrical stimulation (T100) or in the MVC between placebo and caffeine. The tensions developed with electrical stimulation at lower frequencies increased significantly with caffeine ingestion, shifting the frequency-force curve to the left, both before and after fatigue. Mean plasma caffeine concentration associated with these responses was 12.2 +/- 4.9 mg/l. We conclude that caffeine has a direct effect on skeletal muscle contractile properties both before and after fatigue as demonstrated by electrical stimulation.  相似文献   

9.
The roles of ion fluxes in skeletal muscle fatigue   总被引:3,自引:0,他引:3  
Intense muscle contractions result in large changes in the intracellular concentrations of electrolytes. The purpose of this study was to examine the contributions of changes in intracellular strong ions to calculated changes in steady-state membrane potential (Em) and muscle intracellular H+ concentration ([H+]i). A physicochemical model is used to examine the origin of the changes in [H+]i during intense muscle contraction. The study used the isolated perfused rat hindlimb intermittently stimulated to contract at high intensity for 5 min. This resulted in significant K+ depletion of both slow (soleus) and fast (white gastrocnemius, WG) muscle fibers and a release of K+ and lactate (Lac-) into venous perfusate. The major contributor to a 12- to 14-mV depolarization of Em in soleus and WG was the decrease in intracellular K+ concentration ([K+]i). The major independent contributors to [H+]i are changes in the concentrations of strong and weak ions and in CO2. Significant decreases in the strong ion difference [( SID]i) in both soleus and WG contributed substantially to the increase in [H+]i during stimulation. In WG the model showed that the decrease in [SID]i accounted for 35% of the increase in [H+]i (133-312 nequiv/L; pHi = 6.88-6.51) at the end of stimulation. Of the main contributors to decreased [SID]i, increased [Lac-]i and decreased [K+]i contributed 40 and 60%, respectively, to increased [H+]i, whereas a decrease in [PCr2-]i contributed to reduced [H+]i. It is concluded that decreased muscle [K+]i during intense contractions is the single most important contributor to reduced Em and increased [H+]i. Depletion of PCr2- simultaneous to the changes in [Lac-]i and [K+]i prevents larger increases in [H+]i and helps maintain the intracellular acid-base state.  相似文献   

10.
Free radicals may contribute to oxidative skeletal muscle fatigue   总被引:10,自引:0,他引:10  
We used mouse soleus in vitro (n = 30) and canine gastrocnemius-plantaris preparations (n = 20) pump-perfused at the animal's blood pressure to establish if free radicals contribute to fatigue in oxidative skeletal muscle. The soleus from each leg contracted for 200 ms (70 Hz) once every minute for 60 min in Hepes buffer gassed with 100% oxygen at 27 degrees C. When contracting in Hepes alone, both muscles fatigued at 0.9 mN/mm2.min over the 60 min. The addition of purines to the bath increased the rate to 1.4 mN/mm2.min and the addition of xanthine oxidase to generate free radicals increased the rate again to 1.9 mN/mm2.min. Thus free radicals appeared to attenuate oxidative skeletal muscle function. Each canine muscle contracted isometrically at 4 Hz for 30 min and then rested for 45 min before contracting for a second 30 min at 4 Hz. In each experiment, we infused saline at 0.76 mL/min into resting muscle and at 1.91 mL/min during the first contraction period. During the remainder of the experiment, we infused, at the same rates, saline (n = 4), 10 microM dimethyl sulfoxide (DMSO) (n = 4) to identify the effect of scavenging hydroxyl radicals, 1 mM allopurinol to establish the effect of blocking xanthine oxidase (n = 4), or 200 microM desferoxamine to determine the effect of chelating iron (n = 4). With saline, the fatigue rate over the 30 min of contractions increased from 5.0 +/- 0.2 to 6.3 +/- 0.5 N/kg.min from the first to the second stimulation period. The fatigue rate was slower in the second period with each of the three experimental substances (DMSO, 5.9 +/- 0.8 to 3.2 +/- 0.3; allopurinol, 7.3 +/- 1.1 to 4.6 +/- 0.6; desferoxamine, 6.8 +/- 0.8 to 4.4 +/- 0.8 N/kg.min). The fatigue rate was the same as control when DMSO was infused only during the second contraction period. Therefore, free radicals appeared to contribute to fatigue in oxidative skeletal muscle.  相似文献   

11.
It is generally accepted that the muscles of aged individuals contract with less force, have slower relaxation rates, and demonstrate a downward shift in their force-velocity relationship. The factors mediating age-related differences in skeletal muscle fatigue are less clear. The present study was designed to test the hypothesis that age-related shifts in the force-velocity relationship impact the fatigue response in a velocity-dependent manner. Three fatigue protocols, consisting of intermittent, maximum voluntary knee extension contractions performed for 4 min, were performed by 11 young (23.5 ± 0.9 yr, mean ± SE) and 10 older (68.9 ± 4.3) women. The older group fatigued less during isometric contractions than the young group (to 71.1 ± 3.7% initial torque and 59.8 ± 2.5%, respectively; P = 0.02), while the opposite was true during contractions performed at a relatively high angular velocity of 270°·s(-1) (old: 28.0 ± 3.9% initial power, young: 52.1 ± 6.9%; P < 0.01). Fatigue was not different (P = 0.74) between groups during contractions at an intermediate velocity, which was selected for each participant based on their force-velocity relationship. There was a significant association between force-velocity properties and fatigue induced by the intermediate-velocity fatigue protocol in the older (r = 0.72; P = 0.02) and young (r = 0.63; P = 0.04) groups. These results indicate that contractile velocity has a profound impact on age-related skeletal muscle fatigue resistance and suggest that changes in the force-velocity relationship partially mediate this effect.  相似文献   

12.
13.
The rise time of an isometric twitch, the tetanic tension, the twitch tetanus ratio, the frequency-tension relationship, and the height of the MUAP (motor unit action potential) were measured in fast twitch (medial gastrocnemius) and slow twitch (soleus) muscles of the cat immediately before, in the middle, and immediately after fatiguing isometric contractions at tensions of 30, 50 and 80% of each muscle's initial strength (tetanic tension recorded from the unfatigued muscle). Although the twitch-tetanus ratio was always less for the soleus than for the medial gastrocnemius muscles, the twitch-tetanus ratio for any one muscle was constant throughout the duration of fatiguing isometric contractions at any of the tensions examined. In contrast, the twitch tension and tetanic tension of the muscles were both less after the contractions, the largest reduction occurring for both muscles during contractions sustained at the lowest isometric tensions. The time to peak tension of an isometric twitch was prolonged for both muscles following the contractions. This was associated with a corresponding shift in the frequency tension relationship such that at the point of muscular fatigue, the muscles tetanized at lower frequencies of stimulation than did the unfatigued muscle. In contrast, the amplitude of the MUAP showed only a modest reduction throughout the duration of the fatiguing contractions.  相似文献   

14.
The effects of indomethacin and meclofenamate on active hyperemia following sustained, maximal isometric contractions were studied in free-flowing dog gracilis muscles. Muscles were stimulated to contract in situ for 1, 4, 7, and 10 s durations in the absence and presence of indomethacin (62.5 micrograms/ml blood), meclofenamate (50 micrograms/ml blood), or appropriate vehicles. Drugs were administered by continuous intra-arterial infusion into the muscle. Cyclo-oxygenase inhibition was verified by intra-arterial injection of arachidonic acid. Resting vascular conductance decreased by 28% with meclofenamate but not with indomethacin. Meclofenamate and indomethacin increased active hyperemia excess flows by 49% and 101%, respectively, following 10 s of contraction. These results differ markedly from previous studies. We suggest that non-specific actions of both drugs, unrelated to their effect on prostaglandin synthesis, result in potentiation of normal vasodilator responses to muscle contraction.  相似文献   

15.
The purpose of this study was to determine the interaction of three factors that modify twitch contraction amplitude in the rat gastrocnemius muscle in situ: posttetanic potentiation, fatigue, and caffeine. Posttetanic (200 Hz for 1 s) twitch responses were observed before and after 15 Hz stimulation for 6 min (group FS), injection of caffeine (75 mg/kg dissolved in saline, group NC), a combination of both repetitive stimulation and caffeine injection (group FC), or no treatment (group NS). Developed tension increased significantly with posttetanic potentiation and caffeine injection and these potentiating factors were additive (group NC). Repetitive stimulation attenuated the twitch response and the fatigued muscle was still responsive to the potentiating factors. Posttetanic potentiation was accomplished primarily by a significant increase in the peak rate of force development whereas caffeine potentiation and fatigue were effected with a proportional change in contraction time. It seems likely that the mechanism of posttetanic potentiation is not the same as the mechanism of caffeine-induced potentiation. Caffeine-induced potentiation is known to be related to increased release of calcium. Because changes in contraction time with fatigue were opposite to those associated with caffeine potentiation, it is proposed that the attenuated twitch response in fatigue results from reduced release of calcium.  相似文献   

16.
Summary Biopsy samples from the vastus lateralis muscle (VLM) of man were examined for fiber composition at rest and at selected intervals during prolonged exercise ranging in intensity from 40% to 75% of the total body maximal oxygen uptake (VO 2max) and one-min bouts of exercise at 150%VO 2max. Because of the heterogeneity of fibers in human VLM, studies were also completed where the effect of exercise on the fiber composition of the rat soleus muscle (SM) was examined. In some animals the SM from one hindlimb was removed 9 days prior to their being exercised after which the remaining SM was removed. Exercise reduced muscle glycogen in all experiments. In the studies with man, blood lactate exceeded 17 mmoles/l after the heavy exercise but was largely unchanged by endurance exercise. Colonic temperature of the exercised rats exceeded 40° C. In studies where fibers were identified only as type I and type II, type II fibers in the VLM of all samples (16) taken at rest averaged 61.2±12.5% as compared to 59.0±12.0% after exercise (54 biopsy samples). In a second series of studies with man where the subtypes of type II fibers were identified, there were also no differences in fiber composition of the VLM after varying periods of exercise. Glycogen content and percent fiber composition were the same in right and left SM obtained from rested rats. Exercise (30 to 40 min) did not alter the fiber composition of the rat SM. These data demonstrate that the histochemically demonstratable myofibrillar actomyosin ATPase of skeletal muscle is not altered by a single exercise bout.  相似文献   

17.
Influence of exercise on the fiber composition of skeletal muscle   总被引:1,自引:0,他引:1  
Biopsy samples from the vastus lateralis muscle (VLM) of man were examined for fiber composition at rest and at selected intervals during prolonged exercise ranging in intensity from 40% to 75% of the total body maximal oxygen uptake (VO2max) and one-min bouts of exercise at 150% VO2max. Because of the heterogeneity of fibers in human VLM, studies were also completed where the effect of exercise on the fiber composition of the rat soleus muscle (SM) was examined. In some animals the SM from one hindlimb was removed 9 days prior to their being exercised after which the remaining SM was removed. Exercise reduced muscle glycogen in all experiments. In the studies with man, blood lactate exceeded 17 mmoles/l after the heavy exercise but was largely unchanged by endurance exercise. Colonic temperature of the exercised rats exceeded 40 degrees C. In studies where fibers were identified only as type I and type II, type II fibers in the VLM of all samples (16) taken at rest averaged 61.2 +/- 12.5% as compared to 59.0 +/- 12.0% after exercise (54 biopsy samples). In a second series of studies with man where the subtypes of type II fibers were identified, there were also no differences in fiber composition of the VLM after varying periods of exercise. Glycogen content and percent fiber composition were the same in right and left SM obtained from rested rats. Exercise (30 to 40 min) did not alter the fiber composition of the rat SM. These data demonstrate that the histochemically demonstratable myofibrillar actomyosin ATPase of skeletal muscle is not altered by a single exercise bout.  相似文献   

18.
The amino acid sequence of a 368-residue segment at the carboxyl-terminus of rabbit skeletal muscle myosin light chain kinase (MLCK) has been determined. The sequence was derived primarily from analysis of two complementary sets of fragments obtained by cleavage at methionyl and arginyl bonds in S-carboxymethylated MLCK. The segment included a 360-residue fragment produced by limited tryptic digestion of MLCK. This fragment was both catalytically active and dependent on Ca2+-calmodulin. Unique structural features of MLCK have been identified, and a likely calmodulin interaction site is suggested. Sequence comparisons of MLCK to other protein kinases indicate close structural relationships in spite of marked differences in physicochemical properties, enzymatic characteristics, and regulatory response among these enzymes.  相似文献   

19.
The mechanisms of exercise-induced fatigue have not been investigated using proteomic techniques, an approach that could improve our understanding and generate novel information regarding the effects of exercise. In this study, the proteom alterations of rat skeletal muscle were investigated during exercise-induced fatigue. The proteins were extracted from the skeletal muscle of SD rat thigh, and then analyzed by two-dimensional electrophoresis and PDQuest software. Compared to control samples, 10 significantly altered proteins were found in exercise samples, two of them were upregulated and eight of them were downregulated. These proteins were identified by MALDI TOF-MS. The two upregulated proteins were identified as MLC1 and myosin L2 (DTNB) regulatory light-chain precursors. The eight decreased proteins are Glyceraldehyde-3-phosphate Dehydrogenas (GAPDH); Beta enolase; Creatine kinase M chain (M-CK); ATP-AMP Transphosphorylase (AK1); myosin heavy chain (MHC); actin; Troponin I, fast-skeletal muscle (Troponin I fast-twitch isoform), fsTnI; Troponin T, fast-skeletal muscle isoforms (TnTF). In these proteins, four of the eight decreased proteins are related directly or indirectly to exercise induced fatigue. The other proteins represent diverse sets of proteins including enzymyes related to energy metabolism, skeletal muscle fabric protein and protein with unknown functions. They did not exhibit evident relationship with exercise-induced fatigue. Whereas the two identified increased proteins exhibit evident relationship with fatigue. These findings will help in understanding the mechanisms involved in exercise-induced fatigue.  相似文献   

20.
Influence of exercise on cardiac and skeletal muscle myofibrillar proteins   总被引:3,自引:0,他引:3  
The purpose of this study was to examine the Ca2+-Mg2+ myofibrillar ATPase and protein composition of cardiac and skeletal muscle following strenuous activity to voluntary exhaustion. Sprague-Dawley rats (200 g) were assigned to a control and exercised group, with the run group completing 25 m·min–1 and 8% grade for 1 hour. Following activity, the myocardial Ca2+–Mg2+ myofibrillar ATPase activity -pCa relationship had undergone a rightward shift in the curve. Electrophoretic analysis revealed a change in the pattern of cardiac myofibrillar protein bands, particularly in the 38–42 Kdalton region. Enzymatic analysis of myofibrillar proteins from plantaris muscle, revealed no change in Ca2+ regulation following exercise. Electronmicrographic and electrophoretic analysis revealed extensively disrupted sarcomeric structure and a change in the ratio of several plantaris myofibrillar proteins. No difference was observed for myosin: Actin: tropomyosin ratios; however a dramatic reduction in 58 and 95 Kdalton proteins were evident. The results indicate that prolonged running is associated with similar responses in cardiac and skeletal muscle myofibrillar protein compositions. The abnormalities in myofibrillar ultrastructure may implicate force transmission failure as a factor in exercised-induced muscle damage and/or fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号