首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this work was to evaluate changes in myocardial meta-[125I]iodobenzylguanidine ([125I]MIBG) uptake and distribution with age in awake spontaneously hypertensive rats (SHR) with respect to Wistar-Kyoto (WKY) rats. Rats were randomly divided into two groups, one for measuring myocardial [125I]MIBG uptake and distribution 4 h after its injection and the second for evaluating myocardial catecholamine concentrations. Mean arterial blood pressure, cardiac hypertrophy index (heart/body weight ratio), and heart rate were significantly higher with increasing age in SHR compared with matched WKY rats. Myocardial catecholamine concentrations and turnover did not differ between the two strains and were significantly decreased with increasing age. Myocardial [125I]MIBG uptake determined by gamma counting was similar in WKY rats and SHR and did not vary significantly with age when expressed as uptake density. However, in both strains of rats, [125I]MIBG uptake determined by autoradiography was significantly greater at the base of the heart than at the apex and midventricular levels, and the uptake values of young rats were significantly higher than those of older rats. In 21-week-old WKY rats and SHR, the highest [125I]MIBG uptake values were found in the right ventricle. Thus, quantitative autoradiography allowed detection of significant changes in myocardial [125I]MIBG uptake and showed its heterogeneous distribution in the rat heart.  相似文献   

2.
The anti-Tac disulfide-bonded variable region fragment (dsFv) is a genetically engineered, 25 kDa, murine monoclonal antibody fragment that recognizes the alpha subunit of the interleukin-2 receptor (IL-2Ralpha). The dsFv radiolabeled with the tetrafluorophenyl ester (TFP) of [99mTc]mercaptoacetyltriglycine ([99mTc]MAG3-TFP) showed rapid tumor uptake and fast blood clearance in mice, resulting in high tumor-to-nontumor background ratios. However, its high renal uptake was a problem. In this study, we tested the effect of lowering the isoelectric point (pI) of dsFv to <9.3 on renal and tumor uptake. To lower the pI, dsFv was acylated simultaneously with both [99mTc]MAG3-TFP and TFP-glycolate. The acylation of dsFv decreased its pI and its immunoreactivity inversely proportional to the molar ratio of TFP-glycolate to dsFv, whereas the conjugation of [99mTc]MAG3-TFP alone did not. When biodistribution studies were performed in nude mice, the effect of the lowered pI was reflected primarily in decreased kidney uptake and whole-body retention, with its highest effect seen at the earliest time point (15 min) after injection. In tumor-bearing nude mice, glycolated [99mTc]MAG3-dsFv with a pI range of 4.9 to 6.5 accumulated selectively into IL-2 receptor-positive SP2/Tac tumor similar to that of the control [125I]dsFv labeled by the Iodo-Gen method, whereas its renal uptake was 25% of [125I]dsFv at 15 min. At 90 min, the ratios of tumor to receptor-negative SP2/0 tumor, liver, kidney, stomach, and blood had peaked at 10.9, 8.5, 0.3, 5.0, and 6.2, respectively, for the glycolated [99mTc]MAG3-dsFv. The corresponding ratios for [125I]dsFv were 3.7, 5.0, 0.1, 1.5, and 2.1, respectively.  相似文献   

3.
In this study, EDDA (ethylenediamine- N, N'-diacetic acid) was used as the coligand for 99mTc-labeling of cyclic RGDfK conjugates: HYNIC-dimer (HYNIC = 6-hydrazinonicotinamide; dimer = E[c(RGDfK)]2) and HYNIC-tetramer (tetramer = E{E[c(RGDfK)]2}2). First, HYNIC-dimer was allowed to react with 99mTcO4 (-) in the presence of excess tricine and stannous chloride to form the intermediate complex [99mTc(HYNIC-dimer)(tricine)2], which was then allowed to react with EDDA to afford [99mTc(HYNIC-dimer)(EDDA)] with high yield (>90%) and high specific activity ( approximately 8.0 Ci/micromol). Under the same radiolabeling conditions, the yield for [99mTc(HYNIC-tetramer)(EDDA)] was always <65%. The results from a mixed-ligand experiment show that there is only one EDDA bonding to the 99mTc-HYNIC core in [99mTc(HYNIC-dimer)(EDDA)]. The athymic nude mice bearing subcutaneous U87MG human glioma xenografts were used to evaluate the impact of EDDA coligand on the biodistribution characteristics and excretion kinetics of the 99mTc-labeled HYNIC-dimer and HYNIC-tetramer. Surprisingly, [99mTc(HYNIC-dimer)(EDDA)] and [99mTc(HYNIC-tetramer)(EDDA)] had almost identical tumor uptake over the 2 h period. The use of EDDA as coligand to replace tricine/TPPTS (TPPTS = trisodium triphenylphosphine-3,3',3'-trisulfonate) did not significantly change the uptake of the 99mTc-labeled HYNIC-dimer in noncancerous organs, such as the liver, kidneys, and lungs; but it did result in a significantly lower kidney uptake for the 99mTc-labeled HYNIC-tetramer due to faster renal excretion. It was also found that the radiotracer tumor uptake decreases in a linear fashion as the tumor size increases. The smaller the tumors are, the higher the tumor uptake is regardless of the identity of radiotracer.  相似文献   

4.
External imaging of energy production activity of living cells with 99mTc-labeled compounds is a challenging task requiring good design of 99mTc-radiopharmaceuticals. On the basis of our recent findings that 11C- and 123I-labeled medium-chain fatty acids are useful for measuring beta-oxidation activity of hepatocytes, we focused on development of 99mTc-labeled medium-chain fatty acid analogues that reflect beta-oxidation activity of the liver. In the present study, monoamine-monoamide dithiol (MAMA) ligand and triamido thiol (MAG) ligand were chosen as chelating groups because of the stability and size of their complexes with 99mTc and their ease of synthesis. Each ligand was attached to the omega-position of hexanoic acid (MAMA-HA and MAG-HA, respectively). In biodistribution studies, [99mTc]MAMA-HA showed high initial accumulation in the liver followed by clearance of the radioactivity in the urine. Analysis of the urine revealed [99mTc]MAMA-BA as the sole radiometabolite. Furthermore, when [99mTc]MAMA-HA was incubated with living liver slices, generation of [99mTc]MAMA-BA was observed. However, [99mTc]MAMA-HA remained intact when the compound was incubated with liver slices in the presence of 2-bromooctanoate, an inhibitor of beta-oxidation. The findings in this study indicated that [99mTc]MAMA-HA was metabolized by beta-oxidation after incorporation into the liver. On the other hand, poor hepatic accumulation was observed after administration of [99mTc]MAG-HA.  相似文献   

5.
Technetium-labeled fatty acids intended for myocardial metabolism imaging and the respective rhenium model complexes were synthesized according to the "4 + 1" mixed-ligand approach and investigated in vitro and in vivo. The non-radioactive rhenium model complexes were characterized by NMR, IR, and EA, and the geometrical impact of the chelate unit on the integrity of the fatty acid head structure was determined by single-crystal X-ray analyses. To estimate the diagnostic value of the 99mTc-labeled fatty acids, the compounds were investigated in experiments in vitro and in biodistribution studies using male Wistar rats. The new fatty acid tracers contain the metal core in the oxidation states +3, well-wrapped in a trigonal-bipyramidal coordination moiety, which is attached at the omega-position of a fatty acid chain. This structural feature is considered to be a good imitation of the well-established iodinated phenyl fatty acids. High heart extraction in perfused heart studies (up to 26% injected dose (ID)) and noticeable heart uptake of the 99mTc tracers in vivo being in the order of 2% ID/g at 5 min (postinjection, pi.), accompanied by a good heart to blood ratio of 8, confirms that the new Tc compounds are suitable as fatty acid tracers.  相似文献   

6.
Multidrug resistance (MDR) mediated by over-expression of P-glycoprotein (Pgp) is one of the major causes of failure of chemotherapy in cancer treatment. Colchicine, a naturally occurring alkaloid, is a Pgp substrate and acts as an antimitotic agent by binding to microtubules. Hence, Colchicine and its analogues radiolabeled with 99mTc may have potential for visualization of MDR in tumors. Here we report 99mTc-labeling of colchicine derivatives using [99mTc(CO)3(H2O)3]+ and [99mTc triple bond N]2+ cores. Trimethylcolchicinic acid synthesized from colchicine was used as the precursor to prepare iminodiacetic acid and dithiocarbamate derivatives which were then radiolabeled with [99mTc(CO)3(H2O)3]+ and [99mTc triple bond N]2+ cores, respectively. Radiolabeling yield for both the complexes was > 98% as observed by HPLC and TLC patterns. In vitro studies in tumor cell lines showed significant uptake for 99mTc-carbonyl as well as for 99mTc-nitrido colchicine complexes. Biodistribution studies in Swiss mice bearing fibrosarcoma tumor showed 4.1 +/- 1.2% ID/g of uptake at 30 min pi for 99mTc(CO)3-complex as against 0.42 +/- 0.24% ID/g for the 99mTcN-complex. 99mTc(CO)3-colchicine complex exhibited better pharmacokinetics with lower liver accumulation as compared to the 99mTcN-complex. Thus, colchicine radiolabeled with [99mTc(CO)3(H2O)3]+ core is more promising with respect to in vivo distribution characteristics in tumor model.  相似文献   

7.
99mTc-labeled bombesin analogues have shown promise for noninvasive detection of many tumors that express bombesin (BN)/gastrin-releasing peptide (GRP) receptors. 99mTc-labeled peptides, however, have a tendency to accumulate in the liver and intestines due to hepatobiliary clearance as a result of the lipophilicity of the 99mTc chelates. This makes the imaging of lesions in the abdominal area difficult. In this study, we have synthesized a new high affinity 99mTc-labeled BN analogue, [DTPA1, Lys3(99mTc-Pm-DADT), Tyr4]BN, having a built-in pharmacokinetic modifier, DTPA, and labeled with 99mTc using a hydrophilic diaminedithiol chelator (Pm-DADT) to effect low hepatobiliary clearance. In vitro binding studies using human prostate cancer PC-3 cell membranes showed that the inhibition constant (Ki) for [DTPA1, Lys3(99Tc-Pm-DADT), Tyr4]BN was 4.1 +/- 1.4 nM. Biodistribution studies of [DTPA1, Lys3(99mTc-Pm-DADT), Tyr4]BN in normal mice showed very low accumulation of radioactivity in the liver and intestines (1.32 +/- 0.13 and 4.58 +/- 0.50% ID, 4 h postinjection, respectively). There was significant uptake (7.71 +/- 1.37% ID/g, 1 h postinjection) in the pancreas which expresses BN/GRP receptors. The uptake in the pancreas could be blocked by BN, partially blocked by neuromedin B, but not affected by somatostatin, indicating that the in vivo binding was BN/GRP receptor specific. Scintigraphic images showed specific, high contrast delineation of prostate cancer PC-3 xenografts in SCID mice. Thus, the new peptide has a great potential for imaging BN/GRP receptor-positive cancers located even in the abdomen.  相似文献   

8.
Radioiodinated m-iodobenzylguanidine ([125I]MIBG) and tritiated norepinephrine ([3H]NE]) uptake and release were compared, in different regions of the brain of the rat. The classification of the regions according to uptake was the same for both tracers: striatum > hypothalamus > hippocampus > cortex > brainstem. Tetrabenazine (TBZ), a granular monoamine uptake inhibitor reduced the uptake in the different regions. The inhibition rate was higher for [3H]NE uptake than for [125I]MIBG. The spontaneous release was the same for [125I]MIBG and [3H]NE and was the lowest in the striatum. The K+ stimulated release of [3H]NE was more complete than the release of [125I]MIBG and was the most important in the striatum. From these results, it is inferred that MIBG enters the brain tissue via NE uptake mechanisms. It appears that MIBG is stored in the chromaffin granules, as NE, but also in the cytoplasm. A modified molecule derived from MIBG which would cross the blood-brain barrier, would then appear as a potential scintigraphic marker of monoamine uptake, storage and release.  相似文献   

9.
Several neuroendocrine tumors are known to express both the somatostatin receptor subtype 2 (SSTR2) and the norepinephrine transporter (NET), and radiopharmaceuticals directed toward both these targets such as MIBG and octreotide derivatives are routinely used in the clinic. To investigate the possibility of targeting both NET and SSTR2 conjointly, a conjugate of radioiodinated MIBG and octreotate was synthesized. Attempts to synthesize the radioiodinated target compound (MIBG-octreotate; [ (131)I] 12a) from a tin precursor were futile; however, it could be accomplished from a bromo precursor by exchange radioiodination in 3-36% ( n = 10) radiochemical yields. The total uptake of [ (131)I] 12a in SK-N-SH human neuroblastoma cells transfected to express SSTR2 (SK-N-SHsst2) was similar to that for [ (125)I]MIBG at all time points (34.9 +/- 2.4% vs 43.8 +/- 1.2% at 4 h; p < 0.05), while it was substantially lower (5.4 +/- 0.3% vs 35.9 +/- 1.2%) in the SH-SY5Y cell line, a subclone of SK-N-SH line that is known to express SSTR2. The NET blocker desipramine reduced the uptake of [ (131)I] 12a only to a small extent, further suggesting a limited role of NET in its binding and accumulation. Uptake of [ (131)I] 12a in SK-N-SHsst2 cells was 8-10-fold higher ( p < 0.05) than that of [ (125)I]I-Gluc-TOCA, an octreotide analogue, at all time points over a 4 h period and was reduced to about 20% by 10 muM octreotide demonstrating that the uptake of [ (131)I] 12a in this cell line is predominantly mediated by SSTR2. The intracellularly trapped radioactivity in SK-N-SHsst2 cells was substantially higher for [ (131)I] 12a compared to that for [ (125)I]OIBG-octreotate, an isomeric congener of 12a. Because MIBG has more specific NET-mediated uptake than OIBG, this suggests at least a partial role for NET-mediated uptake of [ (131)I] 12a in this cell line. While further refinement in the structure of the conjugate-probably interposition of a flexible and/or cleavable linker between the MIBG and octreotate moieties-may be necessary to make it a substrate/ligand for both NET and SSTR2, this conjugate is demonstrated to be much superior than I-Gluc-TOCA with respect to the uptake in SSTR2-expressing cells.  相似文献   

10.
Gastrin/CCK-2 receptors are overexpressed in a number of tumors such as medullary thyroid cancer (MTC) and small cell lung cancer (SCLC). Recently [D-Glu1]-minigastrin (MG) has been radiolabeled with 131I, 111In, and 90Y and evaluated in patients. This study describes the labeling and evaluation of MG with technetium-99m using two different labeling approaches: HYNIC as bifunctional coupling agent and (Nalpha-His)Ac as tridentate ligand for 99mTc(CO3) labeling. Labeling was perfomed at high specific activities using Tricine and EDDA as coligands for HYNIC-MG and [99mTc(OH2)3(CO)3]+ for (Nalpha-His)Ac-MG. Stability experiments were carried out by reversed phase HPLC analysis in PBS, serum, histidine, and cysteine solutions, as well as rat liver and kidney homogenates. Receptor binding and internalization experiments were performed using CCK-2 receptor positive AR42J rat pancreatic tumor cells. Biodistribution experiments were carried out in nude mice carrying AR42J tumors by injection of 99mTc-labeled peptide with or without coinjection of 50 microg of minigastrin I human (MGh). HYNIC-MG and (Nalpha-His)Ac-MG could be radiolabeled at high specific activities (>1 Ci/micromol). For HYNIC-MG, high labeling yields (>95%) were achieved using Tricine and EDDA as coligands. Stability experiments of all 99mTc-labeled conjugates revealed a high stability of the label in PBS and serum as well as toward challenge with histidine and cysteine. Incubation in kidney homogenates resulted in a rapid degradation of all conjugates with <10% intact peptide after 60 min at 37 degrees C, with no considerable differences between the radiolabeled conjugates; a somewhat lower degradation rate was seen in liver homogenates. Protein binding varied considerably with lowest levels for 99mTc-EDDA/HYNIC-MG. Competition experiments of unlabeled conjugates on AR42J membranes versus [125I-Tyr12]-gastrin I showed high CCK-2 receptor affinity for all conjugates under study. Internalization behavior was very rapid for all radiolabeled conjugates in the order of 99mTc-(Nalpha-His)Ac-MG > 99mTc-EDDA/HYNIC-MG > 99mTc-Tricine/HYNIC-MG. In tumor-bearing nude mice the highest tumor-uptake was observed with 99mTc-EDDA/HYNIC-MG (8.1%ID/g) followed by 99mTc-Tricine/HYNIC-MG (2.2%ID/g) and 99mTc-(Nalpha-His)Ac-MG (1.2%ID/g) which correlated with kidney uptake (101.0%ID/g, 53.8%ID/g, 1.8%ID/g respectively). In this series of compounds 99mTc-EDDA/HYNIC-MG with its very high tumor/organ ratios except for kidneys seems to be the most promising agent to target CCK-2 receptors. Despite promising properties concerning receptor binding, internalization, and in vitro stability, 99mTc-(Nalpha-His)Ac-MG showed low tumor uptake in vivo.  相似文献   

11.
A series of 99mTc-bis(aminoethanethiol)-fatty acid (99mTc-BAT-fatty acid) analogs were synthesized and evaluated as potential tracers of myocardial metabolism. The BAT-fatty acid precursors were prepared using a new synthetic route that avoids the use of strong reducing agents such as lithium aluminum hydride. Biodistribution studies of the no-carrier-added 99mTc-complexes were conducted in rats using [125I]IPPA as an internal standard. The myocardial uptake of the 99mTc-BAT-fatty acid analogs was significantly less than that of [125I]IPPA and indicates the 99mTc analogs are not suitable candidates for SPECT-based myocardial imaging studies.  相似文献   

12.
Administration of norepinephrine to thyroidectomized rats activates sharply the [125I]triiodothyronine binding by heart mitochondria and liver nuclei. Epinephrine stimulates the binding by the heart mitochondria and decreases the intensity of this process in the liver and heart nuclei and liver mitochondria As compared to norepinephrine, adrenoxyl is weaker in activation of [125I] triiodothyronine binding by the heart mitochondria and stronger in intensification of binding by the liver nuclei. Physiological concentrations of thyroxine like adrenoxyl administered to intact animals 2h before investigations intensify the uptake of [3H] norepinephrine by sections of the auricles, myocardium and liver. Hyperthyroidization induces contrary changes inthe uptake of [3H] norepinephrine. Norepinephrine administration decreases sharply the uptake of [3H] norepinephrine by sections of the auricles and myocardium. The blocking of beta-adrenoreceptors weakens the uptake.  相似文献   

13.
We examined cardiac neuronal function and beta-receptor with a dual-tracer method of [(131)I]meta-iodobenzylguanidine (MIBG) and [(125)I]iodocyanopindolol (ICYP) in rat heart failure after myocardial infarction (MI). In rats with MI, left ventricular (LV) systolic function decreased, and LV dimension and right ventricular (RV) mass increased gradually. MIBG accumulations of the noninfarcted LV (remote region) and RV decreased by 15% at 1 wk compared with sham-operated rats, and these accumulations were restored by 71% and 56%, respectively, at 24 wk compared with age-matched sham rats despite sustained depletion of myocardial norepinephrine contents in these regions. ICYP accumulation of the remote region and of the RV did not decrease at any stages. Myocardial MIBG distribution was heterogeneous at 1 wk when it was lower in the peri-infarcted region than in the remote region, associated with reduced ICYP accumulation in the peri-infarcted region. The heterogeneous distribution of both isotopes disappeared at 12 wk. Thus cardiac sympathetic neuronal alteration was coupled with downregulation of beta-receptors in rat heart failure after MI. The abnormal adrenergic signaling occurred heterogeneously in terms of ventricular distribution and time course after MI.  相似文献   

14.
Radioiodinated meta-iodobenzylguanidine (MIBG) is used in the diagnosis and therapy of various neuroendocrine tumors. To investigate whether an additional guanidine function in the structure of MIBG will yield analogues that may potentially enhance tumor-to-target ratios, two derivatives-one with a guanidine moiety and another with a guanidinomethyl group at the 4-position of MIBG-were prepared. In the absence of any uptake-1 inhibiting conditions, the uptake of 4-guanidinomethyl-3-[(131)I]iodobenzylguanidine ([(131)I]GMIBG) by SK-N-SH cells in vitro was 1.7+/-0.1% of input counts, compared to a value of 40.3+/-1.4% for [(125)I[MIBG suggesting that guanidinomethyl group at the 4-position negated the biological properties of MIBG. On the other hand, 4-guanidino-3-[(131)I]iodobenzylguanidine ([(131)I]GIBG) had an uptake (5.6+/-0.3%) that was 12-13% that of [(125)I]MIBG (46.1+/-2.7%), and the ratio of uptake by control over DMI-treated (nonspecific) cultures was higher for [(131)I]GIBG (20.9+/-0.3) than [(125)I]MIBG itself (15.0+/-2.7). The exocytosis of [(131)I]GIBG and [(125)I]MIBG from SK-N-SH cells was similar. The uptake of [(131)I]GIBG in the mouse target tissues, heart and adrenals, as well as in a number of other tissues was about half that of [(125)I]MIBG. These results suggest that substitution of guanidine functions, especially a guanidinomethyl group, in MIBG structure may not be advantageous.  相似文献   

15.
A Tc-99m-labeled long chain fatty acid derivative for myocardial imaging   总被引:3,自引:0,他引:3  
C-11- and I-123-labeled long chain fatty acid derivatives have been reported as useful radiopharmaceuticals for the estimation of myocardial fatty acid metabolism. We have reported that Tc-99m-labeled N-[[[(2-mercaptoethyl)amino]carbonyl]methyl]-N-(2-mercaptoethyl)-6-aminohexanoic acid ([(99m)Tc]MAMA-HA), a medium chain fatty acid derivative, is metabolized by beta-oxidation in the liver and that the MAMA ligand is useful for attaching to the omega-position of fatty acid derivatives as a chelating group for Tc-99m. On the basis of these findings, we focused on developing a Tc-99m-labeled long chain fatty acid derivative that reflected fatty acid metabolism in the myocardium. In this study, we synthesized a dodecanoic acid derivative, MAMA-DA, and a hexadecanoic acid derivative, MAMA-HDA, and performed radiolabeling and biodistribution studies. [(99m)Tc]MAMA-DA and [(99m)Tc]MAMA-HDA were prepared using a ligand-exchange reaction. Biodistribution studies were carried out in normal mice and rats. Then, a high initial uptake of Tc-99m was observed, followed by a rapid clearance from the heart. The maximum heart/blood ratio was 3.6 at 2 min postinjection of [(99m)Tc]MAMA-HDA. These kinetics were similar to those with postinjection of p-[(125)I]iodophenylpentadecanoic acid. Metabolite analysis showed [(99m)Tc]MAMA-HDA was metabolized by beta-oxidation in the body. In conclusion, [(99m)Tc]MAMA-HDA is a promising compound as a long chain fatty acid analogue for estimating beta-oxidation of fatty acid in the heart.  相似文献   

16.
Biodistribution and lymphoscintigraphy of cyclosporine A (CyA) and technetium-99m (99mTc) were studied using 99mTc-labeled dextran acetate (DxA) including CyA. DxA particles were prepared from dextran with acetic anhydride, and CyA was loaded into them. Lymphatic delivery of 99mTc-labeled DxA particles containing CyA was evaluated after subcutaneous injection into the foot pad of rats and compared with those of 99mTc-labeled human serum albumin (HSA). The labeling efficiency of CyA-loaded 99mTc-DxA particles was about 95% at 30 min. The labeling efficiency maintained stably above 80% for 12 h. The percent injected dose (%ID) of CyA-loaded 99mTc-DxA was similar to that of 99mTc-HSA at the inguinal lymph node after 40 min. The CyA-loaded 99mTc-DxA could be as well distributed as 99mTc-HSA through the lymph node. The DxA particles could steadily distribute the CyA as well as the 99mTc radiolabeling through the lymph node.  相似文献   

17.
《Médecine Nucléaire》2007,31(9):464-472
Congestive heart failure is a often associated with an impairment of sympathetic nervous system, i.e., global hyperactivity and regional impairment of adrenergic system. Cardiac 123I-métaiodobenzylguanidine (MIBG) scintigraphy is a radionuclide technique which can explore the presynaptic adrenergic function. Cardiac fixation of MIBG is decreased in congestive heart failure, reflecting a reduction of norepinephrine uptake by the myocardial presynaptic ending nerves. The impairment of presynaptic function is early and actually involved in the pathogenesis of cardiac failure. Cardiac MIBG scintigraphy is a useful tool to explore the myocardial adrenergic stores in patients with congestive heart failure.  相似文献   

18.
Four human neuroblastoma (NB) cell lines (LAN-5, SK-N-BE(2)C, GI-LI-N, and GI-CA-N) have been investigated for their ability to take up and store [125I]metaiodobenzylguanidine (125I-MIBG) in vitro. Only SK-N-BE(2)C and LAN-5 cells were able to specifically take up MIBG, with the former cell line showing a more efficient retention of the radiotracer. 125I-MIBG incorporation in both cell lines was inhibited by norepinephrine, desipramine, ouabain and energy depletion. Thus, all the major criteria for specific (type 1) uptake were fulfilled. Conversely, GI-LI-N and GI-CA-N cells did not show any specific uptake. Pharmacological manipulations aimed at defining the intracellular site(s) of 125I-MIBG storage clearly showed that the radiotracer is not accumulated in the reserpine-sensitive neurosecretory granules and vesicles in NB cells, contrary to what has been observed in a chromaffin derived tumor cell line (PC12). Our study provides new and suitable models to investigate in vitro the molecular and cellular pharmacology of MIBG in NB cells.  相似文献   

19.
99mTc(CO)3-15-[N-(Acetyloxy)-2-picolylamino]pentadecanoic acid (1a) was prepared by incorporating [99mTc(CO)3]+ into 15-[N-(hydroxycarbonylmethyl)-2-picolylamino]pentadecanoic acid (2a). The overall radiochemical yield of 1a after HPLC purification was 60-63%. Radiotracer 1a was found to be chemically stable when incubated in human plasma for 4 h at 37 degrees C. Tissue distribution studies showed that high radioactivity accumulated in the heart with rapid clearance. The maximum heart-to-blood uptake ratio was 1.87 at 5 min after a tail-vein injection. Radioactive metabolites were analyzed in urine samples of mice and corresponded to a 9.3:1 ratio of 99mTc(CO)3-5-[N-(acetyloxy)-2-picolylamino]pentanoic acid (1b) to 99mTc(CO)3-3-[N-(acetyloxy)-2-picolylamino]propionic acid (1c), indicating that 1a is mainly metabolized to 1b via beta-oxidation in the body. These results suggest that 1a is a promising radiotracer for evaluation of fatty acid metabolism in myocardium.  相似文献   

20.
An enhancement of the target/nontarget ratio of radioactivity levels enables reliable diagnosis and therapy using polypeptide radiopharmaceuticals in nuclear medicine. In the present study, we investigated the effects of the physicochemical properties of radiometabolites on the radioactivity pharmacokinetics after administration of 99mTc-labeled polypeptides using 6-hydrazinopyridine-3-carboxylic acid (HYNIC). Four ternary ligands (L) [3-benzoylpyridine (BP), 3-acetylpyridine (AP), 3-nicotinic acid (NIC), pyridine (PY)] with different lipophilicity were selected as coligands for the preparation of 99mTc-HYNIC-polypeptides. Each of the ternary ligands tested provided 99mTc-HYNIC-labeled galactosyl-neoalbumin (NGA) and Fab fragments of high stability with high radiochemical purity. Moreover, after administration of each 99mTc-HYNIC-labeled NGA into normal mice, the respective ternary ligand [99mTc](HYNIC-lysine)(tricine)(L) complexes were generated as final radiometabolites in the hepatic lysosome. The partition coefficients of [99mTc](HYNIC-lysine)(tricine)(BP), [99mTc](HYNIC-lysine)(tricine)(AP), [99mTc](HYNIC-lysine)(tricine)(NIC), and [99mTc](HYNIC-lysine)(tricine)(PY) were determined to be -2.21, -2.37, -2.93, and -2.73, respectively. Elimination rates of these radiometabolites from the lysosome were enhanced in the order of increasing lipophilicity of the radiometabolites. After injection of the four 99mTc-HYNIC-labeled Fab fragments into normal mice, blood clearances of radioactivity were similar while radioactivity elimination rates from the kidney were enhanced in the order of increasing lipophilicity of the radiometabolites. The present study indicated that the lipophilicity of the radiometabolites constitutes one important factor affecting their elimination rates from the tissues. Thus, as ternary ligands facilitate alteration of the physicochemical properties of radiometabolites, the use of ternary ligand complexes might be applicable for controlling the pharmacokinetics of 99mTc-labeled polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号