首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The actin cytoskeleton is a fundamental component of eukaryotic cells, with both structural and motile roles. Actin and many of the actin-binding proteins found in different cell types are highly conserved, showing considerable similarity in both primary structure and biochemical properties. To make detailed comparisons between homologous proteins, it is necessary to know whether the various proteins are functionally, as well as structurally, conserved. Fimbrin is an example of a cytoskeletal component that, as shown by sequence determinations and biochemical characterizations, is conserved between organisms as diverse as Saccharomyces cerevisiae and humans. In this study, we examined whether the human homolog can substitute for the yeast protein in vivo. We report here that two isoforms of human fimbrin, also referred to as T- and L-plastin, can both substitute in vivo for yeast fimbrin, also known as Sac6p, whereas a third isoform, I-fimbrin (or I-plastin), cannot. We demonstrate that the human T- and L-fimbrins, in addition to complementing the temperature-sensitive growth defect of the sac6 null mutant, restore both normal cytoskeletal organization and cell shape to the mutant cells. In addition, we show that human T- and L-fimbrins can complement a sporulation defect caused by the sac6 null mutation. These findings indicate that there is a high degree of functional conservation in the cytoskeleton, even between organisms as diverse as S. cerevisiae and humans.  相似文献   

2.
Phosphoinositide phosphatases play an essential but as yet not well-understood role in lipid-based signal transduction. Members of a subfamily of these enzymes share a specific domain that was first identified in the yeast Sac1 protein [1]. Sac1 homology domains were shown to exhibit 3- and 4-phosphatase activity in vitro [2, 3] and were also found, in addition to rat and yeast Sac1p, in yeast Inp/Sjl proteins [4, 5] and mammalian synaptojanins [6]. Despite the detailed in vitro characterization of the enzymatic properties of yeast Sac1p, the exact cellular function of this protein has remained obscure. We report here that Sac1p has a specific role in secretion and acts as an antagonist of the phosphatidylinositol 4-kinase Pik1p in Golgi trafficking. Elimination of Sac1p leads to excessive forward transport of chitin synthases and thus causes specific cell wall defects. Similar defects in membrane trafficking are caused by the overexpression of PIK1. Taken together, these findings provide strong evidence that the generation of PtdIns(4)P is sufficient to trigger forward transport from the Golgi to the plasma membrane and that Sac1p is critically required for the termination of this signal.  相似文献   

3.
A mutant yeast actin (GG) has decreased hydrophobicity in a subdomain 3/4 hydrophobic plug believed to be involved in a hydrophobic cross-strand "plug-pocket" interaction necessary for actin filament stability. This actin will not polymerize in vitro but is compatible with cell viability. We have assessed the ability of Sac6p, the yeast homologue of the actin filament stabilizing and bundling protein fimbrin, to restore polymerization in vitro and to facilitate GG-actin function in vivo. Sac6p rescues GG-actin polymerization at 25 degrees C but not at 4 degrees C. The actin polymerizes into bundles at room temperature with a fimbrin:actin molar ratio of 1:4. At this ratio, every actin monomer contacts a Sac6p actin binding domain. Following cold-induced depolymerization, actin/Sac6p mixtures repolymerize beginning at 15 degrees C instead of the 25 degrees C required for de novo assembly, because of the presence of residual actin-Sac6p nuclei. Generation of haploid Deltasac6/GG-actin cells from either diploid or haploid cells was unsuccessful. The facile isolation of cells with either mutation alone indicates a synthetic lethal relationship between this actin allele and the SAC6 gene. Sac6p may allow GG-actin function in vivo by stabilizing the actin in bundles thereby helping maintain sufficient levels of an otherwise destabilized actin monomer within the cell.  相似文献   

4.
In fission yeast, overexpression of the replication initiator protein Cdc18p induces re-replication, a phenotype characterized by continuous DNA synthesis in the absence of cell division. In contrast, overexpression of Cdc6p, the budding yeast homolog of Cdc18p, does not cause re-replication in S. cerevisiae. However, we have found that Cdc6p has the ability to induce re-replication in fission yeast. Cdc6p cannot functionally replace Cdc18p, but instead interferes with the proteolysis of both Cdc18p and Rum1p, the inhibitor of the protein kinase Cdc2p. This activity of Cdc6p is entirely contained within a short N-terminal peptide, which forms a tight complex with Cdc2p and the F-box/WD-repeat protein Sud1p/Pop2p, a component of the SCFPop ubiquitin ligase in fission yeast. These interactions are mediated by two distinct regions within the N-terminal region of Cdc6p and depend on the integrity of its Cdc2p phosphorylation sites. The data suggest that disruption of re-replication control by overexpression of Cdc6p in fission yeast is a consequence of sequestration of Cdc2p and Pop2p, two factors involved in the negative regulation of Rum1p, Cdc18p and potentially other replication proteins. Received: 29 April 1999 / Accepted: 27 June 1999  相似文献   

5.
Autophagy is regulated by phosphoinositides. We have previously shown that phosphatidylinositol 4-phosphate (PtdIns(4)P) is localized in the autophagosomal membrane. Additionally, in yeast cells, phosphatidylinositol 4-kinases Pik1p and Stt4p play important roles in the formation of the autophagosome and its fusion with the vacuole, respectively. In this study, we analyzed the primary role of PtdIns(4)P phosphatases in yeast autophagy. The PtdIns(4)P labeling densities in the membranes of the vacuoles, mitochondria, nucleus, endoplasmic reticulum, and plasma membrane dramatically increased in the phosphatase deletion mutants sac1? and sjl3?, and the temperature-sensitive mutant sac1ts/sjl3? at the restrictive temperature. GFP-Atg8 processing assay indicated defective autophagy in the sac1? and sac1ts/sjl3? mutants. In contrast to the localization of PtdIns(4)P in the luminal leaflet of autophagosomal membranes in the wild-type yeast, PtdIns(4)P was localized in both the luminal and cytoplasmic leaflets of the autophagosomal membranes in the sac1? strain. In addition, the number of autophagic bodies in the vacuole significantly decreased in the sac1? strain, although autophagosomes were present in the cytoplasm. In the sac1ts/sjl3? strain, the number of autophagosomes in the cytoplasm dramatically decreased at the restrictive temperature. Considering that the numbers of autophagosomes and autophagic bodies in the sjl3? strain were comparable to those in the wild-type yeast, we found that the autophagosome could not be formed when PtdIns(4)P phosphatase activities of both Sac1p and Sjl3p were diminished. Together, these results indicate that the turnover of PtdIns(4)P by phosphatases is essential for autophagosome biogenesis.  相似文献   

6.
《The Journal of cell biology》1995,131(6):1483-1493
Many actin-binding proteins affect filament assembly in vitro and localize with actin in vivo, but how their molecular actions contribute to filament assembly in vivo is not understood well. We report here that capping protein (CP) and fimbrin are both important for actin filament assembly in vivo in Saccharomyces cerevisiae, based on finding decreased actin filament assembly in CP and fimbrin mutants. We have also identified mutations in actin that enhance the CP phenotype and find that those mutants also have decreased actin filament assembly in vivo. In vitro, actin purified from some of these mutants is defective in polymerization or binding fimbrin. These findings support the conclusion that CP acts to stabilize actin filaments in vivo. This conclusion is particularly remarkable because it is the opposite of the conclusion drawn from recent studies in Dictyostelium (Hug, C., P.Y. Jay, I. Reddy, J.G. McNally, P.C. Bridgman, E.L. Elson, and J.A. Cooper. 1995. Cell. 81:591-600). In addition, we find that the unpolymerized pool of actin in yeast is very small relative to that found in higher cells, which suggests that actin filament assembly is less dynamic in yeast than higher cells.  相似文献   

7.
Cak1p, the Cyclin-dependent kinase-activating kinase from budding yeast, is an unusual protein kinase that lacks many of the highly conserved motifs observed among members of the protein kinase superfamily. Cak1p phosphorylates and activates Cdc28p, the major cyclin-dependent kinase (CDK) in yeast, and is thereby required for passage through the yeast cell cycle. In this paper, we explore the kinetics of CDK phosphorylation by Cak1p, and we examine the role of the catalytic step in the reaction mechanism. Cak1p proceeds by a sequential reaction mechanism, binding to both ATP and CDK2 with reasonable affinities, exhibiting K(d) values of 7.2 and 0.6 microm, respectively. Interestingly, these values are approximately the same as the K(M) values, indicating that the binding of substrates is fast with respect to catalysis and that the most likely reaction mechanism is rapid equilibrium random. Cak1p is a slow enzyme, with a catalytic rate of only 4.3 min(-)(1). The absence of a burst phase indicates that product release is not rate-limiting. This result, and a solvent isotope effect, suggests that a catalytic step is rate-limiting.  相似文献   

8.
A Haas  W Wickner 《The EMBO journal》1996,15(13):3296-3305
In Saccharomyces cerevisiae, vacuoles are inherited by the formation of tubular and vesicular structures from the mother vacuole, the directed projection of these structures into the bud and the homotypic fusion of these vesicles. We have previously exploited a cell-free inheritance assay to show that the fusion step of vacuole inheritance requires cytosol, ATP and the GTPase Ypt7p. Here we demonstrate, using affinity-purified antibodies and purified recombinant proteins, a requirement for Sec17p (yeast alpha-SNAP) and Sec18p (yeast NSF) in homotypic vacuole fusion in vitro. Thus, Sec17p and Sec18p, which are typically involved in heterotypic transport steps, can also be involved in homotypic organelle fusion. We further show that vacuole-to-vacuole fusion is stimulated by certain fatty acyl-coenzyme A compounds in a Sec18p-dependent fashion. Finally, our data suggest the presence of a cytosolic factor which activates vacuole membrane-bound Sec18p.  相似文献   

9.
In yeast cells, the vacuole divides and fuses in each round of cell cycle. While mutants defective in vacuole fusion are “wild type” for vegetative growth, most have shortened replicative lifespans under caloric restriction (CR) condition, a manipulation that extends lifespan in wild type cells. To explore whether vacuole fusion extends lifespan, we screened for genes that can complement the fusion defect of selected mutants (erg6Δ, a sterol mutant; nyv1Δ, a mutant involved in the vacuolar SNARE complex and vac8Δ, a vacuolar membrane protein mutant). This screen revealed that Osh6, a member of the oxysterol-binding protein family, can complement the vacuole fusion defect of nyv1Δ, but not erg6Δ or vac8Δ, suggesting that Osh6’s function in vacuole fusion is partly dependent on membrane ergosterol and Vac8. To measure the effect of OSH6 on lifespan, we replaced the endogenous promoter of OSH6 with a shorter version of the ERG6 promoter to obtain PERG6-OSH6. This mutant construct significantly extended the replicative lifespan in a wild type background and in a nyv1Δ mutant. Interestingly, PERG6-OSH6 cells were more sensitive to drugs that inhibit the activity of the TOR complex 1 (TORC1) than wild type cells. Moreover, a PERG6-OSH6 tor1Δ double mutant demonstrated a greatly shortened lifespan, suggesting a genetic interaction between Osh6 and Tor1. Since active TORC1 stimulates vacuole scission and CR downregulates TORC1, Osh6 may link these two pathways by adjusting vacuolar membrane organization to extend lifespan.  相似文献   

10.
p33(ING1)是生长抑制基因(ING1)编码的重要抑癌蛋白,具有抑制细胞生长﹑促进细胞老化﹑维持基因组稳定性、作用于细胞周期调控点等作用,其失活与肿瘤的发生、发展密切相关。本文就近年来有关p33(ING1)的结构、功能及其在肿瘤中的失活机制、临床应用前景等方面的研究进展进行了概述。  相似文献   

11.
The translation initiation factor eif6 has been implicated as a regulator of ribosome assembly, selective mRNA translation and apoptosis. Many of these activities depend upon the phosphorylation of eif6 serine 235 by PKC. Previous data showed that eif6 binds to the 60S ribosomal subunit when unphosphorylated, inhibiting assembly with the 40S subunit. Phosphorylation of Ser235 releases eif6 from the 60S subunit and allows assembly. eif6 acts as an anti-apoptotic factor via regulation of the bcl2/bax balance and acts selectively upstream of bcl2. This activity also depends upon phosphorylation of eif6 Ser235. One of the consequences of eif6 overexpression in Xenopus embryos is aberrant eye development. Here we evaluate the eye phenotype and show that it is transient. We show that the whole eye, particularly the retina layers, of the embryos injected with eif6-encoding mRNA recover by stage 42. Embryos over-expressing eif6 have normal expression of anterior- and brain-specific markers, indicating that outside the eye field, other neural regions appear unaffected by the eif6 injection. No eye defect was detected when morpholinos were used to reduce eif6 protein synthesis. We tested how two known pathways of eif6 function with respect to alteration of eye development. We found that injection of bcl2 did not produce the eye phenotype and eif6-bax co-injection did not rescue the eye defect, suggesting that the eye phenotype is not bearing on the anti-apoptotic role played by eif6 is not linked to its role as an anti-apoptotic factor. We also determined that PKC-dependant phosphorylation of Ser235 in eif6 is not required to produce defective eye development. These results indicate that the aberrant eye phenotype, produced by eif6 overexpression, is not directly linked to the PKC-regulated effects of eif6 on translation and ribosomal subunit interaction or on eif6 anti-apoptotic properties.  相似文献   

12.
E Kübler  H Riezman 《The EMBO journal》1993,12(7):2855-2862
In Saccharomyces cerevisiae, alpha-factor is internalized by receptor-mediated endocytosis and transported via vesicular intermediates to the vacuole where the pheromone is degraded. Using beta-tubulin and actin mutant strains, we showed that actin plays a direct role in receptor-mediated internalization of alpha-factor, but is not necessary for transport from the endocytic intermediates to the vacuole. beta-tubulin mutant strains showed no defect in these processes. In addition, cells lacking the actin-binding protein, Sac6p, which is the yeast fimbrin homologue, are defective for internalization of alpha-factor suggesting that actin filament bundling might be required for this step. The actin dependence of endocytosis shows some interesting similarities to endocytosis from the apical membrane in polarized mammalian cells.  相似文献   

13.
14.
In fission yeast, overexpression of the replication initiator protein Cdc18p induces re-replication, a phenotype characterized by continuous DNA synthesis in the absence of cell division. In contrast, overexpression of Cdc6p, the budding yeast homolog of Cdc18p, does not cause re-replication in S. cerevisiae. However, we have found that Cdc6p has the ability to induce re-replication in fission yeast. Cdc6p cannot functionally replace Cdc18p, but instead interferes with the proteolysis of both Cdc18p and Rum1p, the inhibitor of the protein kinase Cdc2p. This activity of Cdc6p is entirely contained within a short N-terminal peptide, which forms a tight complex with Cdc2p and the F-box/WD-repeat protein Sud1p/Pop2p, a component of the SCFPop ubiquitin ligase in fission yeast. These interactions are mediated by two distinct regions within the N-terminal region of Cdc6p and depend on the integrity of its Cdc2p phosphorylation sites. The data suggest that disruption of re-replication control by overexpression of Cdc6p in fission yeast is a consequence of sequestration of Cdc2p and Pop2p, two factors involved in the negative regulation of Rum1p, Cdc18p and potentially other replication proteins.  相似文献   

15.
The G subunit of V-ATPases is a soluble subunit that shows homology with the b subunit of F-ATPases and may be part of the "stator" stalk connecting the peripheral V(1) and membrane V(0) sectors. When the N-terminal half of the G subunit is modeled as an alpha helix, most of the conserved residues fall on one face of the helix (Hunt, I. E., and Bowman, B. J. (1997) J. Bioenerg. Biomembr. 29, 533-540). We probed the function of this region by site-directed mutagenesis of the yeast VMA10 gene. Stable G subunits were produced in the presence of Y46A and K55A mutations, but subunit E was destabilized, resulting in loss of the V-ATPase assembly. Mutations E14A and K50A allowed wild-type growth and assembly of V-ATPase complexes, but the complexes formed were unstable. Mutations R25A and R25L stabilized V-ATPase complexes relative to wild-type and partially inhibited disassembly of V(1) from V(0) in response to glucose deprivation even though the mutant enzymes were fully active. A 2-amino acid deletion in the middle of the predicted N-terminal helix (DeltaQ29D30) allowed assembly of a functional V-ATPase. The results indicate that, although the N-terminal half of the G subunit is essential for V-ATPase activity, either this region is not a rigid helix or the presence of a continuous, conserved face of the helix is not essential.  相似文献   

16.
Ecm10p was initially identified as a cell wall synthesis-related gene product [Genetics 147 (1997) 435] and also reported as a mitochondrial protein which was partially capable of compensating the phenotypic defect by SSC1 gene mutation [FEBS Lett. 487 (2000) 307]. Here we report that ecm10p is localized in mitochondrial nucleoids as its major component and the targeting signal resides between amino acid residues 161 and 240. Overexpression of ecm10p induces extensive mitochondrial DNA aggregations, which might be due to aberrant mitochondrial DNA cleavages through an altered endonuclease activity in mitochondrial nucleoids.  相似文献   

17.
Eukaryotic cells contain many actin-interacting proteins, including the alpha-actinins and the fimbrins, both of which have actin cross-linking activity in vitro. We report here the identification and characterization of both an alpha-actinin-like protein (Ain1p) and a fimbrin (Fim1p) in the fission yeast Schizosaccharomyces pombe. Ain1p localizes to the actomyosin-containing medial ring in an F-actin-dependent manner, and the Ain1p ring contracts during cytokinesis. ain1 deletion cells have no obvious defects under normal growth conditions but display severe cytokinesis defects, associated with defects in medial-ring and septum formation, under certain stress conditions. Overexpression of Ain1p also causes cytokinesis defects, and the ain1 deletion shows synthetic effects with other mutations known to affect medial-ring positioning and/or organization. Fim1p localizes both to the cortical actin patches and to the medial ring in an F-actin-dependent manner, and several lines of evidence suggest that Fim1p is involved in polarization of the actin cytoskeleton. Although a fim1 deletion strain has no detectable defect in cytokinesis, overexpression of Fim1p causes a lethal cytokinesis defect associated with a failure to form the medial ring and concentrate actin patches at the cell middle. Moreover, an ain1 fim1 double mutant has a synthetical-lethal defect in medial-ring assembly and cell division. Thus, Ain1p and Fim1p appear to have an overlapping and essential function in fission yeast cytokinesis. In addition, protein-localization and mutant-phenotype data suggest that Fim1p, but not Ain1p, plays important roles in mating and in spore formation.  相似文献   

18.
Under certain conditions of nutrient stress, the budding yeast Saccharomyces cerevisiae initiates a striking developmental transition to a filamentous form of growth, resembling developmental transitions required for virulence in closely related pathogenic fungi. In yeast, filamentous growth involves known mitogen-activated protein kinase and protein kinase A signaling modules, but the full scope of this extensive filamentous response has not been delineated. Accordingly, we have undertaken the first systematic gene disruption and overexpression analysis of yeast filamentous growth. Standard laboratory strains of yeast are nonfilamentous; thus, we constructed a unique set of reagents in the filamentous Σ1278b strain, encompassing 3627 integrated transposon insertion alleles and 2043 overexpression constructs. Collectively, we analyzed 4528 yeast genes with these reagents and identified 487 genes conferring mutant filamentous phenotypes upon transposon insertion and/or gene overexpression. Using a fluorescent protein reporter integrated at the MUC1 locus, we further assayed each filamentous growth mutant for aberrant protein levels of the key flocculence factor Muc1p. Our results indicate a variety of genes and pathways affecting filamentous growth. In total, this filamentous growth gene set represents a wealth of yeast biology, highlighting 84 genes of uncharacterized function and an underappreciated role for the mitochondrial retrograde signaling pathway as an inhibitor of filamentous growth.  相似文献   

19.
The metalloreductase Fre6p in Fe-efflux from the yeast vacuole   总被引:2,自引:0,他引:2  
The yeast vacuole is the storage depot for cellular iron. In this report we quantify the import-export balance in the vacuole because of the import of iron by Ccc1p and to export by the combined activity of Smf3p and the ferroxidase, permease pair of proteins, Fet5p and Fth1p. Our data indicate that the two efflux pathways are equally efficient in trafficking iron out of the vacuole. A major focus of this work was to identify the ferrireductase(s) that supplies the Fe(II) for efflux whether by Smf3p or the Fet5p-Fth1p complex. Using a combination of flameless atomic absorption spectrophotometry to quantify vacuolar and whole cell iron content and a reporter assay for cytoplasmic iron we demonstrate that Fre6p supplies Fe(II) to both efflux systems, while Fre7p plays no role in Fe-efflux from the vacuole. Enzymatic assay shows the two fusions to have similar reductase activity, however. Confocal fluorescence microscopy demonstrates that Fre6:GFP localizes to the vacuolar membrane; in contrast, Fre7:GFP fusions exhibit a variable and diffuse cellular distribution. Demonstrating a role for a vacuolar metalloreductase in Fe-efflux supports the model that iron is stored in the vacuole in the ferric state.  相似文献   

20.
《The Journal of cell biology》1995,131(6):1377-1386
Protein translocation into the yeast endoplasmic reticulum requires the transport of ATP into the lumen of this organelle. Microsomal ATP transport activity was reconstituted into proteoliposomes to characterize and identify the transporter protein. A polypeptide was purified whose partial amino acid sequence demonstrated its identity to the product of the SAC1 gene. Accordingly, microsomal membranes isolated from strains harboring a deletion in the SAC1 gene (sac1 delta) were found to be deficient in ATP-transporting activity as well as severely compromised in their ability to translocate nascent prepro- alpha-factor and preprocarboxypeptidase Y. Proteins isolated from the microsomal membranes of a sac1 delta strain were incapable of stimulating ATP transport when reconstituted into the in vitro assay system. When immunopurified to homogeneity and incorporated into artificial lipid vesicles, Sac1p was shown to reconstitute ATP transport activity. Consistent with the requirement for ATP in the lumen of the ER to achieve the correct folding of secretory proteins, the sac1 delta strain was shown to have a severe defect in transport of procarboxypeptidase Y out of the ER and into the Golgi complex in vivo. The collective data indicate an intimate role for Sac1p in the transport of ATP into the ER lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号