首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, the distribution of the electronic charge density of the natural sex pheromone, the (Z)-13-hexadecen-11-ynyl acetate, in the female processionary moth, Thaumetopoea pytiocampa, and its nine analogue derivatives was studied within the framework of the Density Functional Theory and the Atoms in Molecules (AIM) Theory at B3LYP/6-31G *//B3LYP/6-31++G * * level. Additionally, molecular electrostatic potential (MEP) maps of the previously mentioned compounds were computed and compared. Furthermore, the substitution of hydrogen atoms from the methyl group in the acetate group by electron withdrawing substituents (i.e., halogen atoms) as well as the replacement effect of hydrogen by electron donor substituents (+I effect) as methyl group, were explored. The key feature of the topological distribution of the charge density in analogue compounds, such as the variations of the topological properties encountered in the region formed by neighbouring atoms from the substitution site were presented and discussed. Using topological parameters, such as electronic charge density, Laplacian, kinetic energy density, and potential energy density evaluated at bond critical points (BCP), we provide here a detailed analysis of the nature of the chemical bonding of these molecules. In addition, the atomic properties (population, charge, energy, volume, and dipole moment) were determined on selected atoms. These properties were analyzed at the substitution site (with respect to the natural sex pheromone) and related to the biological activity and to the possible binding site with the pheromone binding protein, (PBP). Moreover, the Laplacian function of the electronic density was used to locate electrophilic regions susceptible to be attacked (by deficient electron atoms or donor hydrogen). Our results indicate that the change in the atomic properties, such as electronic population and atomic volume, are sensitive indicators of the loss of the biological activity in the analogues studied here. The crucial interaction between the acetate group of the natural sex pheromone and the PBP is most likely to be a hydrogen bonding and the substitution of hydrogen atoms by electronegative atoms in the pheromone molecule reduces the hydrogen acceptor capacity. This situation is mirrored by the diminish of the electronic population on carbon and oxygen atoms at the carbonylic group in the halo-acetate group. Additionally, the modified acetate group (with electronegative atoms) shows new charge concentration critical points or regions of concentration of charge density in which an electrophilic attack can also occur. Finally, the use of the topological analysis based in the charge density distribution and its Laplacian function, in conjunction with MEP maps provides valuable information about the steric volume and electronic requirement of the sex pheromone for binding to the PBP.  相似文献   

2.
The conformational space of 1H-Indole-3-Acetic Acid (IAA) was scanned using molecular dynamics at semiempirical level, and complemented with functional density calculations at B3LYP/6-31G** level, 14 conformers of lowest energy were obtained. Electronic distributions were analyzed at a higher calculation level, thus improving the basis set (B3LYP/6-311++G**). A topological study based on Bader’s theory (AIM: atoms in molecules) and natural bond orbital (NBO) framework performed with the aim to analyze the stability and reactivity of the conformers allowed the understanding of electronic aspects relevant in the study of the antioxidant properties of IAA. Intramolecular hydrogen bonds were found and were characterized as blue-shifting hydrogen bonding interactions. Furthermore, molecular electrostatic potential maps (MEPs) were obtained and analyzed in the light of AIM and NBO results, thus showing subtle but essential features related not only to reactivity but also with intramolecular weak interactions, charge delocalization and structure stabilization.  相似文献   

3.
The hydrogen bonds formed by the interaction of nitriles with water, hydrogen fluoride, ammonia and hydrogen sulphide have been studied using B3LYP and second-order Møller–Plesset perturbation (MP2) methods and 6-311+ + G(d,p) basis set. The energies and structures of 80 hydrogen-bonded complexes between nitriles and small molecules were examined systematically using B3LYP and MP2 procedure. Categorisation of the hydrogen bonds involved in the various complexes led to an ordering of hydrogen bond donor and acceptor abilities for some functional groups. The interaction energies have been corrected for the basis set superposition error using Boy's counterpoise correction method. The Morokuma energy decomposition analysis reveals that the strong interactions are due to the attractive contributions from the electrostatic (ES), polarisation (PL) and charge transfer (CT) components. The topological parameters, electron density and Laplacian of electron density show excellent correlation with the hydrogen bond length. Natural bond orbital (NBO) analysis has also been performed to study the CT from proton acceptor to the antibonding orbital of the H–Y bond in the proton donor part of complexes. The frequency analysis of C–H…Y bond in the complexes indicates the blue-shifting nature largely in case of sp2 hybridised carbon atom.  相似文献   

4.
In the present work, we demonstrate the results of a theoretical study concerned with the question how tautomerization and protonation of adenine affect the various properties of adenine–cytosine mismatches. The calculations, in gas phase and in water, are performed at B3LYP/6-311++G(d,p) level. In gas phase, it is observed that any tautomeric form of investigated mismatches is more stabilized when adenine is protonated. As for the neutral mismatches, the mismatches containing amino form of cytosine and imino form of protonated adenine are more stable. The role of aromaticity on the stability of tautomeric forms of mismatches is investigated by NICS(1)ZZ index. The stability of mispairs decreases by going from gas phase to water. It can be explained using dipole moment parameter. The influence of hydrogen bonds on the stability of mismatches is examined by atoms in molecules and natural bond orbital analyses. In addition to geometrical parameters and binding energies, the study of the topological properties of electron charge density aids in better understanding of these mispairs.  相似文献   

5.
Twenty cocaine–water complexes were studied using density functional theory (DFT) B3LYP/6-311++G** level to understand their geometries, energies, vibrational frequencies, charge transfer and topological parameters. Among the 20 complexes, 12 are neutral and eight are protonated in the cocaine-water complexes. Based on the interaction energy, the protonated complexes are more stable than the neutral complexes. In both complexes, the most stable structure involves the hydrogen bond with water at nitrogen atom in the tropane ring and C?=?O groups in methyl ester. Carbonyl groups in benzoyl and methyl ester is the most reactive site in both forms and it is responsible for the stability order. The calculated topological results show that the interactions involved in the hydrogen bond are electrostatic dominant. Natural bond orbital (NBO) analysis confirms the presence of hydrogen bond and it supports the stability order. Atoms in molecules (AIM) and NBO analysis confirms the C-H?·?·?·?O hydrogen bonds formed between the cocaine-water complexes are blue shifted in nature.  相似文献   

6.
Detailed structural, electronic and spectroscopic study of 4-methylthiadiazole-5-carboxylic acid, one of the simplest 1,2,3-thiadiazole derivatives has been performed using density functional theory at four different functionals (B3LYP, X3LYP, CAM-B3LYP and M06-2X). The two possible conformers and their dimeric forms have been investigated for the stability and hence for the calculation of molecular properties of the title compound. Vibrational analysis has been performed with the help of experimental FT-IR and FT-Raman spectra. NBO analysis has been performed to estimate the N–H—O=C hydrogen bond strength and to evaluate the intra and inter molecular charge transfer in the system. Intermolecular hydrogen-bond strength has also been computed using Atoms in Molecules (AIM) theory. To visualise spatial domain, key sites of electron transitions and electron density difference between ground as well as excited states, and their 2D and 3D plots have been computed. Solvent effect on the intermolecular hydrogen bonding have also been investigated using solvents of different polarities. Non-linear optical properties, molecular electrostatic potential surface map (MESP), thermodynamic potentials at different temperatures have also been computed and plotted.  相似文献   

7.
In the present study, it is attempted to scrutinize the properties of the maghemite nanoparticle as a Carmustine drug delivery system by means of the density functional theory calculations regarding their geometries, adsorption energies, vibrational frequencies, and topological features of the electron density. Based on the density functional theory results, it is found that the interaction between Carmustine drug molecule and maghemite nanoparticle is weak; so that, the adsorption of the Carmustine drug is typically physisorption. It is also found that the intermolecular hydrogen bonds between the drug and the nanoparticle play the significant role in the stability of the physisorption configurations. The nature of the intermolecular interactions has been explored by calculation of the electron densities and their Laplacian at the bond critical points using Atoms-in-Molecule theory. Moreover, natural bond orbital analysis indicates that the Carmustine molecule can be adsorbed on the nanoparticle surface with a charge transfer from the Carmustine drug to the nanoparticle.  相似文献   

8.
Theoretical calculations on the structure of Th(IV) complex containing N, N’- bis(3-allyl salicylidene)-o-phenylenediamine (BASPDA) were performed using density functional theory (DFT) at the B3LYP/6-311G** level. The geometrical structural parameters and infrared spectra results of the Th(BASPDA)2 from the calculation were compared with the parallel dislocated structure (PDS) obtained in laboratory. The calculated structural parameters were in good agreement with the experimental results. In addition, based on the calculations, a stereoisomer SFS (staggered finger “?+?” structure) of the Th(BASPDA)2 complex was forecasted by the analysis of a comprehensive method. The charge distribution, structural parameters, bond order indices, spectral properties and thermodynamic properties as well as the molecular orbitals of the two possible crystal structures of Th(BASPDA)2 were also systematically studied. It was expected that this work could provide insightful information for understanding the properties of Th (BASPDA)2 complex at the molecular level.  相似文献   

9.
S J Shire  G I Hanania  F R Gurd 《Biochemistry》1975,14(7):1352-1358
The modified Tanford-Kirkwood electrostatic theory (Shire et al., 1974a) was applied to ferrimyoglobins from the following animal species: sperm whale (Physeter catodon), horse, California grey whale (Eschrichtius gibbosus), harbor seal (Phoca vitulina), and California sea lion (Zalophus californianus). Computations were made of the overall hydrogen ion titration curves of the proteins, and of pH and ionic strength variations of ionization equilibria for individual groups in the protein, with particular reference to the hemic acid ionization of the iron bound water molecule. Coordinates and static solvent accessibility were estimated in terms of the sperm whale myoglobin structure. Where possible, theoretical results and experimental data are compared. Some comparative features of charge and ionization properties among the various myoglobins are presented.  相似文献   

10.
Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer’s disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.  相似文献   

11.
Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 3,4-dihydroxy-l-phenylalanine (3,4-DPA) in solid phase were recorded and analysed in this research. Along with this, the IR spectra in CHCl3 and the use of acetone as solvents of 3,4-DPA were also recorded. The equilibrium geometry, bonding features and harmonic vibrational frequencies were investigated with the help of density functional theory (DFT) method. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge including atomic orbital method and compared with experimental results. Stability of the molecule arising from hyperconjugative interactions and charge delocalisation was analysed using natural bond orbital analysis. The results show that charge in electron density (E D) in the σ* and π* antibonding orbitals and second-order delocalisation energies E(2) confirms the occurrence of intramolecular charge transfer within the molecule. UV–vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were analysed using the time-dependent (TD)-DFT approach. Finally, the calculation results were applied to simulate infrared and Raman spectra of the title compound, which showed good agreement with the observed spectra.  相似文献   

12.
This paper describes a model for the topological mapping of trifurcating botanical trees. The model was based on a system of modular units that represented the interconnectivity of shoot meristems (terminal segments) and internodes (internal segments) within whole plant canopies, organized with increasing centrifugal ordering. The model was capable of describing the dynamics of plant growth as expressed by changes in topological parameters over time. Preliminary calculations for experimental trees indicated that the model represents growth in a biologically sound manner. Methods are described for the calculation of the architecture parameters size, size-complexity, structural complexity, and tree asymmetry index (TAI). Parameter calculations were based on the mathematical principles developed for the classification of bifurcating dendrite trees, and were designed to both extract structural information, and to enable statistical comparison between trees of different size. Parameters were mathematically adjusted for trifurcation, and appeared to be able to represent quantitatively the architectural properties of tree structures. In addition to the calculation of the TAI for trifurcating trees, new methods were developed to enable comparisons to be made of the architectural complexity of trifurcating trees of differing size. These were based on the principle of the pair-wise comparison of the mean centrifugal order number (MCON) with respect to segments against highest order number. We argue and illustrate that this principle can be more informative than that of pair-wise comparison of the MCON against tree degree (topological size). Further improvements to this method were made by examining branching points (vertices) rather than segments (links) to calculate the MCON.  相似文献   

13.
Molecular dynamics simulations of liquid water were performed at 258K and a density of 1.0?g/cm3 under various applied external electric field, ranging 0~1010?V/m. The influence of external field on structural and dynamical properties of water was investigated. The simple point charge (SPC) model is used for water molecules. An enhancement of the water hydrogen bond structure with increasing strength of the electric field has been deduced from the radial distribution functions and the analysis of hydrogen bonds structure. With increasing field strength, water system has a more perfect structure, which is similar to ice structure. However, the electrofreezing phenomenon of liquid water has not been detected since the self-diffusion coefficient was very large. The self-diffusion coefficient decreases remarkably with increasing strength of electric field and the self-diffusion coefficient is anisotropic.  相似文献   

14.
Evidence is given for a high density of negative surface charge near the sodium channel of myelinated nerve fibres. The voltage dependence of peak sodium permeability is measured in a voltage clamp. The object is to measure voltage shifts in sodium activation as the following external variables are varied: divalent cation concentration and type, monovalent concentration, and pH. With equimolar substitution of divalent ions the order of effectiveness for giving a positive shift is: Ba equals Sr less than Mg less than Ca less than Co approximately equal to Mn less than Ni less than Zn. A tenfold increase of concentration of any of these ions gives a shift of +20 to +25 mV. At low pH, the shift with a tenfold increase in Ca-2+ is much less than at normal pH, and conversely for high pH. Soulutions with no added divalent ions give a shift of minus 18 mV relative to 2 mM Ca-2+. Removal of 7/8 of the cations from the calcium-free solution gives a further shift of minue 35 mV. All shifts are explained quantitatively by assuming that changes in an external surface potential set up by fixed charges near the sodium channel produce the shifts. The model involves a diffuse double layer of counterions at the nerve surface and some binding of H+ions and divalent ions to the fixed charges. Three types of surface groups are postulated: (1) an acid pKa equals 2.88 charge density minus 0.9 nm- minus 2; (i) an acid pKa equals 4.58, charge density minus 0.58 nm- minus 2; (3) a base pKa equals 6.28, charge density +0.33 nm- minus 2. The two acid groups also bind Ca-2+ ions with a dissociation constant K equals 28 M. Reasonable agreement can also be obtained with a lower net surface charge density and stronger binding of divalent ions and H+ ions.  相似文献   

15.
The aim of this study was to determine the influence of cisplatin and novel dinuclear platinum(II) complexes on the electrical properties of the membrane and the level of lipid peroxidation in the human breast cancer cell lines MDA-MB-231 and MCF-7. The basal electrical surface properties of cells are known. Changes in cell function may affect these surface properties, and those changes can be detected by electrokinetic measurements. The surface charge density of the breast cancer cell lines MDA-MB-231 and MCF-7 were measured as a function of pH. A four-component equilibrium model was used to describe the interaction between the solution ions and the breast cancer cell surface. The experimental and the theoretical charge variation curves of the breast cancer cells at pH 2.5–9 were in agreement. Measurements of the cellular malondialdehyde levels with high performance liquid chromatography were used to determine the extent of lipid peroxidation. The acid and base functional group concentrations and average association constants with hydroxyl ions were smaller in breast cancer cell membranes treated with cisplatin or novel dinuclear platinum(II) complexes compared with untreated cancer cells, and the average association constants with hydrogen ions were higher. The levels of lipid peroxidation products in breast cancer cells treated with cisplatin or novel dinuclear platinum(II) complexes were also higher than in untreated cancer cells.  相似文献   

16.
Schiff-base compounds have many applications in the field of optoelectronic materials and chemical sensing because of their appealing coordination ability, and simple and easily accessible use in structural modification. Herein, five kinds of star-shaped Schiff-base compounds were designed and their optical response behavior to hydrogen chloride (HCl) gas was studied using dependent/time-dependent density functional theory (DFT/TDDFT). Moreover, the relationship between structures and properties was investigated upon changing the benzene group into N atom or triazine group at the core-position and introducing a methoxyl (–OCH3) or nitro (–NO2) group into the star-shaped Schiff-bases at the tail of the branches. The results show that all five Schiff-bases could be candidates for HCl gas sensing materials. Furthermore, introducing an electron-donating group at either the core or the tail forms a charge transfer channel with the electron deficient H-bonded imino group, which is convenient for charge transfer and subsequently promotes a red-shift in absorption spectra and fluorescence quenching.  相似文献   

17.
The hydrogen bonding interactions between noradrenaline (NA) and DMSO were studied with density functional theory (DFT) regarding their geometries, energies, vibrational frequencies, and topological features of the electron density. The quantum theory of atoms in molecules (QTAIM) and the natural bond orbital (NBO) analyses were employed to elucidate the hydrogen bonding interaction characteristics in noradrenaline-DMSO complexes. The H-bonds involving the hydroxyls hydrogen in NA and the O atom in DMSO are dominant intermolecular H-bonds and are stronger than other H-bonds involving the methyl hydrogen of DMSO as a H-donor. The weak H-bonds also include a π H-bond which involves the benzene ring as a H-donor or H-acceptor. QTAIM identified the weak H-bonds formed between the methyl hydrogen of DMSO and the N atom in NA in some complexes (AB5, AB6 and AB7), which cannot be further confirmed by NBO and other methods, so there are probably no interactions between hydrogen and nitrogen atoms among these complexes. A good linear relationship between logarithmic electron density (lnρ b ) at the bond critical point (BCP) and structural parameter (δR H···Y) was found. The formations of new H-bonds in some complexes are helpful to strengthen the original intramolecular H-bond, this is attributed to the cooperativity of H-bonds in complexes and can be learned from the structure results and the NBO and QTAIM analyses. Analysis of various physically meaningful contributions arising from the energy decomposition procedures show that the orbital interactions of H-bond is predominant during the formation of the complex, moreover, both the hydrogen bonding interaction and the structural deformation are responsible for the stability of the complexes.  相似文献   

18.
The interaction of DMPC (L-alpha-dimyristoyl-1,2-diterradecanoyl-sn-glycero-3-phosphoch oli ne, C36H72NO8P) lipid-coated Si3N4 surfaces immersed in an electrolyte was investigated with an atomic force microscope. A long-range interaction was observed, even when the Si3N4 surfaces were covered with nominally neutral lipid layers. The interaction was attributed to Coulomb interactions of charges located at the lipid surface. The experimental force curves were compared with solutions for the linearized as well as with exact solutions of the Poisson-Boltzmann equation. The comparison suggested that in 0.5 mM KCl electrolyte the DMPC lipids carried about one unit of charge per 100 lipid molecules. The presence of this surface charge made it impossible to observe an effective charge density recently predicted for dipole layers near a dielectric when immersed in an electrolyte. A discrepancy between the theoretical results and the data at short separations was interpreted in terms of a decrease in the surface charge with separation distance.  相似文献   

19.
To alleviate photoinduced charge recombination in semiconducting nanomaterials represents an important endeavor toward high‐efficiency photocatalysis. Here a judicious integration of piezoelectric and photocatalytic properties of organolead halide perovskite CH3NH3PbI3 (MAPbI3) to enable a piezophotocatalytic activity under simultaneous ultrasonication and visible light illumination for markedly enhanced photocatalytic hydrogen generation of MAPbI3 is reported. The conduction band minimum of MAPbI3 is higher than hydrogen generation potential (0.046 V vs normal hydrogen electrode), thereby rendering efficient hydrogen evolution. In addition, the noncentrosymmetric crystal structure of MAPbI3 enables its piezoelectric properties. Thus, MAPbI3 readily responds to external mechanical force, creating a built‐in electric field for collective piezophotocatalysis as a result of effective separation of photogenerated charge carriers. The experimental results show that MAPbI3 powders exhibit superior piezophotocatalytic hydrogen generation rate (23.30 µmol h?1) in hydroiodic acid (HI) solution upon concurrent light and mechanical stimulations, much higher than that of piezocatalytic (i.e., 2.21 µmol h?1) and photocatalytic (i.e., 3.42 µmol h?1) hydrogen evolution rate as well as their sum (i.e., 5.63 µmol h?1). The piezophotocatalytic strategy provides a new way to control the recombination of photoinduced charge carriers by cooperatively capitalizing on piezocatalysis and photocatalysis of organolead halide perovskites to yield highly efficient piezophotocatalysis.  相似文献   

20.
Both the ordered and disordered solvent networks of vitamin B12 coenzyme crystal hydrate have been generated by Monte Carlo simulation techniques. Several different potential functions have been use to model both water-water and water-solute (i.e., water-coenzyme) interactions. The results have been analysed in terms of the structural properties of the water networks, such as mean water oxygen and hydrogen positions, coordination of each water molecule, and maxima of probability density maps in all four asymmetric units of this crystal.The following results were found: (I) Within each asymmetric unit only one hydrogen bonding network was predicted although there were several hydrogen atom positions for any one solvent molecule (defined as maxima in probability density). (II) Reasonable agreement was obtained between predicted and experimental positions in the ordered solvent region, independent of the potential function used. (III) The positions of the calculated probability density maxima for the disordered channel region were different in different asymmetric units; this led to different simulated hydrogen bond networks which were not always consistent with the experimentally determined alternative (lower occupancy) sites.The results suggest that it is advisable to simulate more than one asymmetric unit if one wishes to look at disorder in the solvent regions. Probability density maps were qualitatively very useful for picturing these disordered regions. However, there were no significant differences between quantitative results predicted using either average atomic positions or maxima of the probability density distributions.Problems in quantifying agreement between experimental and predicted disordered solvent networks are discussed. The potential which included hydrogen atoms explicitly (EMPWI) seemed to give the best overall agreement, mainly because it was successful in predicting the unusually short hydrogen bonds which are found in this crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号