首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The understanding of crop physiological responses to salinity stress is of paramount importance for selection of genotypes with improved tolerance to this stress. Maize (Zea mays L.) hybrids Pioneer 32B33 and Dekalb 979 were grown in pots and subjected to three levels of salinity under four nitrogen levels to determine the role of nitrogen under saline conditions. Salinity stress effects on gas exchange characteristics and chlorophyll fluorescence of maize hybrids were evaluated under semi-controlled conditions. Under salinity stress, the changes in the net photosynthetic rate (P N), stomatal conductance (g s), and transpiration rate (E) were similarly directed: all decreased and were lower than in control at the higher salinity level (10 dS/m). Water use efficiency was increased with increasing salinity since transpiration was stronger depressed by salt than photosynthesis. Plants subjected to the lower level of salinity did not differ from control in tested characteristics. Nitrogen application ameliorated the effects of salinity.  相似文献   

2.
Quantitative trait loci (QTLs) for chlorophyll content were studied using a doubled haploid (DH) population with 168 progeny lines, derived from a cross between two elite Chinese wheat cultivars Huapei 3 × Yumai 57. Chlorophyll content was evaluated at the maximum tillering stage (MS), the heading stage (HS), and the grain filling stage (GS), at three different environments in 2005 and 2006 cropping seasons. QTL analyses were performed using a mixed linear model approach. A total of 17 additive QTLs and nine pairs of epistatic QTLs were detected. Ten of 17 additive QTLs for chlorophyll content were persistently expressed at more than two growth stages, which suggest developmentally regulated loci controlling genetics for chlorophyll content in different growth stages in wheat. One novel major QTL for chlorophyll content was closely linked with the PCR marker Xwmc215 and was persistently expressed at three growth stages.  相似文献   

3.
4.
盐胁迫对植物伤害机理受到普遍关注.本试验以'西旱3号'小麦幼苗为材料,通过比较钠盐(150 mmol·L-1)、钙盐(5、30 mmol·L-1)单独及其复合胁迫对叶片渗透调节和光合特性的影响,揭示不同盐胁迫对小麦的伤害机理.结果 表明:钠盐或钙盐单独胁迫显著抑制了小麦幼苗根、茎的生长,使叶片可溶性糖和脯氨酸含量、调节...  相似文献   

5.
Simultaneous measurements of leaf gas exchange and chlorophyll fluorescence for Koelreuteria paniculata Laxm. at 380 ± 5.6 and 600 ± 8.5 ??mol mol?1 were conducted, and the photosynthetic electron flow via photosystem II (PSII) to photosynthesis, photorespiration, and other electron-consuming processes were calculated. The results showed that the photosynthetic electron flow associated with carboxylation (J c), oxygenation (J o), and other electron-consuming processes (J r) were 72.7, 45.7, and 29.4 ??mol(e?) m?2 s?1 at 380 ??mol mol?1, respectively; and 86.1, 35.3, and 48.2 ??mol(e?) m?2 s?1 at 600 ??mol mol?1, respectively. Our results revealed that other aspects associated with electronconsuming processes, except for photosynthesis and respiration, were neither negligible nor constant under photorespiratory conditions. Using maximum net photosynthetic rate (P max), day respiration (R), photorespiration rate (R l), and maximum electron flow via PSII (J max), the use efficiency of electrons via PSII at saturation irradiance to fix CO2 was calculated. The calculated results showed that the use efficiency of electrons via PSII to fix CO2 at 600 ??mol mol?1 was almost as effective as that at 380 ??mol mol?1, even though more electrons passed through PSII at 600 ??mol mol?1 than at 380 ??mol mol?1.  相似文献   

6.
李泽  谭晓风  卢锟  张琳  龙洪旭  吕佳斌  林青 《生态学报》2017,37(5):1515-1524
为了探究干旱胁迫对两种油桐(三年桐和千年桐)幼苗光合生理特性的变化及响应,采用盆栽试验,研究不同水分处理(正常供水、轻度干旱、中度干旱、重度干旱)对油桐幼苗生长、叶片气体交换及叶绿素荧光参数的影响。结果表明:与对照相比,轻度干旱胁迫对两种油桐生长、气体交换及叶绿素荧光参数无明显影响(P0.05);中度干旱及重度干旱使两种油桐的叶绿素SPAD值、生长量、净光合速率(P_n)、气孔导度(G_s)、蒸腾速率(T_r)、气孔限制值(L_s)、最大净光合速率(P_(nmax))、光饱和点(LSP)、表观量子效率(AQY)、暗呼吸速率(R_d)、最大光化学效率(F_v/F_m)、实际光化学量子效率(Φ_(PSⅡ))、电子传递速率(ETR)及光化学猝灭系数(q_P)显著下降(P0.05),且在重度干旱胁迫下迅速下降,胞间CO_2浓度(C_i)、水分利用效率(WUE)、光补偿点(LCP)、初始荧光(F_o)、非光化学猝灭系数(NPQ)显著升高(P0.05);中度干旱胁迫下油桐幼苗P_n的降低是由气孔因素及光合机构活性降低的非气孔因素共同引起的,而重度干旱胁迫下光合作用的下降主要是由光合机构活性降低的非气孔因素引起的。三年桐的光合机构活性及光合效率高于千年桐,对干旱胁迫的适应性较千年桐强。  相似文献   

7.
实验设置对照、浅淹(水位高出土壤表面5cm)和深淹(水位高出土壤表面20cm)3种处理,研究了淹水深度对互叶白千层幼苗的气体交换、叶绿素荧光和生长状况的影响。研究结果表明,随着淹水深度的增加,互叶白千层受到的胁迫程度有所增强。经过270d的淹水处理,浅淹组和深淹组的株高和生物量有所下降,分别为对照的90.86%、64.58%和74.52%、36.46%。浅淹组植株叶绿素含量、净光合速率、气孔传导率和蒸腾速率略有下降,分别为对照的95.39%、94.26%、90.02%和88.94%。深淹组植株在淹水后180d内上述参数显著下降,分别为对照的79.44%、73.54%、61.79%和71.46%,随后逐渐接近对照组。浅淹组PSⅡ的最大光化学量子效率(Fv/Fm)比较稳定,与对照组基本相同。深淹组在淹水后150d内Fv/Fm稍有下降,随后恢复到对照水平。浅淹组植株光化学淬灭系数(qP)稍有下降,非光化学淬灭(NPQ)略有上升,分别为对照的96.63%和105.66%。深淹组植株在淹水后120d内qP显著下降,NPQ明显上升,分别为对照的94.51%和126.66%,随后逐渐接近对照组。另外,淹水过程中,互叶白千层形成不定根和产生发达的通气组织,淹水植株的根孔隙度显著高于对照。  相似文献   

8.
追施氮肥时期对冬小麦旗叶叶绿素荧光特性的影响   总被引:28,自引:1,他引:27  
在大田条件下,研究了不同追氮时期对小麦旗叶叶绿素荧光特性、光合速率及籽粒产量的影响.结果表明,拔节期追肥较起身期或挑旗期追肥,改善了小麦旗叶PSⅡ的活性(Fv/Fo)、光化学最大效率(Fv/Fm)、光化学猝灭系数(qP)、实际量子产量(ΦPSⅡ)及光合速率,降低了籽粒灌浆中前期非辐射能量耗散,有利于叶片所吸收的光能较充分地用于光合作用,提高了籽粒灌浆后期非辐射能量的耗散,减缓了叶片光抑制程度和衰老进程.拔节期追肥可显著增加穗粒数和千粒重,提高产量.  相似文献   

9.
通过防雨棚小区栽培,控制土壤供水系数(Kw)分别为0.8、0.6、0.4、0.2,以自然状况下的小区为对照(CK),研究土壤水分条件对冬小麦生育后期叶片气体交换及叶绿素荧光参数的影响。结果表明:Kw为0.6处理的冬小麦叶片叶绿素含量与0.8处理接近,且显著高于其他处理(P<0.05);Kw为0.6处理对冬小麦叶片的气孔导度和蒸腾速率有轻度抑制,但其光合速率却高于0.8处理,而Kw为0.2处理的光合速率、气孔导度及蒸腾速率均为最低;气孔限制值在Kw为0.4处理下最高,其次为0.2处理,0.8处理下最低;冬小麦叶片的表观量子效率在Kw为0.4处理下最高,光补偿点总体上随着土壤水分含量的降低呈下降趋势,而光饱和点及最大光合速率则以Kw为0.6处理最高,其次为0.8处理,0.2处理最低;冬小麦叶片的天线转化效率Fv’/Fm’、电子传递速率ETR、实际量子效率ФPSII及光化学猝灭qP均以Kw为0.6处理最高,其次为0.8处理,0.2处理下最低;在Kw为0.2处理下,冬小麦光合作用主要受非气孔因素限制,而在0.4处理下,则主要受气孔因素限制。  相似文献   

10.
Growth, photosynthetic gas exchange, and chlorophyll fluorescence characteristics were investigated in wild type (WT) and Cd-sensitive mutant rice (Oryza sativa L.) plants using 50 μM Cd treatment for 12 d followed by a 3-d recovery. Under Cd stress, net dry mass and pigment contents were significantly lower in the mutant plants than in the WT. The mutant had lower net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) than WT rice, however, it had higher intercellular CO2 concentration (C i), indicating that non-stomatal factors accounted for the inhibition of P N. Maximal photochemical efficiency of photosystem 2 (Fv/Fm), effective quantum yield of PS2 (ΦPS2), and photochemical quenching (qP) decreased much in the mutant under Cd stress. Cd content in roots and leaves of the mutant was significantly higher than those in the WT. Hence Cd toxicity was associated with the marked increases in Cd contents of plant tissue. After the recovery for 3 d, the WT rice had higher capacity to recover from Cd injury than the mutant.  相似文献   

11.
Total hemicelluloses from wheat at different stages of growth   总被引:1,自引:0,他引:1  
The changes in total hemicellulose composition of leaf and stem tissues of field-grown wheat plants have been examined. In each plant tissue the percentage of xylose in the total hemicellulose increases with increasing plant maturity, that of galactose varies little and those of L-arabinose, D-glucose, and uronic acid decrease. There is a markedly higher proportion of D-glucopyranuronosyl than of 4-O-methyl-D-glucopyranuronosyl residues in leaf and stem tissues at all stages of maturity. The ratio of β(1 → 3) to β(1 → 4) linkages in the β-glucans, and the DP of these β-glucans decrease concommitantly with tissue maturity.  相似文献   

12.
The photosynthetic performance (leaf gas exchange and chlorophyll a (Chla) fluorescence), activities of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX)] and the concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the flag leaves of plants from two wheat cultivars with contrasting levels of resistance to spot blotch was assessed. Spot blotch severity was significantly lower in plants from cv. BR‐18 compared to cv. Guamirim. Net carbon assimilation rate, stomatal conductance and concentrations of Chla, Chlab and carotenoids were significantly decreased from fungal infection. In contrast, internal CO2 concentration was significantly increased from fungal infection in comparison to their non‐inoculated counterparts. Similarly, inoculation significantly reduced photochemical performance in the inoculated flag leaves in comparison to their non‐inoculated counterparts. However, plants from cv. BR‐18 were able to sustain greater functionality of the photosynthetic apparatus during fungal infection process compared to cv. Guamirim. The activities of SOD, POX, APX and CAT increased in inoculated flag leaves from both cultivars compared to non‐inoculated plants, and the highest increases were measured in cv. BR‐18. The greater activities of these enzymes were associated with a reduced H2O2 concentration in the inoculated flag leaves from cv. BR‐18, resulting, therefore, in a lower MDA concentration. Thus, a more efficient antioxidative system in flag leaves from cv. BR‐18 plays a pivotal role in removing the excess reactive oxygen species that were generated during the infection process of Bipolaris sorokiniana, therefore limiting cellular damage and largely preserving the photosynthetic efficiency of the infected flag leaves.  相似文献   

13.
Two plant growth‐promoting rhizobacterial (PGPR) strains, Bacillus subtilis SU47 and Arthrobacter sp. SU18, were found to tolerate 8% NaCl. Wheat co‐inoculated with these two PGPR strains, and grown under different salinity regimes (2–6 dS m?1), showed an increase in dry biomass, total soluble sugars and proline content. Wheat sodium content was reduced under co‐inoculated conditions but not after single inoculation with either strain or in the control. The activity of antioxidant enzymes in wheat leaves decreased under salinity stress after PGPR co‐inoculation, suggesting these PGPR species could be used for amelioration of stress in wheat plants. Activity of three antioxidant enzymes in wheat grown with both PGPR strains was reduced, most notably that of catalase activity at a salinity of 6 dS m?1, when compared with the control. The results indicate that co‐inoculation with B. subtilis and Arthrobacter sp. could alleviate the adverse effects of soil salinity on wheat growth.  相似文献   

14.
为明确不同刈割处理对黄顶菊生长和生理特性的影响,本研究在田间条件下,对黄顶菊在生长季内不同时间进行刈割处理。结果表明,刈割降低了黄顶菊植株各部分的生物量积累,其中以刈割3次效果最为显著,使黄顶菊总生物量、根生物量、茎生物量、叶生物量分别较对照下降82.57%、44.53%、80.04%、91.76%;植株的高度和花序数随刈割次数的增加显著降低,其中刈割3次的花序数为0;刈割1次植株分枝数最大,出现超补偿现象,刈割3次分枝数显著低于其他处理;叶绿素含量除了刈割2次出现增高趋势外,随刈割次数的增加,叶绿素含量逐渐降低;刈割处理使黄顶菊净光合速率(Pn)、气孔导度(Cond)和蒸腾速率(Tr)均显著升高;刈割3次的PSⅡ的最大光化学效率(Fv/Fm)和PSⅡ的潜在活性(Fv/F0)显著低于其它各处理,而初始荧光(F0)则显著增加;生长指标的可塑性指数大于生理指标可塑性指数,表明前者在黄顶菊对刈割处理等物理措施适应方面起到了更为重要的作用。总之,刈割3次处理黄顶菊的各项生长和生理指标所受影响最大,对黄顶菊植株的再生和开花结实抑制效果最为理想。  相似文献   

15.
Diurnal variation of gas exchange, chlorophyll (Chl) fluorescence, and xanthophyll cycle components of three maize (Zea mays L.) hybrids released in different years, i.e. Baimaya (1950s), Zhongdan2 (1970s), and Nongda108 (1990s), were compared. On cloudless days, the newer hybrids always had higher net photosynthetic rate (P N), especially at noon, than the older ones. At noon, all the hybrids decreased their maximal yield of photosystem 2 (PS2) photochemistry (Fv/Fm) and actual quantum yield of PS2 (ΦPS2), the newer ones always showing higher values. Generally, the newer hybrids displayed higher photochemical quenching of Chl (qP) and lower non-photochemical quenching (NPQ). The interhybrid differences in P N may be owing to their differential photochemical efficiency. A midday depression in P N occurred in all hybrids, which might be caused by serious photoinhibition or by decreased stomatal conductance. However, midday depression in P N was more obvious in the older hybrids, especially when leaves were senescent. The higher de-epoxidation state of the xanthophylls was noted in older hybrids, which was confirmed by their larger NPQ. The newer maize hybrids did not need a strong de-epoxidation state since they had a better photosynthetic quantum conversion rate and a lower NPQ.  相似文献   

16.
Heat stress, one of the major abiotic stresses in wheat, affects chlorophyll fluorescence and chlorophyll content and thereby photosynthesis. To identify quantitative trait loci (QTLs) associated with these traits under terminal heat stress, 251 recombinant inbred lines (RILs) derived from a cross HD 2808/HUW510 were phenotyped. Using composite interval mapping, 40 QTLs were identified; 17 were related to conditions after timely sowing and 23 to heat stress after late sowing. The various parameters of chlorophyll fluorescence were associated with 23 QTLs, which were located on chromosomes 1A, 2A, 3A, and 2D and explained 3.67 to 18.04 % of phenotypic variation, whereas chlorophyll content was associated with 17 QTLs on chromosomes 2A, 2B, 2D, 5B, and 7A explaining 3.49 to 31.36 % of phenotypic variation. Most of the identified QTLs were clustered on chromosome 2D followed by 2A and 1A. The QTL Qchc.iiwbr-2A for chlorophyll content linked with marker gwm372 was stable over conditions and explained 3.81 to 18.05 % of phenotypic variation. In addition, 7 epistatic QTL pairs were also detected which explained 1.67 to 11.0 % of phenotypic variance. These identified genomic regions can be used in marker assisted breeding after validation for heat tolerance in wheat.  相似文献   

17.
Effects of soil flooding on photosynthesis and growth of Genipa americana L. seedlings, a neotropical fruit-tree species used in gallery forest restoration programs, were studied under glasshouse conditions. Despite the high survival rate and wide distribution in flood-prone habitats of the neotropics, previous studies demonstrated that growth of G. americana is reduced under soil flooding. Using leaf gas exchange and chlorophyll fluorescence measurements, we tested the hypothesis that stomatal limitation of photosynthesis is the main factor that reduces carbon uptake and growth rates of G. americana seedlings. Throughout a 63-day flooding period, the survival rates were 100%. The maximum values of the net photosynthetic rate (A) and stomatal conductance to water vapor (gs) of control seedlings were 9.86 μmol CO2 m−2 s−1 and 0.525 mol H2O m−2 s−1, respectively. The earliest effects of flooding were significant decreases in gs and A, development of hypertrophied lenticels and decrease in the dry weight of roots. A strong effect of the leaf-to-air vapor pressure deficit (LAVPD) on gs and A were observed that was enhanced under flooded conditions. Between 14 and 63 days after flooding, significant reductions in gs (31.7% of control) and A (52.9% of control) were observed followed by significant increments in non-photochemical quenching (qN) (187.5% of control). During the same period, there were no differences among treatments for the ratio between variable to initial fluorescence (Fv/F0), the maximum quantum efficiency of the photosystem II (Fv/Fm) and photochemical quenching (qP), indicating that there was no damage to the photosynthetic apparatus. Based on the results, we conclude that decreases in stomatal opening and stomatal limitation of photosynthesis, followed by decrease in individual leaf area are the main causes of reductions in carbon uptake and whole plant biomass of flooded seedlings.  相似文献   

18.
基于叶绿素荧光研究球形棕囊藻在富磷条件下的生长特性   总被引:1,自引:0,他引:1  
棕囊藻属于定鞭藻纲、定鞭藻目,广泛分布在不同海洋生态环境中。有报道指出,棕囊藻时常在北太平洋温带港湾、挪威海、北海、英吉利海峡及南极海域等地方引发的大规模有害赤潮。近年来,我国东海海域和南海粤东海域均发生较大面积的棕囊藻赤潮,给当地的水产养殖业带来了严重的影响。除此之外,棕囊藻具有特殊的生理机制,可以产生二甲基硫化物(DMS),对整个海域的气候状况,酸雨酸雾的形成以及全球硫循环都有重要的意义。本文以球形棕囊藻为研究材料,设置3组较高的磷浓度处理(5mg·L-1、10mg·L-1和20mg·L-1),利用细胞记数和叶绿素荧光测定等方法研究了该藻在不同富磷浓度下的生长情况。结果显示,不同磷浓度下的藻体荧光值变化均呈现"S"型曲线,表明藻细胞的生长经历缓慢期,快速期和平缓期3个阶段;同时,试验所设置的磷浓度对球形棕囊藻的叶绿素荧光值有一定的影响,其中在5mg·L-1磷浓度下的藻体荧光值最低,在第7天只有802μg·L-1,而在10mg·L-1和20mg·L-1磷浓度下的藻体荧光值较高,在第7天分别达到836μg·L-1和850μg·L-1,表明磷营养可以促进藻细胞的生长增殖,但在较高磷浓度下,这种促进作用不明显。结果还显示,较低浓度的磷(5mg·L-1)减缓与限制了藻细胞的生长,在5mg·L-1磷浓度下的藻最大特定比生长速率和细胞密度分别只有0.704d-1和190cells·mL-1。相对而言,20mg·L-1磷浓度下的藻最大特定比生长速率和细胞密度最高,分别达到了0.771d-1和250cells·mL-1。研究结果揭示,水体中的磷营养浓度的变化是导致藻细胞大量增殖的一个主要的外在因素,而利用叶绿素荧光来测定藻细胞生长是一种快速、简便和可靠的方法,在今后有害水华监测过程中应该多加利用,以更及时、准确地预测预报有害水华的发生,降低其对经济、环境和社会造成的潜在危害。  相似文献   

19.
A study on photosynthetic and yield effects of waterlogging of winter wheat at four stages of growth was conducted in specially designed experimental tanks during the 2007–2008 and 2008–2009 seasons. Compared with the control, waterlogging treatments at tillering and jointing-booting stages reduced photosynthetic rate (P N) and transpiration (E) significantly, it also decreased average leaf water-use efficiency (WUE, defined as the ratio of P N to E) by 3.3% and 3.4% in both years. All parameters returned quickly to the control level after soil was drained. Damage to the photosynthetic apparatus during waterlogging resulted in a lower Fv/Fm ratio, especially at the first two stages. A strong reduction in root length, root mass, root/shoot ratio, total dry mass, and leaf area index were observed. The responses from vegetative plants at tillering and jointing-booting stages were greater than in generative plants at onset of flowering and at milky stages. The number of panicles per hectare at tillering stage and the spikelet per panicle at the stages of jointing-booting and at onset of flowering were also significantly reduced by waterlogging, giving 8.2–11.3% decrease of the grain yield relative to the control in both years. No significant difference in yield components and a grain yield was observed between the control and treatments applied at milky stages. These responses, modulated by the environmental conditions prevailing during and after waterlogging, included negative effects on the growth, photosynthetic apparatus, and the grain yield in winter wheat, but the effect was strongly stage-dependent.  相似文献   

20.
M. Li  D. Yang  W. Li 《Photosynthetica》2007,45(2):222-228
The effects of soil flooding on gas exchange and photosystem 2 (PS2) activity were analyzed in leaves of Phragmites australis, Carex cinerascens, and Hemarthria altissima. Pronounced decrease in net photosynthetic rate and stomatal conductance with flooding was found only in C. cinerascens. No significant changes in PS2 activity were observed in all three species which suggests that the photosynthetic apparatus was not damaged. Among the three species, H. altissima is better adapted to flooding than P. australis and C. cinerascens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号