首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retrotransposons are an ubiquitous component of plant genomes, especially abundant in species with large genomes. Populus trichocarpa has a relatively small genome, which was entirely sequenced; however, studies focused on poplar retrotransposons dynamics are rare. With the aim to study the retrotransposon component of the poplar genome, we have scanned the complete genome sequence searching full-length long-terminal repeat (LTR) retrotransposons, i.e., characterised by two long terminal repeats at the 5′ and 3′ ends. A computational approach based on detection of conserved structural features, on building multiple alignments, and on similarity searches was used to identify 1,479 putative full-length LTR retrotransposons. Ty1-copia elements were more numerous than Ty3-gypsy. However, many LTR retroelements were not assigned to any superfamily because lacking of diagnostic features and non-autonomous. LTR retrotransposon remnants were by far more numerous than full-length elements, indicating that during the evolution of poplar, large amplification of these elements was followed by DNA loss. Within superfamilies, Ty3-gypsy families are made of more members than Ty1-copia ones. Retrotransposition occurred with increasing frequency following the separation of Populus sections, with different waves of retrotransposition activity between Ty3-gypsy and Ty1-copia elements. Recently inserted elements appear more frequently expressed than older ones. Finally, different levels of activity of retrotransposons were observed according to their position and their density in the linkage groups. On the whole, the results support the view of retrotransposons as a community of different organisms in the genome, whose activity (both retrotransposition and DNA loss) has heavily impacted and probably continues to impact poplar genome structure and size.  相似文献   

2.
Long terminal repeat (LTR) retrotransposons are the major class I mobile elements in plants. They play crucial roles in gene expansion, diversification and evolution. However, their captured genes are yet to be genome-widely identified and characterized in most of plants although many genomes have been completely sequenced. In this study, we have identified 7,043 and 23,915 full-length LTR retrotransposons in the rice and sorghum genomes, respectively. High percentages of rice full-length LTR retrotransposons were distributed near centromeric region in each of the chromosomes. In contrast, sorghum full-length LTR retrotransposons were not enriched in centromere regions. This dissimilarity could be due to the discrepant retrotransposition during and after divergence from their common ancestor thus might be contributing to species divergence. A total of 672 and 1,343 genes have been captured by these elements in rice and sorghum, respectively. Gene Ontology (GO) and gene set enrichment analysis (GSEA) showed that no over-represented GO term was identified in LTR captured rice genes. For LTR captured sorghum genes, GO terms with functions in DNA/RNA metabolism and chromatin organization were over-represented. Only 36% of LTR captured rice genes were expressed and expression divergence was estimated as 11.9%. Higher percentage of LTR captured rice genes have evolved into pseudogenes under neutral selection. On the contrary, higher percentage of LTR captured sorghum genes were under purifying selection and 72.4% of them were expressed. Thus, higher percentage of LTR captured sorghum genes was functional. Small RNA analysis suggested that some of LTR captured genes in rice and sorghum might have been involved in negative regulation. On the other hand, positive selection has been observed in both rice and sorghum LTR captured genes and some of them were still expressed and functional. The data suggest that some of these LTR captured genes might have evolved into new gene functions.  相似文献   

3.
Long terminal repeat (LTR) retrotransposons and endogenous retroviruses (ERVs) are transposable elements in eukaryotic genomes well suited for computational identification. De novo identification tools determine the position of potential LTR retrotransposon or ERV insertions in genomic sequences. For further analysis, it is desirable to obtain an annotation of the internal structure of such candidates. This article presents LTRdigest, a novel software tool for automated annotation of internal features of putative LTR retrotransposons. It uses local alignment and hidden Markov model-based algorithms to detect retrotransposon-associated protein domains as well as primer binding sites and polypurine tracts. As an example, we used LTRdigest results to identify 88 (near) full-length ERVs in the chromosome 4 sequence of Mus musculus, separating them from truncated insertions and other repeats. Furthermore, we propose a work flow for the use of LTRdigest in de novo LTR retrotransposon classification and perform an exemplary de novo analysis on the Drosophila melanogaster genome as a proof of concept. Using a new method solely based on the annotations generated by LTRdigest, 518 potential LTR retrotransposons were automatically assigned to 62 candidate groups. Representative sequences from 41 of these 62 groups were matched to reference sequences with >80% global sequence similarity.  相似文献   

4.

Background

Long terminal repeat (LTR) retrotransposons make up a large fraction of the typical mammalian genome. They comprise about 8% of the human genome and approximately 10% of the mouse genome. On account of their abundance, LTR retrotransposons are believed to hold major significance for genome structure and function. Recent advances in genome sequencing of a variety of model organisms has provided an unprecedented opportunity to evaluate better the diversity of LTR retrotransposons resident in eukaryotic genomes.

Results

Using a new data-mining program, LTR_STRUC, in conjunction with conventional techniques, we have mined the GenBank mouse (Mus musculus) database and the more complete Ensembl mouse dataset for LTR retrotransposons. We report here that the M. musculus genome contains at least 21 separate families of LTR retrotransposons; 13 of these families are described here for the first time.

Conclusions

All families of mouse LTR retrotransposons are members of the gypsy-like superfamily of retroviral-like elements. Several different families of unrelated non-autonomous elements were identified, suggesting that the evolution of non-autonomy may be a common event. High sequence similarity between several LTR retrotransposons identified in this study and those found in distantly-related species suggests that horizontal transfer has been a significant factor in the evolution of mouse LTR retrotransposons.
  相似文献   

5.
The diversity of mobile elements, in particular LTR retrotransposons, in basidiomycetes fungi has been poorly studied. The genome of the lignin-degrading fungus Phanerochaete chrysosporium was screened for LTR retrotransposons. A surprisingly high diversity of LTR retrotransposons was found. Twenty-three novel mobile elements from two superfamilies, Pseudoviridae and Metaviridae, were described. The proportion of LTR retrotransposons in the P. chrysosporium genome is low, constituting only about 3%. Nevertheless, LTR retrotransposons of P. chrysosporium represent a dynamic part of the genome, which is evidenced by the presence of intact copies with signs of recent transposition and numerous solo LTR elements. Phylogenetic and structural analyses detected mobile elements having characteristics that had been previously unknown for other LTR retrotransposons.  相似文献   

6.
Asparagus officinalis is an economically and nutritionally important vegetable crop that is widely cultivated and is used as a model dioecious species to study plant sex determination and sex chromosome evolution. To improve our understanding of its genome composition, especially with respect to transposable elements (TEs), which make up the majority of the genome, we performed Illumina HiSeq2000 sequencing of both male and female asparagus genomes followed by bioinformatics analysis. We generated 17 Gb of sequence (12×coverage) and assembled them into 163,406 scaffolds with a total cumulated length of 400 Mbp, which represent about 30% of asparagus genome. Overall, TEs masked about 53% of the A. officinalis assembly. Majority of the identified TEs belonged to LTR retrotransposons, which constitute about 28% of genomic DNA, with Ty1/copia elements being more diverse and accumulated to higher copy numbers than Ty3/gypsy. Compared with LTR retrotransposons, non-LTR retrotransposons and DNA transposons were relatively rare. In addition, comparison of the abundance of the TE groups between male and female genomes showed that the overall TE composition was highly similar, with only slight differences in the abundance of several TE groups, which is consistent with the relatively recent origin of asparagus sex chromosomes. This study greatly improves our knowledge of the repetitive sequence construction of asparagus, which facilitates the identification of TEs responsible for the early evolution of plant sex chromosomes and is helpful for further studies on this dioecious plant.  相似文献   

7.
转座子是真核生物基因组的重要组成成分。为了研究家蚕Bombyx mori长末端重复序列 (long terminal repeat, LTR)逆转录转座子的分类及进化, 本研究采用de novo预测和同源性搜索相结合的方法, 在家蚕基因组中共鉴定出了38个LTR逆转录转座子家族, 序列长度占整个基因组的0.64%, 远小于先前预测的11.8%, 其中有6个家族为本研究的新发现。38个家族中, 26个家族有表达序列标签 (expression sequence tag, EST)证据, 表明这些家族具有潜在的活性。对有EST证据的6个家族和没有EST证据的5个家族用RT-PCR进行了组织表达谱实验, 结果表明这11个家族在一些组织中有表达, 这进一步证实了这些家族具有转录活性, 基于此我们推测家蚕中大部分的LTR逆转录转座子家族很可能具有潜在活性。对转座子的插入时间进行估计, 结果表明绝大部分元件都是最近1百万年内插入到家蚕基因组中的。我们还比较了黑腹果蝇Drosophila melanogaster、 冈比亚按蚊Anopheles gambiae和家蚕B. mori中Ty3/Gypsy超家族分支的差异, 结果表明不同枝在不同昆虫中有着不同的扩张。家蚕中LTR逆转录转座子的鉴定和系统分析有助于我们理解逆转录转座子在昆虫进化中的作用。  相似文献   

8.
Gao D  Chen J  Chen M  Meyers BC  Jackson S 《PloS one》2012,7(2):e32010
LTR retrotransposons are often the most abundant components of plant genomes and can impact gene and genome evolution. Most reported LTR retrotransposons are large elements (>4 kb) and are most often found in heterochromatic (gene poor) regions. We report the smallest LTR retrotransposon found to date, only 292 bp. The element is found in rice, maize, sorghum and other grass genomes, which indicates that it was present in the ancestor of grass species, at least 50-80 MYA. Estimated insertion times, comparisons between sequenced rice lines, and mRNA data indicate that this element may still be active in some genomes. Unlike other LTR retrotransposons, the small LTR retrotransposons (SMARTs) are distributed throughout the genomes and are often located within or near genes with insertion patterns similar to MITEs (miniature inverted repeat transposable elements). Our data suggests that insertions of SMARTs into or near genes can, in a few instances, alter both gene structures and gene expression. Further evidence for a role in regulating gene expression, SMART-specific small RNAs (sRNAs) were identified that may be involved in gene regulation. Thus, SMARTs may have played an important role in genome evolution and genic innovation and may provide a valuable tool for gene tagging systems in grass.  相似文献   

9.
LTR retrotransposons constitute one of the most abundant classes of repetitive elements in eukaryotic genomes. In this paper, we present a new algorithm for detection of full-length LTR retrotransposons in genomic sequences. The algorithm identifies regions in a genomic sequence that show structural characteristics of LTR retrotransposons. Three key components distinguish our algorithm from that of current software--(i) a novel method that preprocesses the entire genomic sequence in linear time and produces high quality pairs of LTR candidates in run-time that is constant per pair, (ii) a thorough alignment-based evaluation of candidate pairs to ensure high quality prediction, and (iii) a robust parameter set encompassing both structural constraints and quality controls providing users with a high degree of flexibility. We implemented our algorithm into a software program called LTR_par, which can be run on both serial and parallel computers. Validation of our software against the yeast genome indicates superior results in both quality and performance when compared to existing software. Additional validations are presented on rice BACs and chimpanzee genome.  相似文献   

10.
Improved knowledge of genome composition, especially of its repetitive component, generates important informations in both theoretical and applied research. In this study, we provide the first insight into the local organization of the sunflower genome by sequencing and annotating 349,380 bp from 3 BAC clones, each including one single-copy gene. These analyses resulted in the identification of 11 putative gene sequences, 18 full-length LTR retrotransposons, 6 incomplete LTR retrotransposons, 2 non-autonomous LTR-retroelements (LINEs), 2 putative DNA transposons fragments and one putative helitron. Among LTR-retrotransposons, non-autonomous elements (the so-called LARDs), which do not carry any protein-encoding sequence, were discovered for the first time in the sunflower. The insertion time of intact retroelements was measured, based on sister LTRs divergence. All isolated elements were inserted relatively recently, especially those belonging to the Gypsy superfamily. Retrotransposon families related to those identified in the BAC clones are present also in other species of Helianthus, both annual and perennial, and even in other Asteraceae. In one of the three BAC clones, we found five copies of a lipid transfer protein (LTP) encoding gene within less than 100,000 bp, four of which are potentially functional. Two of these are interrupted by LTR retrotransposons, in the intron and in the coding sequence, respectively. The divergence between sister LTRs of the retrotransposons inserted within the genes indicates that LTP gene duplication started earlier than 1.749 MYRS ago. On the whole, the results reported in this study confirm that the sunflower is an excellent system to study transposons dynamics and evolution.  相似文献   

11.
The proliferation of retrotransposons within a genome can contribute to increased size and affect the function of eukaryotic genes. BEL/Pao-like long-terminal repeat (LTR) retrotransposons were annotated from the highly adaptable insect species Diabrotica virgifera virgifera, the Western corn rootworm, using survey sequences from bacterial artificial chromosome (BAC) inserts and contigs derived from a low coverage next-generation genome sequence assembly. Eleven unique D. v. virgifera BEL elements were identified that contained full-length gagpol coding sequences, whereas 88 different partial coding regions were characterized from partially assembled elements. Estimated genome copy number for full and partial BEL-like elements ranged from ~ 8 to 1582 among individual contigs using a normalized depth of coverage (DOC) among Illumina HiSeq reads (total genome copy number ~ 8821). BEL element copy number was correlated among different D. v. virgifera populations (R2 = 0.9846), but individual element numbers varied ≤ 1.68-fold and the total number varied by ~ 527 copies. These data indicate that BEL element proliferation likely contributed to a large genome size, and suggest that differences in copy number are a source of genetic variability among D. v. virgifera.  相似文献   

12.
Improved knowledge of genome composition, especially of its repetitive component, generates important information for both theoretical and applied research. The olive repetitive component is made up of two main classes of sequences: tandem repeats and retrotransposons (REs). In this study, we provide characterization of a sample of 254 unique full-length long terminal repeat (LTR) REs. In the sample, Ty1-Copia elements were more numerous than Ty3-Gypsy elements. Mapping a large set of Illumina whole-genome shotgun reads onto the identified retroelement set revealed that Gypsy elements are more redundant than Copia elements. The insertion time of intact retroelements was estimated based on sister LTR’s divergence. Although some elements inserted relatively recently, the mean insertion age of the isolated retroelements is around 18 million yrs. Gypsy and Copia retroelements showed different waves of transposition, with Gypsy elements especially active between 10 and 25 million yrs ago and nearly inactive in the last 7 million yrs. The occurrence of numerous solo-LTRs related to isolated full-length retroelements was ascertained for two Gypsy elements and one Copia element. Overall, the results reported in this study show that RE activity (both retrotransposition and DNA loss) has impacted the olive genome structure in more ancient times than in other angiosperms.  相似文献   

13.
14.
植物反转录转座子及其在功能基因组学中的应用   总被引:6,自引:0,他引:6  
高等植物中的反转录转座子是构成植物基因组的重要成分之一.它分病毒家族和非病毒家族两类,病毒家族包括反转录病毒和类似于反转录病毒的非病毒转座子,病毒家族中的反转录转座子可再细分为Ty3-gypsy类和Ty1-copia类;非病毒家族可细分为LINE类和SINE类.正常情况下大部分反转录转座子不具有活性,某些生物或非生物因素胁迫可激活部分反转录转座子转座.反转录转座子自身编码反转录酶进行转录,以"拷贝-粘贴"的转座模式导致基因组扩增和进化.具有活性的反转录转座子通过插入产生新的突变,可作为一种基因标签技术,应用于功能基因组学研究,并成为研究植物基因功能和表达的重要技术平台.本文综述了近几年来在植物反转录转座子方面的研究进展,主要包括植物反转录转座子的结构、特征、活性及其对基因组的影响和它们在功能基因组学中的应用.  相似文献   

15.
Centromeric retrotransposons (CRs) are important component of the functional centromeres of rice chromosomes. To track the evolution of the CR elements in genus Oryza, we sequenced the orthologous region of the rice centromere 8 (Cen8) in O. granulata and analyzed transposons in this region. A total of 12 bacterial artificial chromosomes (BACs) that span the centromeric region in O. granulata were sequenced. The O. granulate centromeric sequences are composed of as much as 85% of transposons, higher than any other reported eukaryotic centromeres. Ten novel LTR retrotransposon families were identified but a single retrotransposon, Gran3, constitutes nearly 43% of the centromeric sequences. Integration times of complete LTR retrotransposons indicate that the centromeric region had a massive insertion of LTR retrotransposons within 4.5 million year (Myr), which indicates a recent expansion of the centromere in O. granulata after the radiation of the Oryza genus. Two retrotransposon families, OGRetro7 and OGRetro9, show sequence similarity with the canonical CRs from rice and maize. Both OGRetro7 and OGRetro9 are highly concentrated in the centromeres of O. granulata chromosomes. Furthermore, strong hybridization signals were detected in all Oryza species but in O. brachyantha with the OGRetro7 and OGRetro9 probes. Characterization of the centromeric retrotransposons in O. granulata confirms the conservation of the CRs in the Oryza genus and provides a resource for comparative analysis of centromeres and centromere evolution among the Oryza genus and other genomes.  相似文献   

16.
17.
18.
Mutator-like transposable elements (MULEs) are widespread in plants and were first discovered in maize where there are a total of 12,900 MULEs. In comparison, rice, with a much smaller genome, harbors over 30,000 MULEs. Since maize and rice are close relatives, the differential amplification of MULEs raised an inquiry into the underlying mechanism. We hypothesize this is partly attributed to the differential copy number of autonomous MULEs with the potential to generate the transposase that is required for transposition. To this end, we mined the two genomes and detected 530 and 476 MULEs containing transposase sequences (candidate coding-MULEs) in maize and rice, respectively. Over 1/3 of the candidate coding-MULEs harbor nested insertions and the ratios are similar in the two genomes. Among the maize elements with nested insertions, 24% have insertions in coding regions and over half of them harbor two or more insertions. In contrast, only 12% of the rice elements have insertions in coding regions and 19% have multiple insertions, suggesting that nested insertions in maize are more disruptive. This is because most nested insertions in maize are from LTR retrotransposons, which are large in size and are prevalent in the maize genome. Our results suggest that the amplification of retrotransposons may limit the amplification of DNA transposons but not vice versa. In addition, more indels are detected among maize elements than rice elements whereas defects caused by point mutations are comparable between the two species. Taken together, more disruptive nested insertions combined with higher frequency of indels resulted in few (6%) coding-MULEs that may encode functional transposases in maize. In contrast, 35% of the coding-MULEs in rice retain putative intact transposase. This is in addition to the higher expression frequency of rice coding-MULEs, which may explain the higher occurrence of MULEs in rice than that in maize.  相似文献   

19.

Background

The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TE-specific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome.

Methodology/Principal Findings

TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copy elements distributed within 171 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs exhibits signs of ancient transposition except some intact copies of terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TE expansion in L. bicolor: the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 0.5 Mya ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea.

Conclusions

This analysis 1) represents an initial characterization of TEs in the L. bicolor genome, 2) contributes to improve genome annotation and a greater understanding of the role TEs played in genome organization and evolution and 3) provides a valuable resource for future research on the genome evolution within the Laccaria genus.  相似文献   

20.
Jiang N  Bao Z  Temnykh S  Cheng Z  Jiang J  Wing RA  McCouch SR  Wessler SR 《Genetics》2002,161(3):1293-1305
A new and unusual family of LTR elements, Dasheng, has been discovered in the genome of Oryza sativa following database searches of approximately 100 Mb of rice genomic sequence and 78 Mb of BAC-end sequence information. With all of the cis-elements but none of the coding domains normally associated with retrotransposons (e.g., gag, pol), Dasheng is a novel nonautonomous LTR element with high copy number. Over half of the approximately 1000 Dasheng elements in the rice genome are full length (5.6-8.6 kb), and 60% are estimated to have amplified in the past 500,000 years. Using a modified AFLP technique called transposon display, 215 elements were mapped to all 12 rice chromosomes. Interestingly, more than half of the mapped elements are clustered in the heterochromatic regions around centromeres. The distribution pattern was further confirmed by FISH analysis. Despite clustering in heterochromatin, Dasheng elements are not nested, suggesting their potential value as molecular markers for these marker-poor regions. Taken together, Dasheng is one of the highest-copy-number LTR elements and one of the most recent elements to amplify in the rice genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号