首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Newly synthesized wheat-rye allopolyploids, derived from Triticum aestivum Mianyang11 × S. cereale Kustro, were investigated by sequential fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH) using rye tandem repeat pSc200 and rye genomic DNA as probes, respectively, over the first, second and third allopolyploid generations. FISH signals of pSc200 could be observed at both telomeres/subtelomeres of all 14 chromosomes of the parental rye. In the first allopolyploid generation, there were ten rye chromosomes bearing FISH signals at both telomeres/subtelomeres and four rye chromosomes bearing FISH signals at only one telomere/subtelomere. However, in the second and the third allopolyploid generations, there were 12 rye chromosomes bearing FISH signals at both telomeres/subtelomeres and 2 rye chromosomes bearing FISH signals at only one telomere/subtelomere. Rye telomeric segments were transferred to the centromeric region of wheat chromosomes in some cells and small segments derived from non-telomeric regions of rye chromosome were transferred to the telomeric region of wheat chromosomes in some other cells. These observations indicated that the rye telomeric/subtelomeric region was unstable in newly synthesized wheat-rye allopolyploids and allopolyploidization was accompanied by rapid inter/intra-genomic exchange. The inter-genomic exchange may have occurred in somatic cells.  相似文献   

2.
Chromosome identification using fluorescence in situ hybridization (FISH) is widely used in cytogenetic research. It is a diagnostic tool helpful in chromosome identification. It can also be used to characterize alien introgressions, when exercised in a combination with genomic in situ hybridization (GISH). This work aims to find chromosome identification of Aegilops species and Aegilops × Secale amphiploids, which can be used in cereal breeding as a source of favourable agronomic traits. Four diploid and two tetraploid Aegilops species and three Aegilops × Secale hybrids were analysed using FISH with pSc119.2, pAs1, 5S rDNA and 25S rDNA clones to differentiate the U-, M-, Ssh- and D-subgenome chromosomes of Aegilops genus. Additionally, GISH for chromosome categorization was carried out. Differences in the hybridization patterns allowed to identify all U-, M-, Ssh- and D-subgenome chromosomes. Some differences in localization of the rDNA, pSc119.2 and pAs1 sequences between analogue subgenomes in diploid and tetraploid species and Aegilops × Secale hybrids were detected. The hybridization pattern of the M and S genome was more variable than that of the U and D genome. An importance of the cytogenetic markers in plant breeding and their possible role in chromosome structure, function and evolution is discussed.  相似文献   

3.
Diverse patterns of the tandem repeats organization in rye chromosomes   总被引:6,自引:0,他引:6  
Although the monomer size, nucleotide sequence, abundance and species distribution of tandemly organized DNA families are well characterized, little is known about the internal structure of tandem arrays, including total arrays size and the pattern of monomers distribution. Using our rye specific probes, pSc200 and pSc250, we addressed these issues for telomere associated rye heterochromatin where these families are very abundant. Fluorescence in situ hybridization (FISH) on meiotic chromosomes revealed a specific mosaic arrangement of domains for each chromosome arm where either pSc200 or pSc250 predominates without any obvious tendency in order and size of domains. DNA of rye-wheat monosomic additions studied by pulse field gel electrophoresis produced a unique overall blot hybridization display for each of the rye chromosomes. The FISH signals on DNA fibres showed multiple monomer arrangement patterns of both repetitive families as well as of the Arabidopsis-type telomere repeat. The majority of the arrays consisted of the monomers of both families in different patterns separated by spacers. The primary structure of some spacer sequences revealed scrambled regions of similarity to various known repetitive elements. This level of complexity in the long-range organization of tandem arrays has not been previously reported for any plant species. The various patterns of internal structure of the tandem arrays are likely to have resulted from evolutionary interplay, array homogenization and the generation of heterogeneity mediated by double-strand breaks and associated repair mechanisms.  相似文献   

4.
We used rye-specific repetitive DNA sequences in fluorescence in situ hybridization (FISH) to paint the rye genome and to identify rye DNA in a wheat background. A 592 bp fragment from the rye-specific dispersed repetitive family R173 (named UCM600) was cloned and used as a FISH probe. UCM600 is dispersed over the seven rye chromosomes, being absent from the pericentromeric and subtelomeric regions. A similar pattern of distribution was also observed on the rye B chromosomes, but with weaker signals. The FISH hybridization patterns using UCM600 as probe were comparable with those obtained with the genomic in situ hybridization (GISH) procedure. There were, however, sharper signals and less background with FISH. UCM600 was combined with the rye-specific sequences Bilby and pSc200 to obtain a more complete painting. With these probes, the rye chromosomes were labeled with distinctive patterns; thus, allowing the rye cultivar 'Imperial' to be karyotyped. It was also possible to distinguish rye chromosomes in triticale and alien rye chromatin in wheat-rye addition and translocation lines. The distribution of UCM600 was similar in cultivated rye and in the wild Secale species Secale vavilovii Grossh., Secale sylvestre Host, and Secale africanum Stapf. Thus, UCM600 can be used to detect Secale DNA introgressed from wild species in a wheat background.  相似文献   

5.
Genome modifications that occur at the initial interspecific hybridization event are dynamic and can be consolidated during the process of stabilization in successive generations of allopolyploids. This study identifies the number and chromosomal location of ribosomal DNA (rDNA) sites between Secale cereale, Dasypyrum villosum, and their allotetraploid S. cereale × D. villosum hybrids. For the first time, we show the advantages of FISH to reveal chromosome rearrangements in the tetraploid Secale × Dasypyrum hybrids. Based on the specific hybridization patterns of ribosomal 5S, 35S DNA and rye species-specific pSc200 DNA probes, a set of genotypes with numerous Secale/Dasypyrum translocations of 1R/1V chromosomes were identified in successive generations of allotetraploid S. cereale × D. villosum hybrids. In addition we analyse rye chromosome pairs using FISH with chromosome-specific DNA sequences on S. cereale × D. villosum hybrids.  相似文献   

6.

Background

Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported.

Methodology/Principal Findings

Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line.

Conclusions/Significance

These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat.  相似文献   

7.
By using genome in situ hybridization (GISH) on root somatic chromosomes of allotetraploid derived from the cross Gossypium arboreum × G. bickii with genomic DNA (gDNA) of G. bickii as a probe, two sets of chromosomes, consisting of 26 chromosomes each, were easily distinguished from each other by their distinctive hybridization signals. GISH analysis directly proved that the hybrid GarboreumxG. bickii is an allotetraploid amphiploid. The karyotype formula of the species was 2n = 4x = 52 = 46m (4sat) + 6sm (4sat). We identified four pairs of satellites with two pairs in each sub-genome. FISH analysis using 45S rDNA as a probe showed that the cross G. arboreumxG. bickii contained 14 NORs. At least five pairs of chromosomes in the G sub-genome showed double hybridization (red and blue) in their long arms, which indicates that chromatin introgression from the A sub-genome had occurred.  相似文献   

8.
The genomic composition of Tricepiro, a synthetic forage crop.   总被引:4,自引:0,他引:4  
Chromosome in situ hybridization (FISH and GISH) is a powerful tool for determining the chromosomal location of specific sequences and for analysing genome organization and evolution. Tricepiro (2n = 6x = 42) is a synthetic cereal obtained by G. Covas in Argentina (1972), which crosses hexaploid triticale (2n = 6x = 42) and octoploid Trigopiro (2n = 8x = 56). Several years of breeding produced a forage crop with valuable characteristics from Secale, Triticum, and Thinopyrum. The aim of this work is to analyse the real genomic constitution of this important synthetic crop. In situ hybridization using total DNA of Secale, Triticum, and Thinopyrum as a probe (GISH) labelled with biotin and (or) digoxigenin showed that tricepiro is composed of 14 rye chromosomes and 28 wheat chromosomes. Small zones of introgression of Thinopyrum on wheat chromosomes were detected. The FISH using the rye repetitive DNA probe pSc 119.2 labelled with biotin let us characterize the seven pairs of rye chromosomes. Moreover, several wheat chromosomes belonging to A and B genomes were distinguished. Therefore, tricepiro is a synthetic hexaploid (2n = 6x = 42) being AABBRR in its genomic composition, with zones of introgression of Thinopyrum in the A genome of wheat.  相似文献   

9.
In situ hybridization (multicolor GISH and FISH) was used to characterize the genomic composition of the wheat–Thinopyrum ponticum partial amphiploid BE-1. The amphiploid is a high-protein line having resistance to leaf rust (Puccinia recondita f. sp. tritici) and powdery mildew (Blumeria graminis f. sp. tritici) and has in total 56 chromosomes per cell. Multicolor GISH using J, A and D genomic probes showed 16 chromosomes originating from Thinopyrum ponticum and 14 A genome, 14 B genome and 12 D genome chromosomes. Six of the Th. ponticum chromosomes carried segments different from the J genome in their centromeric regions. It was demonstrated that these alien chromosome segments did not originate from the A, B or D genomes of wheat, so the translocation chromosomes were considered to be Js type chromosomes carrying segments similar to the S genome near the centromeres. Rearrangements between the A and D genomes of wheat were detected. FISH using Afa family, pSc119.2 and pTa71 probes allowed the identification of all the wheat chromosomes present and the determination of the chromosomes involved in the translocations. The 4A and 7A chromosomes were identified as being involved in intergenomic translocations. The replaced wheat chromosome was identified as 7D. The localization of these repetitive DNA clones on the Th. ponticum chromosomes of the amphiploid was described in the present study. On the basis of their multicolor FISH patterns, the alien chromosomes could be arranged in eight pairs and could also be differentiated unequivocally from each other.  相似文献   

10.
In this paper, we highlight the affinity between the genomes of key representatives of the Pooideae subfamily, revealed at the chromosomal level by genomic in situ hybridization (GISH). The analyses were conducted using labeled probes from each species to hybridize with chromosomes of every species used in this study based on a “round robin” rule. As a result, the whole chromosomes or chromosome regions were distinguished or variable types of signals were visualized to prove the different levels of the relationships between genomes used in this study. We observed the unexpected lack of signals in secondary constrictions of rye (RR) chromosomes probed by triticale (AABBRR) genomic DNA. We have also identified unlabeled chromosome regions, which point to species-specific sequences connected with disparate pathways of chromosome differentiation. Our results revealed a conservative character of coding sequence of 35S rDNA among selected species of the genera Aegilops, Brachypodium, Festuca, Hordeum, Lolium, Secale, and Triticum. In summary, we showed strong relationships in genomic DNA sequences between species which have been previously reported to be phylogenetically distant.  相似文献   

11.
A Cuadrado  N Jouve 《Génome》1994,37(4):709-712
An analysis of the presence and distribution of the rye and wheat repeated sequences in rye B chromosomes was carried out by fluorescent in situ hybridization. Probes used consisted of three highly repetitive sequences from rye (pSc119.2, pSc74, and pSc34) and the multigene families for the 25S-5.8S-18S and 5S rDNA from wheat (pTa71 and pTa794, respectively). pSc74 and pSc119.2 showed hybridization signals in the telomeric regions of rye B chromosomes. The remaining DNA clones did not hybridize to the B chromosomes.  相似文献   

12.
亚比棉基因组原位杂交及核型分析   总被引:4,自引:0,他引:4  
亚比棉异源四倍体是山西农业大学棉花育种组于上个世纪80年代用A染色体组亚洲棉(Gossypium.arboreum)(迁西小黑籽)与G染色体组野生棉比克氏棉(G.bickii)杂交成异源二倍体后,又经过加倍而获得的.亚比棉异源四倍体不仅育性得到恢复、结铃正常,而且成功地将比克氏棉的优异性状--种子腺体延缓形成转育到亚比棉中.这为实现棉花综合利用和提高抗虫性创育了新的育种材料.在随后的多年中,山西农业大学棉花育种组对亚比棉异源四倍体进行了广泛的细胞形态学研究,对其核型做了分析.然而,仅依据形态学和普通的核型图像,还不能确定该异源四倍体棉种中比克氏棉G染色体(亚)组在核型中的表现.该文以比克氏棉gDNA为探针,亚比棉异源四倍体根尖体细胞染色体为靶细胞染色体,封阻材料为亚洲棉(迁西小黑籽),进行亚比棉基因组原位杂交(Genome in situ hybridization,GISH)及核型分析.从获得的图像中可以清晰地发现有52条染色体,其中有/无杂交信号的各一半,这直观地证实了人工复合亚比棉杂交种确为异源四倍体,而且是双二倍体.A亚组与G亚组染色体长度存在交替排列.亚比棉异源四倍体基于GISH图像的核型公式为2n=4x=52=46m(4sat)+6sm(4sat).A亚组和G亚组染色体上各有2对随体.G亚组染色体中至少有5对双重显色明显的染色体,意味着可能有A亚组染色体的交换,而A亚组染色体中只观察到或多或少的探针红色荧光信号,由于分辨率不够而难于定量分析.进一步以45SrDNA为探针,以鲑鱼精DNA作为封阻DNA,对亚比棉异源四倍体进行45SrDNA-FISH,实验表明,亚比棉异源四倍体有14个NOR(核仁组织区)信号,说明亚比棉异源四倍体有14个随体,即7对随体.比克氏棉对亚洲棉的GISH结果显示,在有亚洲棉DNA封阻的条件下,亚洲棉靶细胞染色体无任何杂交信号,说明比克氏棉与亚洲棉染色体之间不存在较大的同源或相似序列.  相似文献   

13.
Two rye genome-specific random amplified polymorphic DNA (RAPD) markers were identified for detection of rye introgression in wheat. Both markers were amplified in all of the tested materials that contained rye chromatin such as rye, hexaploid triticale, wheat-rye addition lines, and wheat varieties with 1BL.1RS translocation. Two cloned markers, designated pSc10C and pSc20H, were 1012 bp and 1494 bp, respectively. Sequence analysis showed that both pSc10C and pSc20H fragments were related to retrotransposons, ubiquitously distributed in plant genomes. Using fluorescence in situ hybridization (FISH), probe pSc10C was shown to hybridize predominantly to the pericentromeric regions of all rye chromosomes, whereas probe pSc20H was dispersed throughout the rye genome except at telomeric regions and nucleolar organizing regions. The FISH patterns showed that the two markers should be useful to select or track all wheat-rye translocation lines derived from the whole arms of rye chromosomes, as well as to characterize the positions of the translocation breakpoints generated in the proximal and distal regions of rye arms.  相似文献   

14.
A repetitive sequence of 411 bp, named pSaO5411, was identified in theSecale africanum genome (Ra) by random amplified polymorphic DNA (RAPD) analysis of wheat and wheat—S. africanum amphiploids. GenBank BLAST search revealed that the sequence of pSaO5411 was highly homologous to a part of a Ty1-copia retrotransposon. Fluorescence in situ hybridization (FISH) analyses indicated that pSaO5411 was significantly hybridized toS. africanum chromosomes of a wheat—S. africanum amphiploid, and it was dispersed along theSecale chromosome arms except the terminal regions. Basing on the sequence of pSaO5411, a pair of sequence-characterized amplified region (SCAR) primers were designed, and the resultant SCAR marker was able to target both cultivated rye and the wildSecale species, which also enabled to identify effectively theS. africanum chromatin introduced into the wheat genome.  相似文献   

15.
用顺序GISH-FISH 技术鉴定小麦-中间偃麦草小片段易位系   总被引:6,自引:1,他引:6  
利用顺序基因组-重复序列原位杂交技术对1个来自中3不育系和普通小麦恢75杂种后代稳定株系H96276-2的染色体组成进行了分析。以中间偃麦草(Agropyronintermedium)基因组DNA为探针的荧光原位杂交结果表明,H96276-2的体细胞中有42条染色体,包括20对小麦染色体和1对小麦-中间偃麦草易位染色体,中间偃麦草染色体的易位片段位于1对小麦染色体的端部。进而用重复序列探针pSc119进行第2次荧光原位杂交,证明H96276-2中的中间偃麦草染色体易位片段位于小麦2B染色体的短臂上。  相似文献   

16.
The presence of tandem repeat multicopy families in subtelomeric regions of all chromosomes is a characteristic feature of the rye karyotype, in contrast to the organization of these regions in chromosomes of extensively studied species, such as human, rice, and Arabidopsis. To study the molecular structure of these regions, we analyzed BAC clones from a library constructed from the genetic material of rye chromosome 1 short arm (1RS). Screening of the library detected numerous clones that contained copies of multicopy tandem families of DNA sequences pSc200, pSc250, and pSc119.2. An examination of the molecular organization of tandem arrays of the pSc200 family, which is the most common in the rye genome, showed that the subtelomeric 1RS region includes several such arrays, each of which contains characteristic blocks of multimers of various periodicity. Such pattern of heterogeneous organization of tandem repeat arrays differs from the view of the tandem arrays as monotonous sequence of identical monomers, which was generally accepted in recent past.  相似文献   

17.

Background and Aims

Repetitive DNA sequences are thought to be involved in the formation of chromosomal rearrangements. The aim of this study was to analyse the distribution of microsatellite clusters in Aegilops biuncialis and Aegilops geniculata, and its relationship with the intergenomic translocations in these allotetraploid species, wild genetic resources for wheat improvement.

Methods

The chromosomal localization of (ACG)n and (GAA)n microsatellite sequences in Ae. biuncialis and Ae. geniculata and in their diploid progenitors Aegilops comosa and Aegilops umbellulata was investigated by sequential in situ hybridization with simple sequence repeat (SSR) probes and repeated DNA probes (pSc119·2, Afa family and pTa71) and by dual-colour genomic in situ hybridization (GISH). Thirty-two Ae. biuncialis and 19 Ae. geniculata accessions were screened by GISH for intergenomic translocations, which were further characterized by fluorescence in situ hybridization and GISH.

Key Results

Single pericentromeric (ACG)n signals were localized on most U and on some M genome chromosomes, whereas strong pericentromeric and several intercalary and telomeric (GAA)n sites were observed on the Aegilops chromosomes. Three Ae. biuncialis accessions carried 7Ub–7Mb reciprocal translocations and one had a 7Ub–1Mb rearrangement, while two Ae. geniculata accessions carried 7Ug–1Mg or 5Ug–5Mg translocations. Conspicuous (ACG)n and/or (GAA)n clusters were located near the translocation breakpoints in eight of the ten translocated chromosomes analysed, SSR bands and breakpoints being statistically located at the same chromosomal site in six of them.

Conclusions

Intergenomic translocation breakpoints are frequently mapped to SSR-rich chromosomal regions in the allopolyploid species examined, suggesting that microsatellite repeated DNA sequences might facilitate the formation of those chromosomal rearrangements. The (ACG)n and (GAA)n SSR motifs serve as additional chromosome markers for the karyotypic analysis of UM genome Aegilops species.  相似文献   

18.
Genomic in situ hybridization (GISH) and multicolor GISH (mcGISH) methodology were used to establish the cytogenetic constitution of five partial amphiploid lines obtained from wheat × Thinopyrum intermedium hybridizations. Line Zhong 1, 2n=52, contained 14 chromosomes from each of the wheat genomes plus ten Th. intermedium chromosomes, with one pair of A-genome chromosomes having a Th. intermedium chromosomal segment translocated to the short arm. Line Zhong 2, 2n=54, had intact ABD wheat genome chromosomes plus 12 Th. intermedium chromosomes. The multicolor GISH results, using different fluorochrome labeled Th. intermedium and the various diploid wheat genomic DNAs as probes, indicated that both Zhong 1 and Zhong 2 contained one pair of Th. intermedium chromosomes with a significant homology to the wheat D genome. High-molecular-weight (HMW) glutenin and gliadin analysis revealed that Zhong 1 and Zhong 2 had identical banding patterns that contained all of the wheat bands and a specific HMW band from Th. intermedium. Zhong 1 and Zhong 2 had good HMW subunits for wheat breeding. Zhong 3 and Zhong 5, both 2n=56, possessed no gross chromosomal aberrations or translocations that were detectable at the GISH level. Zhong 4 also had a chromosome number of 2n=56 and contained the complete wheat ABD-genome chromosomes plus 14 Th. intermedium chromosomes, with one pair of Th. intermedium chromosomes being markedly smaller. Multicolor GISH results indicated that Zhong 4 also contained two pairs of reciprocally translocated chromosomes involving the A and D genomes. Zhong 3, Zhong 4 and Zhong 5 contained a specific gliadin band from Th. intermedium. Based on the above data, it was concluded that inter-genomic transfer of chromosomal segments and/or sequence introgression had occurred in these newly synthesized partial amphiploids despite their diploid-like meiotic behavior and disomic inheritance.  相似文献   

19.
The chromosomal organization of two novel repetitive DNA sequences isolated from the Chenopodium quinoa Willd. genome was analyzed across the genomes of selected Chenopodium species. Fluorescence in situ hybridization (FISH) analysis with the repetitive DNA clone 18-24J in the closely related allotetraploids C. quinoa and Chenopodium berlandieri Moq. (2n = 4x = 36) evidenced hybridization signals that were mainly present on 18 chromosomes; however, in the allohexaploid Chenopodium album L. (2n = 6x = 54), cross-hybridization was observed on all of the chromosomes. In situ hybridization with rRNA gene probes indicated that during the evolution of polyploidy, the chenopods lost some of their rDNA loci. Reprobing with rDNA indicated that in the subgenome labeled with 18-24J, one 35S rRNA locus and at least half of the 5S rDNA loci were present. A second analyzed sequence, 12-13P, localized exclusively in pericentromeric regions of each chromosome of C. quinoa and related species. The intensity of the FISH signals differed considerably among chromosomes. The pattern observed on C. quinoa chromosomes after FISH with 12-13P was very similar to GISH results, suggesting that the 12-13P sequence constitutes a major part of the repetitive DNA of C. quinoa.  相似文献   

20.
The genus of Secale has many agronomically important characters. In order to use the best of this species, markers tracking the rye chromatin incorporated into wheat must be developed. In this study, one rye genome-specific random amplified polymorphic DNA (RAPD) marker was isolated from Secale africanum (Ra genome). Two cloned markers, named OPP131165 and OPP13662, were 1165 bp and 662 bp, respectively. Sequence analysis revealed that OPP131165 was highly homologous to a part of a new class of transposon-like gene called the Revolver family, and OPP13662 was partially similar to LTR gypsy-like retrotransposon. Fluorescence in situ hybridization (FISH) showed only OPP131165 localized within the whole arms of rye except their terminal regions and no signal was detected on wheat chromosomes, while OPP13662 had no hybridization signal detected on wheat and rye genomes. Based on these sequences, two pairs of sequence-characterized amplified region (SCAR) primers were designed, and the resulted SCAR markers were able to target both cultivated and wild Secale species. The FISH patterns and the two SCAR markers should be able to identify and track all wheat-rye translocation lines, especially the S. africanum chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号