首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The review deals with cytoplasmic male sterility (CMS) in higher plants: impairment of the pollen formation resulting from interaction of the nuclear and mitochondrial genomes. The information on the known nuclear restorer-of-fertility genes and their effects on the expression of CMS-associated mitochondrial loci are considered. Heteroplasmy of mtDNA in plants and its potential association with CMS inheritance, as well as possible mechanisms of the observed direct and reverse association between altered expression of the CMS-inducing mitochondrial genome, metabolic defects, and pollen sterility are discussed.  相似文献   

2.
Ivanov MK  Dymshits GM 《Genetika》2007,43(4):451-468
The review deals with cytoplasmic male sterility (CMS) in higher plants: impairment of the pollen formation resulting from interaction of the nuclear and mitochondrial genomes. The information on the known nuclear restorer-of-fertility genes and their effects on the expression of CMS-associated mitochondrial loci are considered. Heteroplasmy of mtDNA in plants and its potential association with CMS inheritance, as well as possible mechanisms of the observed direct and reverse association between altered expression of the CMS-inducing mitochondrial genome, metabolic defects, and pollen sterility are discussed.  相似文献   

3.
Pollen identification and classification are important not only for palynologists, but also for systematists and ecologists. Because palynological methods for the identification of pollen in surface soil until now could resolve at best to the generic level, we have developed a molecular approach to species-level identification of Chenopodiaceae pollen in surface soils. Surface soil samples were collected in the central area of Junggar Desert Basin, Xinjiang, China. Fresh leaves of 19 Chenopodiaceae species were sampled for DNA sequencing, establishing a database of internal transcribed spacer (ITS) regions of nuclear ribosomal DNA for Chenopodiaceae. Individual chenopod pollen grains in a soil sample were separated from the soil and the ITS1 region of each pollen grain was amplified using nested PCR and sequenced. By comparing the amplified ITS1 sequences to those in the Chenopodiaceous database, we identified the pollen in the soil samples to the level of species. The new method provides a technical reference for species identification of soil surface pollen for other families. This work is necessary for further efforts to interpret the relationship of surface soil pollen to vegetation characteristics. It also has significant potential for enhancing the ability to identify pollen in clinical airborne allergen or criminological studies.  相似文献   

4.
A much-debated issue in plant evolutionary biology concerns the maintenance of a high frequency of male sterility in natural populations. For the past decade, a theoretical framework has been provided by the concept of nucleocytoplasmic conflict. Recent molecular studies on cytoplasmic male sterility indicate that novel chimeric genes, resulting from duplications and rearrangements of mitochondrial DNA sequences, are involved In its control. Thus, male sterility, which is phenotypically the loss of the male function, is encoded by a new mitochondrial function at the molecular level. Molecular data are in agreement with theoretical models that consider cytoplasmic male sterility as a stage in the coevolution between nucleus and mitochondria, and not simply as a deleterious mitochondrial mutation.  相似文献   

5.
Jing B  Heng S  Tong D  Wan Z  Fu T  Tu J  Ma C  Yi B  Wen J  Shen J 《Journal of experimental botany》2012,63(3):1285-1295
Cytoplasmic male sterility (CMS) is a widespread phenomenon in higher plants, and several studies have established that this maternally inherited defect is often associated with a mitochondrial mutant. Approximately 10 chimeric genes have been identified as being associated with corresponding CMS systems in the family Brassicaceae, but there is little direct evidence that these genes cause male sterility. In this study, a novel chimeric gene (named orf288) was found to be located downstream of the atp6 gene and co-transcribed with this gene in the hau CMS sterile line. Western blotting analysis showed that this predicted open reading frame (ORF) was translated in the mitochondria of male-sterile plants. Furthermore, the growth of Escherichia coli was significantly repressed in the presence of ORF288, which indicated that this protein is toxic to the E. coli host cells. To confirm further the function of orf288 in male sterility, the gene was fused to a mitochondrial-targeting pre-sequence under the control of the Arabidopsis APETALA3 promoter and introduced into Arabidopsis thaliana. Almost 80% of transgenic plants with orf288 failed to develop anthers. It was also found that the independent expression of orf288 caused male sterility in transgenic plants, even without the transit pre-sequence. Furthermore, transient expression of orf288 and green fluorescent protein (GFP) as a fused protein in A. thaliana protoplasts showed that ORF288 was able to anchor to mitochondria even without the external mitochondrial-targeting peptide. These observations provide important evidence that orf288 is responsible for the male sterility of hau CMS in Brassica juncea.  相似文献   

6.
Differential staining of aborted and nonaborted pollen   总被引:31,自引:0,他引:31  
  相似文献   

7.
Certain members of the family Chenopodiaceae are the dominant species of the deserts of Central Asia; many of them are succulent halophytes which exhibit C4-type CO2 fixation of the NAD- or NADP-ME (malic enzyme) subgroup. In four C4 species of the tribe Salsoleae, the Salsoloid-type Kranz anatomy in leaves or stems was studied in relation to the diversity in anatomy which was found in cotyledons. Halocharis gossypina, has C4 NAD-ME Salsoloid-type photosynthesis in leaves and C3 photosynthesis in dorsoventral non-Kranz cotyledons; Salsola laricina has C4 NAD-ME Salsoloid-type leaves and C4 NAD-ME Atriplicoid-type cotyledons; Haloxylon persicum, has C4 NADP-ME Salsoloid-type green stems and C3 isopalisade non-Kranz cotyledons; and S. richteri has C4 NADP-ME Salsoloid-type leaves and cotyledons. Immunolocalization studies on Rubisco showed strong labelling in bundle sheath cells of leaves and cotyledons of organs having Kranz anatomy. The C4 pathway enzyme phosphoenolpyruvate carboxylase was localized in mesophyll cells, while the malic enzymes were localized in bundle sheath cells of Kranz-type tissue. Immunolocalization by electron microscopy showed NAD-ME is in mitochondria while NADP-ME is in chloroplasts of bundle sheath cells in the respective C4 types. In some C4 organs, it was apparent that subepidermal cells and water storage cells also contain some chloroplasts which have Rubisco, store starch, and thus perform C3 photosynthesis. In non-Kranz cotyledons of Halocharis gossypina and Haloxylon persicum, Rubisco was found in chloroplasts of both palisade and spongy mesophyll cells with the heaviest labelling in the layers of palisade cells, whereas C4 pathway proteins were low or undetectable. The pattern of starch accumulation correlated with the localization of Rubisco, being highest in the bundle sheath cells and lowest in the mesophyll cells of organs having Kranz anatomy. In NAD-ME-type Kranz organs (leaves and cotyledons of S. laricina and leaves of H. gossypina the granal index (length of appressed membranes as a percentage of total length of all membranes) of bundle sheath chloroplasts is 1.5 to 2.5 times higher than that of mesophyll chloroplasts. In contrast, in the NADP-ME-type Kranz organs (S. richteri leaves and cotyledons and H. persicum stems) the granal index of mesophyll chloroplasts is 1.5 to 2.2 times that of the bundle sheath chloroplasts. The mechanism of photosynthesis in these species is discussed in relation to structural differences.  相似文献   

8.
Partial restoration of male fertility limits the use of C-type cytoplasmic male sterility (C-CMS) for the production of hybrid seeds in maize. Nevertheless, the genetic basis of the trait is still unknown. Therefore, the aim to this study was to identify genomic regions that govern partial restoration by means of a QTL analysis carried out in an F2 population (n = 180). This population was derived from the Corn Belt inbred lines B37C and K55. F2BC1 progenies were phenotyped at three locations in Switzerland. Male fertility was rated according to the quality and number of anthers as well as the anthesis-silking interval. A weak effect of environment on the expression of partial restoration was reflected by high heritabilities of all fertility-related traits. Partial restoration was inherited like an oligogenic trait. Three major QTL regions were found consistently across environments in the chromosomal bins 2.09, 3.06 and 7.03. Therefore, a marker-assisted counter-selection of partial restoration is promising. Minor QTL regions were found on chromosomes 3, 4, 5, 6 and 8. A combination of partial restorer alleles at different QTL can lead to full restoration of fertility. The maternal parent was clearly involved in the partial restoration, because the restorer alleles at QTL in bins 2.09, 6.04 and 7.03 originated from B37. The three major QTL regions collocated with other restorer genes of maize, a phenomenon, which seems to be typical for restorer genes. Therefore, a study of the clusters of restorer genes in maize could lead to a better understanding of their evolution and function. In this respect, the long arm of chromosome 2 is particularly interesting, because it harbors restorer genes for the three major CMS systems (C, T and S) of maize.  相似文献   

9.
Plant mitochondrial genomes contain a large number of mitotype-specific sequences (MSS) which establish a mitochondrial genome structure distinct from other mitotypes. In rice, nine mitochondrial genomes have been sequenced, which provides us with the possibility of characterizing the MSS of rice and probing their relationship to cytoplasmic male sterility (CMS) in rice. We therefore analyzed the mitochondrial genomes of CW-CMS, LD-CMS, WA-CMS, N and Nipponbare lines, and found 57 MSS with sizes ranging from 102 to 5,745 bp, and with an aggregate length of 92.4 kb. The MSS account for more than 14.5 % of the rice mitochondrial genome and are a significant contributing factor in the variation of mitochondrial genome sizes. Of the MSS tested, 34 MSS exhibited polymorphism among rice lines, and 14 MSS were further confirmed as being specific to CMS. This includes nine MSS specific to sporophytic CMS, three specific to gametophytic CMS, and two shared by all types of CMS. Interestingly, except for CMS genes orf(H)79 and orf352 which are partly or fully overlapping with some MSS fragments, there are ten more open reading frames of unknown function that were detected in CMS-specific MSS, hinting at their possible roles in plant CMS. These novel findings provide us with potential new molecular tools to direct the breeding of CMS lines in hybrid rice breeding programs.  相似文献   

10.
Taxa in the early stages of speciation may bear intraspecific allelic variation at loci conferring barrier traits in hybrids such as hybrid sterility. Additionally, hybridization may spread alleles that confer barrier traits to other taxa. Historically, few studies examine within- and between-species variation at loci conferring reproductive isolation. Here, we test for allelic variation within Drosophila persimilis and within the Bogota subspecies of D. pseudoobscura at regions previously shown to contribute to hybrid male sterility. We also test whether D. persimilis and the USA subspecies of D. pseudoobscura share an allele conferring hybrid sterility in a D. pseudoobscura bogotana genetic background. All loci conferred similar hybrid sterility effects across all strains studied, although we detected some statistically significant quantitative effect variation among D. persimilis alleles of some hybrid incompatibility QTLs. We also detected allelism between D. persimilis and D. pseudoobscura USA at a second chromosome hybrid sterility QTL. We hypothesize that either the QTL is ancestral in D. persimilis and D. pseudoobscura USA and lost in D. pseudoobscura bogotana, or gene flow transferred the QTL from D. persimilis to D. pseudoobscura USA. We discuss our findings in the context of population features that may contribute to variation in hybrid incompatibilities.  相似文献   

11.
Cytological analysis under light microscopy of the single hybrid P30R50 of silage corn revealed an abnormal pattern of microsporogenesis that affected the meiotic products. Meiosis progressed normally until diakinesis, but before migration to the metaphase plate, bivalents underwent total desynapsis and 20 univalent chromosomes were scattered in the cytoplasm. At this stage, meiocytes also exhibited a number of chromatin-like fragments scattered throughout the cell. Metaphase I was completely abnormal in the affected cells, and univalent chromosomes and fragments were distributed among several curved spindles. Anaphase I did not occur, and each chromosome or group of chromosomes originated a micronucleus. After this phase, an irregular cytokinesis occurred, and secondary meiocytes with several micronuclei were observed. Metaphase II and anaphase II also did not occur, and after the second cytokinesis, the genomes were fractionated into polyads, generating several unbalanced microspores, with various-sized nuclei. About 35% of the tetrads were abnormal in the hybrid. This spontaneous mutation had been previously reported in a USA maize line called ms17 and was found to cause male sterility.  相似文献   

12.
Jiang P  Zhang X  Zhu Y  Zhu W  Xie H  Wang X 《Plant cell reports》2007,26(9):1627-1634
To elucidate reactive oxygen species (ROS) metabolism of cotton cytoplasmic male sterility and the effects of restorer gene on the metabolism of ROS, the metabolism changes in the production and scavenging of ROS and gene expression related to ROS-scavenging enzymes were investigated in the anther mitochondria of CMS line, maintainer line and hybrid F1. During the abortion preliminary stage (sporogenous cell division stage), anthers of CMS line had a little higher superoxide (O2) production rate and hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents than those of maintainer or hybrid F1. Simultaneously, a little higher ROS contents might serve as a signal to increase the activity of superoxide dismutase (SOD) in anthers of CMS line to reduce the ROS damage to the anther development. But at the abortion peak (pollen mother cell meiosis stage), anthers of CMS line had extraordinarily higher ROS contents and lower ROS-scavenging enzymic activities compared with the hybrid F1, during which the ROS contents and ROS-scavenging enzymic activities in hybrid F1 were approximate to those of maintainer line. The expression of Mn-sod and apx mRNA in anther of CMS line was obviously inhibited when ROS produced with a great deal during anther abortion, however the gene expression in hybrid F1 kept normal with the maintainer. Excessive accumulation of O2·−, H2O2 and MDA, significant reduction of ROS-scavenging enzymic activities and lower gene expression level of ROS-scavenging enzyme were coinstantaneous with male cells death in anthers of CMS line. But when the restorer gene was transferred into CMS line, excessive production of ROS could be eliminated in the anthers of hybrid F1. The restorer gene likely plays an important role in keeping the dynamic balance between the production and elimination of ROS.  相似文献   

13.
14.
Kubo T  Yoshimura A  Kurata N 《Genetics》2011,189(3):1083-1092
In intraspecific crosses between cultivated rice (Oryza sativa) subspecies indica and japonica, the hybrid male sterility gene S24 causes the selective abortion of male gametes carrying the japonica allele (S24-j) via an allelic interaction in the heterozygous hybrids. In this study, we first examined whether male sterility is due solely to the single locus S24. An analysis of near-isogenic lines (NIL-F(1)) showed different phenotypes for S24 in different genetic backgrounds. The S24 heterozygote with the japonica genetic background showed male semisterility, but no sterility was found in heterozygotes with the indica background. This result indicates that S24 is regulated epistatically. A QTL analysis of a BC(2)F(1) population revealed a novel sterility locus that interacts with S24 and is found on rice chromosome 2. The locus was named Epistatic Factor for S24 (EFS). Further genetic analyses revealed that S24 causes male sterility when in combination with the homozygous japonica EFS allele (efs-j). The results suggest that efs-j is a recessive sporophytic allele, while the indica allele (EFS-i) can dominantly counteract the pollen sterility caused by S24 heterozygosity. In summary, our results demonstrate that an additional epistatic locus is an essential element in the hybrid sterility caused by allelic interaction at a single locus in rice. This finding provides a significant contribution to our understanding of the complex molecular mechanisms underlying hybrid sterility and microsporogenesis.  相似文献   

15.
16.
Understanding genetic mechanisms underlying hybrid male sterility is one of the most challenging problems in evolutionary biology especially speciation. By using the interspecific hybridization method roles of Y chromosome, Major Hybrid Sterility (MHS) genes and cytoplasm in sterility of hybrid males have been investigated in a promising group, the Drosophila bipectinata species complex that consists of four closely related species: D. pseudoananassae, D. bipectinata, D. parabipectinata and D. malerkotliana. The interspecific introgression analyses show that neither cytoplasm nor MHS genes are involved but X-Y interactions may be playing major role in hybrid male sterility between D. pseudoananassae and the other three species. The results of interspecific introgression analyses also show considerable decrease in the number of males in the backcross offspring and all males have atrophied testes. There is a significant positive correlation between sex - ratio distortion and severity of sterility in backcross males. These findings provide evidence that D. pseudoananassae is remotely related with other three species of the D. bipectinata species complex.  相似文献   

17.
The intersubspecific hybrids of autotetraploid rice has many features that increase rice yield, but lower seed set is a major hindrance in its utilization. Pollen sterility is one of the most important factors which cause intersubspecific hybrid sterility. The hybrids with greater variation in seed set were used to study how the F(1) pollen sterile loci (S-a, S-b, and S-c) interact with each other and how abnormal chromosome behaviour and allelic interaction of F(1) sterility loci affect pollen fertility and seed set of intersubspecific autotetraploid rice hybrids. The results showed that interaction between pollen sterility loci have significant effects on the pollen fertility of autotetraploid hybrids, and pollen fertility further decreased with an increase in the allelic interaction of F(1) pollen sterility loci. Abnormal ultra-structure and microtubule distribution patterns during pollen mother cell (PMC) meiosis were found in the hybrids with low pollen fertility in interphase and leptotene, suggesting that the effect-time of pollen sterility loci interaction was very early. There were highly significant differences in the number of quadrivalents and bivalents, and in chromosome configuration among all the hybrids, and quadrivalents decreased with an increase in the seed set of autotetraploid hybrids. Many different kinds of chromosomal abnormalities, such as chromosome straggling, chromosome lagging, asynchrony of chromosome disjunction, and tri-fission were found during the various developmental stages of PMC meiosis. All these abnormalities were significantly higher in sterile hybrids than in fertile hybrids, suggesting that pollen sterility gene interactions tend to increase the chromosomal abnormalities which cause the partial abortion of male gametes and leads to the decline in the seed set of the autotetraploid rice hybrids.  相似文献   

18.
19.
Pinellia ternata is an important traditional Chinese medicinal plant. Its different populations in China have various ploidy levels, based on x = 13, as well as extensive aneuploid series. The microsporogenesis process was observed in specimens from three populations from three regions of Hubei Province; they were characterized by normal and abnormal meiotic divisions in pollen mother cells (PMCs) at all stages simultaneously. Meiotic abnormalities including univalents/multivalents, chromosomal laggards/bridges and micronuclei appeared in about 50% of the PMCs, together with abnormal cytokinesis. Chromatin/chromosome transfer between meiocytes occurred only during the first division, at low frequency; this might contribute to these meiotic abnormalities. Although the remaining 50% of the PMCs presented normal cytological behavior, pollen fertility was only about 2%. These results provide cytological explanations for its low seed-set and the general use of asexual reproduction through tubers and bulbils; it also explains the wide variations in chromosome number.  相似文献   

20.
Male reproductive development of rice (Oryza sativa L.) is very sensitive to drought. A brief, transitory episode of water stress during meiosis in pollen mother cells of rice grown under controlled environmental conditions induced pollen sterility. Anthers containing sterile pollen were smaller, thinner, and often deformed compared to normal anthers of well-watered plants. Only about 20% of the fully developed florets in stressed plants produced grains, compared to 90% in well-watered controls. Water stress treatments after meiosis were progressively less damaging. Levels of starch and sugars and activities of key enzymes involved in sucrose cleavage and starch synthesis were analyzed in anthers collected at various developmental stages from plants briefly stressed during meiosis and then re-watered. Normal starch accumulation during pollen development was strongly inhibited in stress-affected anthers. During the period of stress, both reducing and non-reducing sugars accumulated in anthers. After the relief of stress, reducing sugar levels fell somewhat below those in controls, but levels of non-reducing sugars remained higher than in controls. Activities of acid invertase and soluble starch synthase in stressed anthers were lower than in controls at comparable stages throughout development, during as well as after stress. Stress had no immediate effect on ADP-glucose pyrophosphorylase activity, but had an inhibitory aftereffect throughout post-stress development. Sucrose synthase activity, which was, relatively speaking, much lower than acid invertase activity, was only slightly suppressed by stress. The results show that it is unlikely that pollen sterility, or the attendant inhibition of starch accumulation, in water-stressed rice plants are caused by carbohydrate starvation per se. Instead, an impairment of enzymes of sugar metabolism and starch synthesis may be among the potential causes of this failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号