首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elucidation of the evolutionary processes that constrain or facilitate adaptive divergence is a central goal in evolutionary biology, especially in non-model organisms. We tested whether changes in dynamics of gene flow (historical vs contemporary) caused population isolation and examined local adaptation in response to environmental selective forces in fragmented Rhododendron oldhamii populations. Variation in 26 expressed sequence tag-simple sequence repeat loci from 18 populations in Taiwan was investigated by examining patterns of genetic diversity, inbreeding, geographic structure, recent bottlenecks, and historical and contemporary gene flow. Selection associated with environmental variables was also examined. Bayesian clustering analysis revealed four regional population groups of north, central, south and southeast with significant genetic differentiation. Historical bottlenecks beginning 9168–13,092 years ago and ending 1584–3504 years ago were revealed by estimates using approximate Bayesian computation for all four regional samples analyzed. Recent migration within and across geographic regions was limited. However, major dispersal sources were found within geographic regions. Altitudinal clines of allelic frequencies of environmentally associated positively selected outliers were found, indicating adaptive divergence. Our results point to a transition from historical population connectivity toward contemporary population isolation and divergence on a regional scale. Spatial and temporal dispersal differences may have resulted in regional population divergence and local adaptation associated with environmental variables, which may have played roles as selective forces at a regional scale.  相似文献   

2.
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately.  相似文献   

3.
C M Sloop  D R Ayres  D R Strong 《Heredity》2011,106(4):547-556
Invasive hybrids and their spread dynamics pose unique opportunities to study evolutionary processes. Invasive hybrids of native Spartina foliosa and introduced S. alterniflora have expanded throughout San Francisco Bay intertidal habitats within the past 35 years by deliberate plantation and seeds floating on the tide. Our goals were to assess spatial and temporal scales of genetic structure in Spartina hybrid populations within the context of colonization history. We genotyped adult and seedling Spartina using 17 microsatellite loci and mapped their locations in three populations. All sampled seedlings were hybrids. Bayesian ordination analysis distinguished hybrid populations from parent species, clearly separated the population that originated by plantation from populations that originated naturally by seed and aligned most seedlings within each population. Population genetic structure estimated by analysis of molecular variance was substantial (FST=0.21). Temporal genetic structure among age classes varied highly between populations. At one population, the divergence between adults and 2004 seedlings was low (FST=0.02) whereas at another population this divergence was high (FST=0.26). This latter result was consistent with local recruitment of self-fertilized seed produced by only a few parental plants. We found fine-scale spatial genetic structure at distances less than ∼200 m, further supporting local seed and/or pollen dispersal. We posit a few self-fertile plants dominating local recruitment created substantial spatial genetic structure despite initial long-distance, human dispersal of hybrid Spartina through San Francisco Bay. Fine-scale genetic structure may more strongly develop when local recruits are dominated by the offspring of a few self-fertile plants.  相似文献   

4.
We investigated the distribution of genetic variation within and between seven subpopulations in a riparian population of Silene tatarica in northern Finland by using amplified fragment length polymorphism (AFLP) markers. A Bayesian approach-based clustering program indicated that the marker data contained not only one panmictic population, but consisted of seven clusters, and that each original sample site seems to consist of a distinct subpopulation. A coalescent-based simulation approach shows recurrent gene flow between subpopulations. Relative high FST values indicated a clear subpopulation differentiation. However, amova analysis and UPGMA-dendrogram did not suggest any hierarchical regional structuring among the subpopulations. There was no correlation between geographical and genetic distances among the subpopulations, nor any correlation between the subpopulation census size and amount of genetic variation. Estimates of gene flow suggested a low level of gene flow between the subpopulations, and the assignment tests proposed a few long-distance bidirectional dispersal events between the subpopulations. No apparent difference was found in within-subpopulation genetic diversity among upper, middle and lower regions along the river. Relative high amounts of linkage disequilibrium at subpopulation level indicated recent population bottlenecks or admixture, and at metapopulation levels a high subpopulation turnover rate. The overall pattern of genetic variation within and between subpopulations also suggested a 'classical' metapopulation structure of the species suggested by the ecological surveys.  相似文献   

5.
Disentangling evolutionary forces that may interact to determine the patterns of genetic differentiation within and among wild populations is a major challenge in evolutionary biology. The objective of this study was to assess the genetic structure and the potential influence of several ecological variables on the extent of genetic differentiation at multiple spatial scales in a widely distributed species, the Atlantic salmon, Salmo salar . A total of 2775 anadromous fish were sampled from 51 rivers along the North American Atlantic coast and were genotyped using 13 microsatellites. A Bayesian analysis clustered these populations into seven genetically and geographically distinct groups, characterized by different environmental and ecological factors, mainly temperature. These groups were also characterized by different extent of genetic differentiation among populations. Dispersal was relatively high and of the same magnitude within compared to among regional groups, which contrasted with the maintenance of a regional genetic structure. However, genetic differentiation was lower among populations exchanging similar rates of local as opposed to inter-regional migrants, over the same geographical scale. This raised the hypothesis that gene flow could be constrained by local adaptation at the regional scale. Both coastal distance and temperature regime were found to influence the observed genetic structure according to landscape genetic analyses. The influence of other factors such as latitude, river length and altitude, migration tactic, and stocking was not significant at any spatial scale. Overall, these results suggested that the interaction between gene flow and thermal regime adaptation mainly explained the hierarchical genetic structure observed among Atlantic salmon populations.  相似文献   

6.
A decreasing population size is often causing species extinction, however, relict species persisting in small-sized populations counter this. We analysed spatial genetic variation and past changes in population size at the maternally-inherited mitochondrial DNA level to clarify the origin of all recently known isolated populations of Pholidoptera frivaldskyi occurring in the range of Carpathian Mountains. Along with that we analysed also morphological variation as some phenotypic traits can retain useful information on population genetic structure. We found a relatively low genetic diversity within isolated populations as 778 bp COI gene sequences revealed only 13 unique haplotypes (n = 173 individuals from 10 populations). The spatial analysis of molecular variance identified three geographically homogenous genetic clusters (one in Slovakia and two in Romania) with a high level of differentiation among them, suggesting restricted gene flow, whilst Bayesian skyline simulation reconstructed a negative demographic change through evolutionary time. Inferred genetic pattern clearly coincides with differences in males’ colour phenotype as the extent of pigmentation on the lateral pronotum varied significantly among genetic lineages. We suggest that geographical variation in the species populations has relict-like character and their isolated occurrence is not a result of recent introduction events. Identification of ‘evolutionary units’ may help in the conservation and management of this rare insect species.  相似文献   

7.
The distribution of spatial genetic variation across a region can shape evolutionary dynamics and impact population persistence. Local population dynamics and among‐population dispersal rates are strong drivers of this spatial genetic variation, yet for many species we lack a clear understanding of how these population processes interact in space to shape within‐species genetic variation. Here, we used extensive genetic and demographic data from 10 subpopulations of greater sage‐grouse to parameterize a simulated approximate Bayesian computation (ABC) model and (i) test for regional differences in population density and dispersal rates for greater sage‐grouse subpopulations in Wyoming, and (ii) quantify how these differences impact subpopulation regional influence on genetic variation. We found a close match between observed and simulated data under our parameterized model and strong variation in density and dispersal rates across Wyoming. Sensitivity analyses suggested that changes in dispersal (via landscape resistance) had a greater influence on regional differentiation, whereas changes in density had a greater influence on mean diversity across all subpopulations. Local subpopulations, however, varied in their regional influence on genetic variation. Decreases in the size and dispersal rates of central populations with low overall and net immigration (i.e. population sources) had the greatest negative impact on genetic variation. Overall, our results provide insight into the interactions among demography, dispersal and genetic variation and highlight the potential of ABC to disentangle the complexity of regional population dynamics and project the genetic impact of changing conditions.  相似文献   

8.
Polymorphic microsatellites are widely considered more powerful for resolving population structure than mitochondrial DNA (mtDNA) markers, particularly for recently diverged lineages or geographically proximate populations. Weaker population subdivision for biparentally inherited nuclear markers than maternally inherited mtDNA may signal male-biased dispersal but can also be attributed to marker-specific evolutionary characteristics and sampling properties. We discriminated between these competing explanations with a population genetic study on olive sea snakes, Aipysurus laevis. A previous mtDNA study revealed strong regional population structure for A. laevis around northern Australia, where Pleistocene sea-level fluctuations have influenced the genetic signatures of shallow-water marine species. Divergences among phylogroups dated to the Late Pleistocene, suggesting recent range expansions by previously isolated matrilines. Fine-scale population structure within regions was, however, poorly resolved for mtDNA. In order to improve estimates of fine-scale genetic divergence and to compare population structure between nuclear and mtDNA, 354 olive sea snakes (previously sequenced for mtDNA) were genotyped for five microsatellite loci. F statistics and Bayesian multilocus genotype clustering analyses found similar regional population structure as mtDNA and, after standardizing microsatellite F statistics for high heterozygosities, regional divergence estimates were quantitatively congruent between marker classes. Over small spatial scales, however, microsatellites recovered almost no genetic structure and standardized F statistics were orders of magnitude smaller than for mtDNA. Three tests for male-biased dispersal were not significant, suggesting that recent demographic expansions to the typically large population sizes of A. laevis have prevented microsatellites from reaching mutation-drift equilibrium and local populations may still be diverging.  相似文献   

9.
The Japanese wild boar (Sus scrofa leucomystax) is one of the most widely distributed mammals in Japan. However, its population structure and pattern of gene flow at a regional level are poorly understood. In this study, we investigated the local-scale genetic structure of the Japanese wild boar. In total, 172 individuals sampled in Gifu Prefecture, central Japan, were genotyped for 29 autosomal microsatellite loci. Significant genetic differentiations (F ST = 0.020–0.128) were detected among some geographical areas. In addition, in the overall population (n = 172), all loci deviating from the Hardy–Weinberg equilibrium exhibited a significant deficit of heterozygotes. These results suggest the presence of genetic substructuring in the local population. Moreover, Bayesian cluster analysis revealed the presence of substructuring within the population, despite the relatively small study area (10,621 km2). Spatial Bayesian cluster analysis showed that the boundaries of subpopulations were generally consistent with landscape features (e.g. main rivers, urban areas and road and train networks). Our study implies that these landscape features play a significant role as a barrier to dispersal and gene flow in the local population of the Japanese wild boar.  相似文献   

10.
Invasions of exotic species often involve a rapid evolutionary change in the introduced populations. Elodea canadensis is an invasive aquatic weed native to North America. Our aims were to reveal the evolutionary consequences of invasion to the population genetic structure of the presumably clonal E. canadensis in Finland and to test the hypothesis that the whole Finnish population originates from the first introduction of the species. We used ten polymorphic microsatellite markers to analyze the genetic characteristics of seven introduced E. canadensis populations in Finland. Despite the species' totally asexual mode of reproduction in Finland, two to five alleles per locus were detected in Finnish populations, and the expected heterozygosities varied between 0.19 and 0.37. The majority of variation was found within populations. Except for one, all pairwise values of population differentiation (F ST) were significant, indicating restricted gene flow among the Finnish populations. In addition, a Bayesian analysis of population structure revealed the presence of regional population structuring. Genetic analyses indicate that E. canadensis could have been introduced to Finland multiple times. However, the amount of genetic variation and regional clustering detected could also be explained by post-establishment evolution, and based on this study it is not possible to exclude one introduction event followed by rapid evolution. We also tested the usability of the microsatellite markers for native North American samples in order to compare the within-population genetic characteristics of introduced and native populations. However, in native populations only four microsatellite markers amplified reliably, indicating sequence variation within primer-binding regions and, thus, genetic differentiation among populations of E. canadensis.  相似文献   

11.
Understanding how gene flow shapes contemporary population structure requires the explicit consideration of landscape composition and configuration. New landscape genetic approaches allow us to link such heterogeneity to gene flow within and among populations. However, the attribution of cause is difficult when landscape features are spatially correlated, or when genetic patterns reflect past events. We use spatial Bayesian clustering and landscape resistance analysis to identify the landscape features that influence gene flow across two regional populations of the eastern massasauga rattlesnake, Sistrurus c. catenatus. Based on spatially explicit simulations, we inferred how habitat distribution modulates gene flow and attempted to disentangle the effects of spatially confounded landscape features. We found genetic clustering across one regional landscape but not the other, and also local differences in the effect of landscape on gene flow. Beyond the effects of isolation‐by‐distance, water bodies appear to underlie genetic differentiation among individuals in one regional population. Significant effects of roads were additionally detected locally, but these effects are possibly confounded with the signal of water bodies. In contrast, we found no signal of isolation‐by‐distance or landscape effects on genetic structure in the other regional population. Our simulations imply that these local differences have arisen as a result of differences in population density or tendencies for juvenile rather than adult dispersal. Importantly, our simulations also demonstrate that the ability to detect the consequences of contemporary anthropogenic landscape features (e.g. roads) on gene flow may be compromised when long‐standing natural features (e.g. water bodies) co‐exist on the landscape.  相似文献   

12.
Genetic substructuring in plant populations may evolve as a consequence of sampling events that occur when the population is founded or regenerated, or if gene dispersal by pollen and seeds is restricted within a population. Silene tatarica is an endangered, perennial plant species growing along periodically disturbed riverbanks in northern Finland. We investigated the mechanism behind the microspatial genetic structure of S. tatarica in four subpopulations using amplified fragment length polymorphism markers. Spatial autocorrelation revealed clear spatial genetic structure in each subpopulation, even though the pattern diminished in older subpopulations. Parentage analysis in an isolated island subpopulation indicated a very low level of selfing and avoidance of breeding between close relatives. The mean estimated pollen dispersal distance (24.10 m; SD = 10.5) was significantly longer and the mean seed dispersal distance (9.07 m; SD = 9.23) was considerably shorter than the mean distance between the individuals (19.20 m; SD = 13.80). The estimated indirect and direct estimates of neighbourhood sizes in this subpopulation were very similar, 32.1 and 37.6, respectively. Our results suggested that the local spatial genetic structure in S. tatarica was attributed merely to the isolation-by-distance process rather than founder effect, and despite free pollen movement across population, restricted seed dispersal maintains local genetic structure in this species.  相似文献   

13.
Tsuda Y  Ide Y 《Molecular ecology》2005,14(13):3929-3941
Betula maximowicziana is a long-lived pioneer tree species in Japanese cool temperate forests that plays an important role in maintenance of the forest ecosystem and has high economic value. Here we assess the wide-range genetic structure of 23 natural populations of B. maximowicziana using 11 simple sequence repeat (SSR) loci. Genetic diversity within populations was relatively low in all populations (mean H(E), 0.361; mean allelic richness, 2.80; mean rare allelic richness, 1.02). The population differentiation was also relatively low (F(ST), 0.062). Genetic distance-based and Bayesian clustering analysis revealed that the populations examined here could be divided into a southern group and a northern group. Analysis of rare allelic richness and Bayesian clustering revealed evidence for both southern and northern refugia during the last glacial period. Furthermore, a comparison of regional genetic diversity revealed significant clines in allelic richness. In spatial genetic structure evaluation, significant isolation by distance (IBD) was detected among the 23 populations, but not within regions. Moreover, significant population bottlenecks were found in all populations under infinite allele model (IAM) assumptions. These unusual, significant bottlenecks might be because of the processes of postglacial colonization and the species' characters and/or life history as a long-lived pioneer tree species. The wide-range, regional genetic structure found in this study provides an important baseline for conservation and forest management, including the identification of evolutionarily significant units (ESUs) and/or management units (MUs) of B. maximowicziana.  相似文献   

14.
We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.  相似文献   

15.
濒危植物鹅掌楸(Liriodendron chinense)目前仅零散分布于我国亚热带及越南北部地区, 残存居群生境片断化较为严重。研究濒危植物片断化居群的遗传多样性及小尺度空间遗传结构(spatial genetic structure)有助于了解物种的生态进化过程以及制定相关的保育策略。本研究采用13对微卫星引物, 对鹅掌楸的1个片断化居群进行了遗传多样性及空间遗传结构的研究, 旨在揭示生境片断化条件下鹅掌楸的遗传多样性及基因流状况。研究结果表明: 鹅掌楸烂木山居群内不同生境斑块及不同年龄阶段植株的遗传多样性水平差异不显著(P>0.05), 居群内存在寨内和山林2个遗传分化明显的亚居群。烂木山居群个体在200 m以内呈现显著的空间遗传结构, 而2个亚居群内的个体仅在20 m的距离范围内存在微弱或不显著的空间遗传结构。鹅掌楸的空间遗传结构强度较低(Sp = 0.0090), 且寨内亚居群的空间遗传结构强度(Sp = 0.0067)要高于山林亚居群(Sp = 0.0053)。鹅掌楸以异交为主, 种子较轻且具翅, 借助风力传播, 在一定程度上降低了空间遗传结构的强度。此外, 居群内个体密度及生境特征也对鹅掌楸的空间遗传结构产生了一定影响。该居群出现显著的杂合子缺失, 近交系数(FIS)为0.099 (P < 0.01), 表明生境片断化的遗传效应正逐渐显现。因此, 对鹅掌楸的就地保护应注意维护与强化生境的连续性, 促进基因交流。迁地保护时, 取样距离应不小于20 m, 以涵盖足够多的遗传变异。  相似文献   

16.
Fire is a major disturbance process in many ecosystems world-wide, resulting in spatially and temporally dynamic landscapes. For populations occupying such environments, fire-induced landscape change is likely to influence population processes, and genetic patterns and structure among populations. The Mallee Emu-wren Stipiturus mallee is an endangered passerine whose global distribution is confined to fire-prone, semi-arid mallee shrublands in south-eastern Australia. This species, with poor capacity for dispersal, has undergone a precipitous reduction in distribution and numbers in recent decades. We used genetic analyses of 11 length-variable, nuclear loci to examine population structure and processes within this species, across its global range. Populations of the Mallee Emu-wren exhibited a low to moderate level of genetic diversity, and evidence of bottlenecks and genetic drift. Bayesian clustering methods revealed weak genetic population structure across the species'' range. The direct effects of large fires, together with associated changes in the spatial and temporal patterns of suitable habitat, have the potential to cause population bottlenecks, serial local extinctions and subsequent recolonisation, all of which may interact to erode and homogenise genetic diversity in this species. Movement among temporally and spatially shifting habitat, appears to maintain long-term genetic connectivity. A plausible explanation for the observed genetic patterns is that, following extensive fires, recolonisation exceeds in-situ survival as the primary driver of population recovery in this species. These findings suggest that dynamic, fire-dominated landscapes can drive genetic homogenisation of populations of species with low-mobility and specialised habitat that otherwise would be expected to show strongly structured populations. Such effects must be considered when formulating management actions to conserve species in fire-prone systems.  相似文献   

17.
Gene diversity and genetic structure of tribal populations of Andhra Pradesh, India, have been analyzed under a hierarchical model consisting of five regions of the state, tribes within the regions, and local subpopulations within the tribes. Average gene diversity has been estimated from gene frequency data for 15 polymorphic loci by using nested gene diversity analysis of GST. The intralocation coefficient of gene diversity was estimated at 96% of the total, whereas the intertribal, within—and between—regional gene diversities were found to be only 1.90, 0.95, and 1.43%, respectively. The estimate of gene diversity was higher for loci with higher degrees of polymorphism such as ABO, MN, ESD, and PTC and lower for loci with low-level polymorphism and extreme gene frequencies such as Hb, Tf, PHI, 6PGD, and Hp. The nature of selective preference or neutrality at the loci seems to be important in this respect. Tribes of the plains exhibit the least gene diversity, apparently because of higher gene flow among them. The contribution of loci with intermediate gene frequencies in intertribal and regional gene diversity was found to be higher than for loci with extreme allelic frequencies. These results suggest that the most significant component of variation is between individuals within locations and that variation between local subpopulations is negligible in the genetic structure of a population. Forces like selection, gene flow and drift also influence the diversity depending upon the nature of the locus. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Understanding the population structure of species that disperse primarily by human transport is essential to predicting and controlling human-mediated spread of invasive species. The German cockroach (Blattella germanica) is a widespread urban invader that can actively disperse within buildings but is spread solely by human-mediated dispersal over longer distances; however, its population structure is poorly understood. Using microsatellite markers we investigated population structure at several spatial scales, from populations within single apartment buildings to populations from several cities across the U.S. and Eurasia. Both traditional measures of genetic differentiation and Bayesian clustering methods revealed increasing levels of genetic differentiation at greater geographic scales. Our results are consistent with active dispersal of cockroaches largely limited to movement within a building. Their low levels of genetic differentiation, yet limited active spread between buildings, suggests a greater likelihood of human-mediated dispersal at more local scales (within a city) than at larger spatial scales (within and between continents). About half the populations from across the U.S. clustered together with other U.S. populations, and isolation by distance was evident across the U.S. Levels of genetic differentiation among Eurasian cities were greater than those in the U.S. and greater than those between the U.S. and Eurasia, but no clear pattern of structure at the continent level was detected. MtDNA sequence variation was low and failed to reveal any geographical structure. The weak genetic structure detected here is likely due to a combination of historical admixture among populations and periodic population bottlenecks and founder events, but more extensive studies are needed to determine whether signatures of global movement may be present in this species.  相似文献   

19.
To test the hypothesis that both physical and ecological barriers to gene flow drive population differentiation in tropical seabirds, we surveyed mitochondrial control region variation in 242 brown boobies (Sula leucogaster), which prefer inshore habitat, and 271 red-footed boobies (S. sula), which prefer pelagic habitat. To determine the relative influence of isolation and gene flow on population structure, we used both traditional methods and a recently developed statistical method based on coalescent theory and Bayesian inference (Isolation with Migration). We found that global population genetic structure was high in both species, and that female-mediated gene flow among ocean basins apparently has been restricted by major physical barriers including the Isthmus of Panama, and the periodic emergence of the Sunda and Sahul Shelves in Southeast Asia. In contrast, the evolutionary history of populations within ocean basins differed markedly between the two species. In brown boobies, we found high levels of population genetic differentiation and limited gene flow among colonies, even at spatial scales as small as 500 km. Although red-footed booby colonies were also genetically differentiated within ocean basins, coalescent analyses indicated that populations have either diverged in the face of ongoing gene flow, or diverged without gene flow but recently made secondary contact. Regardless, gene flow among red-footed booby populations was higher than among brown booby populations. We suggest that these contrasting patterns of gene flow within ocean basins may be explained by the different habitat preferences of brown and red-footed boobies.  相似文献   

20.
Many species with currently continuously distributed populations have histories of geographic range shifts and successive shifts between decline or fragmentation, growth and spatial expansion. The moose (Alces alces) colonised Scandinavia after the last ice age. Historic records document a high abundance and a wide distribution across Norway in the middle ages, but major decline and fragmentation in the eighteenth and nineteenth centuries. After growth and expansion during the twentieth century, the Norwegian population is currently abundant and continuously distributed. We examined the distribution of genetic variation, differentiation and admixture in Norwegian moose, using 15 microsatellites. We assessed whether admixture has homogenised the population or if there are any genetic structures or discontinuities that can be related to recent or ancient shifts in demography or distribution. The Bayesian clustering algorithm STRUCTURE without any spatial information showed that there is currently a genetic dichotomy dividing the population into one southern and one northern subpopulation. Including spatial information, the Bayesian clustering algorithm TESS, which considers gradients of genetic variation and spatial autocorrelation, suggests that the population is divided into three subpopulations along a latitudinal axis, the southern one identical to the one identified with STRUCTURE. Present convergence zones of high admixture separate the identified subpopulations, which are delimited by genetic discontinuities corresponding to geographic barriers against dispersal, e.g. wide fiords and mountain ranges. The distribution of the subpopulations is supported by spatial autocorrelation analysis. However, some loci are not in Hardy–Weinberg equilibrium and the STRUCTURE analysis suggests that a lower hierarchical structure may exist within the southernmost subpopulation. No bottlenecks or founder events are indicated by the levels of genetic variation, rather a high degree of private alleles in the northern subpopulations indicates introgression. Coalescent-based Approximate Bayesian Computation estimates unambiguously suggest that the genetic structure is a result of an ancient divergence event and a more recent admixture event a few centuries ago. This indicates that the central Scandinavian subpopulation constitutes a relatively recent convergence zone of secondary contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号