首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The instability of the purple pigments (anthocyanins) in purple basil varieties (Ocimum basilicum L.) limits their use as ornamental plants and as a potential anthocyanin source. Several self-pollinated generations of all purple plants were unsuccessful in stabilizing anthocyanin expression. In this study we investigated the inheritance and stability patterns of leaf traits using the Purple Ruffles variety. The results from the complete diallele crosses indicated anthocyanin expression in vegetative tissue is controlled by two dominant genes and ruffled leaf texture is controlled by a single recessive gene. Genes controlling leaf margin and leaf base structures were tightly linked to leaf texture. Essential oil production and oil constituents in leaves did not change as a result of the reversion in color. Color stability in cuttings was affected by the environment and the location where cuttings were taken. An accumulation of secondary metabolites (apigenin, genistein, and kaempferol) in green-reverted sectors on purple leaves was detected using reverse-phase high-performance liquid chromatography (HPLC) analysis; this suggested a potential block in the anthocyanin pathway. We hypothesize the reversion mutation is occurring in an anthocyanin regulatory gene.  相似文献   

2.
Sweet basil (Ocimum basilicum L., Lamiaceae), an important medicinal plant and culinary herb due to its delicate aroma and fragrance, shows great variation in both morphology and essential oil components. Genetic variation among basil accessions in Turkey has not been extensively examined with molecular markers. Genetic diversity was determined using random amplified polymorphic DNA (RAPD) markers of 14 genotypes of basil. A total of 375 bands were obtained from the RAPD analysis, and 273 of them (70.3 %) were polymorphic. The RAPD analysis allowed the grouping of samples into two main clusters. Genetic similarity values among the basil genotypes ranged between 0.46 and 0.87. Considerable genetic diversity was determined among basil genotypes. Essential oils were obtained by hydro-distillation and were characterized by gas chromatography. A total of 17 chemical components were identified. The evaluated genotypes of O. basilicum can be classified into seven chemotypes: (1) Linalool (7, 12, 16, 22, 25A and 33), (2) Methyl chavicol (6, 10A), (3) Citral/methyl chavicol (10L, 17), (4) Methyl eugenol (11), (5) Methyl cinnamate/linalool (23), (6) Linalool/methyl eugenol (25K), and (7) Methyl chavicol/linalool (Let). The chemical variability obtained from the essential oil composition of the genotypes in the study was remarkable. The chemical characterization of genotypes 10L and 17 was rich in citral (42.17 and 44.80 %) and methyl chavicol (30.56 and 32.03 %). Citral/methyl chavicol can be assessed as a new chemotype of basil cultivated in Turkey. The basil genotypes were grouped into two major clusters for both the RAPD analysis and chemical characterization with very few exceptions (genotype n. 6). A correlation analysis of the genetic distance matrix and the Euclidian distance matrix showed relatively low values (r = ?0.40). The results demonstrated a certain degree of correspondence between chemical and molecular data.  相似文献   

3.
The objectives of this study were to determine best conditions for the extraction of phenolic compounds from fresh, frozen and lyophilized basil leaves. The acetone mixtures with the highest addition of acetic acid extracted most of the phenolic compounds when fresh and freeze-dried material have been used. The three times procedure was more effective than once shaking procedure in most of the extracts obtained from fresh basil leaves – unlike the extracts derived from frozen material. Surprisingly, there were not any significant differences in the content of phenolics between the two used procedures in the case of lyophilized basil leaves used for extraction. Additionally, the positive correlation between the phenolic compounds content and antioxidant activity of the studied extracts has been noted. It is concluded that the acetone mixtures were more effective than the methanol ones for polyphenol extraction. The number of extraction steps in most of the cases was also a statistically significant factor affecting the yield of phenolic extraction as well as antioxidant potential of basil leaf extracts.  相似文献   

4.
Abstract

Despite the fact that cadmium (Cd) is a non-essential element for plants, it can influence nutrients and affect human health. Potassium (K) can influence the transportation of heavy metals (HMs) in soil-plant systems. Here, a greenhouse experiment was conducted to evaluate the effect of Cd and K fertilizers on the different partitioning forms of HMs, their concentrations, uptake in the shoots and roots of Ocimum basilicum. Treatments comprised 2 levels of Cd (0 and 40?mg kg?1) and three levels of K (0, 100, and 200?mg kg?1) from three sources, i.e. KCl, K2SO4, and K-nano-chelate. 40?mg Cd kg?1 increased the shoot (above ground parts) Cd concentration. Addition of K as KCl, K2SO4, and K-nano-chelate increased the presence of Cd in shoots by 86, 82 and 76%, respectively, compared to the control. Using the nano-chelate of K can increase the accumulation of Cd in plants grown on contaminated soils to lesser content than that of the other forms of K. Application of 40?mg Cd kg?1 reduced the concentration of Zn, Cu, and Mn in the shoot, but increased shoot Fe concentration. Transfer factor (TF), which is the ratio of metal concentration in shoot to its concentration in root, of the studied HMs, was significantly affected by Cd and K treatments. Therefore, the proper form and dose of chemical fertilizers should be applied in Cd-contaminated soils.  相似文献   

5.
The genus Festuca comprises approximately 450 species and is widely distributed around the world. The Iberian Penninsula, with more than 100 taxa colonizing very diverse habitats, is one of its main centers of diversification. This study was conducted to assess molecular genetic variation and genetic relatedness among 91 populations of 31 taxa of Iberian fescues, based on several molecular markers (random amplified polymorphic DNA, amplified fragment length polymorphisms, and trnL sequences). The analyses showed the paraphyletic origin of the broad-leaved (subgenus Festuca, sections Scariosae and Subbulbosae, and subgenus Schedonorus) and the fine-leaved fescues (subgenus Festuca, sections Aulaxyper, Eskia, and Festuca). Schedonorus showed a weak relationship with Lolium rigidum and appeared to be the most recent of the broad-leaved clade. Section Eskia was the most ancient and Festuca the most recent of the fine-leaved clade. Festuca and Aulaxyper were the most related sections, in concordance with their taxonomic affinities. All taxa grouped into their sections, except F. ampla and F. capillifolia (section Festuca), which appeared to be more closely related to Aulaxyper and to a new independent section, respectively. Most populations clustered at the species level, but some subspecies and varieties mixed their populations. This study demonstrated the value in combining different molecular markers to uncover hidden genetic relationships between populations of Festuca.  相似文献   

6.
P Boccacci  A Akkak  R Botta 《Génome》2006,49(6):598-611
In this work, 78 hazelnut (Corylus avellana L.) cultivars from various germplasm repositories were studied at 16 simple sequence repeat (SSR) loci in order to identify the genotypes and investigate their genetic relations. Polymorphism at SSR loci was evaluated on the basis of number of alleles (mean: 9.4), expected heterozygosity (mean: 0.78), and power of discrimination (mean: 0.91). Several synonyms reported in the literature were confirmed, and new cases of synonymy were identified. The parentage of North American cultivars 'Butler', 'Ennis', and 'Royal', the French selection 'Fercoril-Corabel', and 'Impératrice Eugenie' was investigated on the basis of the alleles present at 16 loci and analysis at 8 additional loci. A dendrogram generated from cluster analysis using the unweighted pair group method with arithmetic mean grouped cultivars according to their pedigrees or geographical origins. There was an evident differentiation of the northern European cultivars from the southern European ones and from the Turkish cultivars. The latter clustered close to but separate from the Italian and Spanish clusters. It is very likely that exchanges of cultivars occurred between the central and western Mediterranean basin as a result of human migration and trade. A database containing the SSR profiles of the most important hazelnut cultivars will be useful for identification of cultivars and synonyms, legal protection, and parentage analysis.  相似文献   

7.
Karyotypes in 16 representative taxa of the Ophrys genus are compared, based on Feulgen-stained somatic metaphase chromosomes. The karyotypes of O. omegaifera subsp. israelitica, O. ulupinara, O. lycia, O. argolica subsp. lucis, O. argolica subsp. lesbis, O. climacis and O. reinholdii subsp. reinholdii are described for the first time. Karyological analyses indicate relationships among the species with respect to their asymmetry indices. All Ophrys taxa studied were diploid with 2n = 2x = 36 chromosomes. One B chromosome has been detected among the chromosomes of O. argolica subsp. lucis. All karyotypes are symmetrical, consisting of metacentric and submetacentric chromosomes. The longest chromosomes of all the investigated specimens contain a secondary constriction. It is determined that there is a correlation between the total number of chromosomes having secondary constrictions and the evolutionary development order of the taxa. Based on nuclear DNA content, analysis was carried out by flow cytometer using propodium iodide as fluorochrome, 2C nuclear DNA content of 16 Ophrys species varying between 20.80 pg (O. argolica subsp. lucis) and 23.11 pg (O. omegaifera subsp. israelitica). Karyotype asymmetry relationships are discussed according to the bidimensional scatter plots of A1–A2, CVCL–CVCI, CVCL–MCA and CVCI–MCA.  相似文献   

8.
Random amplified polymorphic DNA, simple sequence repeat, and inter-simple sequence repeat markers were used to estimate the genetic relations among 65 pea varieties (Pisum sativum L.) and 21 accessions from wild Pisum subspecies (subsp.) abyssinicum, asiaticum, elatius, transcaucasicum, and var. arvense. Fifty-one of these varieties are currently available for growers in western Canada. Nei and Li's genetic similarity (GS) estimates calculated using the marker data showed that pair-wise comparison values among the 65 varieties ranged from 0.34 to 1.00. GS analysis on varieties grouped according to their originating breeding programs demonstrated that different levels of diversity were maintained at different breeding programs. Unweighted pair-group method arithmetic average cluster analysis and principal coordinate analysis on the marker-based GS grouped the cultivated varieties separately from the wild accessions. The majority of the food and feed varieties were grouped separately from the silage and specialty varieties, regardless of the originating breeding programs. The analysis also revealed some genetically distinct varieties such as Croma, CDC Handel, 1096M-8, and CDC Acer. The relations among the cultivated varieties, as revealed by molecular-marker-based GS, were not significantly correlated with those based on the agronomic characters, suggesting that the 2 systems give different estimates of genetic relations among the varieties. However, on a smaller scale, a consistent subcluster of genotypes was identified on the basis of agronomic characters and their marker-based GS. Furthermore, a number of variety-specific markers were identified in the current study, which could be useful for variety identification. Breeding strategies to maintain or enhance the genetic diversity of future varieties are proposed.  相似文献   

9.
Morphological, chemical and genetic differences of 12 tree basil (Ocimum gratissimum L.) accessions were studied to determine whether volatile oils and flavonoids can be used as taxonomical markers and to examine the relationship between RAPDs to these chemical markers. Eugenol, thymol, and geraniol were the major volatile oil constituents found in Ocimum gratissimum. Xantomicrol and cirsimaritin were the major external flavones. The accessions morphologically described as O. gratissimum var. gratissimum contained eugenol as the major volatile oil constituent, and cirsimaritin as the major flavone. Ocimum gratissimum var. macrophyllum accessions contained thymol as the major volatile oil constituent, and xantomicrol as the major flavone. A distinct essential oil and flavone chemotype (producing geraniol and a mixture of the flavones cirsimaritin, isothymusin, xanthomicrol, and luteolin) was found in an accession genetically more distant from the other two groups when analyzed by molecular markers. The accessions could be divided based on volatile oil constituents into six groups: (1) thymol: alpha-copaene (ot24, ot25, ot26, and ot28); (2) eugenol:spathulenol (ot17, ot63, and ot52); (3) thymol:p-cymene (ot65); (4) eugenol:gamma-muurolene (ot27 and ot29); (5) eugenol:thymol: spathulenol (ot85); and (6) geraniol (ot84). Cluster analysis of RAPD markers showed that there are three groups that are distinct genetically and highly correlated (r=0.814) to volatile oil constituents.  相似文献   

10.

The aim of the present study was to evaluate melatonin effects on the callus induction and phenolic compound production of Ocimum basilicum L. (sweet basil). Calluses, derived from leaf explants, were grown on Murashige and Skoog (MS) medium supplemented with 0, 100, or 200 μM melatonin, and subsequently extracted for determination of their phenolic contents. Melatonin decreased the callus induction in both concentrations. Based on the phytochemical analysis, the highest total phenolic acid contents (784.6 μg g−1 and 335.2 μg g−1, respectively) were recorded in calluses grown in 100 and 200 μM melatonin-supplemented medium, compared with the calluses induced with MS alone (192.0 μg g−1). Among the five phenolic acids confirmed in the callus samples, rosmarinic acid was the major constituent. The amount of rosmarinic acid increased significantly in callus grown on 100 μM melatonin medium by nearly 5-fold (754.2 μg g−1), compared with the control group callus. Major volatiles in basil calluses were represented by 3-methylbutanal, benzaldehyde, 1,8-cineole, 2-nonenal, eugenol, and methyl eugenol, and these were in the ranges of 4 to 14%, 24 to 50%, 2 to 3%, 0 to 0.55%, and 2 to 17% (in relative percentages), respectively. The qualitative and quantitative analyses of these substances found in calluses formed on melatonin-supplemented or melatonin-free medium were evaluated separately.

  相似文献   

11.
G. Agar  J. Halasz 《Plant biosystems》2013,147(2):347-352
Abstract

Rubus is a large genus of flowering plants in the rose family, Rosaceae, subfamily Rosoideae. The blackberries, as well as various other Rubus species with mounding or rambling growth habits, are often called brambles. Little information is available on the genetic diversity of wild-grown blackberries. The objective of this study was to determine the genetic relationships among nine promising (high-yield capacity, free of pest and diseases, better fruit traits) wild blackberry (Rubus caucasicus L.) selections and the well-known cultivar, “Chester” by using amplified fragment length polymorphism (AFLP) markers. Genotypes were evaluated with three selective primer-enzyme combinations, producing a total of 223 AFLP fragments with 53% polymorphism ratio. Clustering of genotypes using unweighted pair-group method of arithmetic average cluster analysis clearly separated groups of wild blackberry genotypes while the variety “Chester” was clustered independently. Wild selections represented a distinct germplasm source on the basis of the estimated genetic distance among them. Genetic diversity data from this study will be helpful in using and exploiting the wild genetic material for breeding purposes as well as for further research.  相似文献   

12.
The effects of two sodium salts on growth, fatty acids, and essential oil compositions were investigated in a medicinal and aromatic plant, Ocimum basilicum cultivated in hydroponic medium. Plants were subjected to an equimolar concentration of Na2SO4 (25 mM) and NaCl (50 mM) for 15 days. Our results showed that leaf growth rate was more depressed by 25 mM Na2SO4 than by 50 mM NaCl. The total fatty acid contents did not show any change in plants. α-Linolenic, palmitic, and linoleic acids were the major fatty acids. The identification of basil leaf fatty acids has not been previously studied and this work revealed the predominance of polyunsaturated fatty acids. Under both salts, leaf fatty acid composition remained unchanged. Regarding the essential oil yield, it decreased significantly by 28 % under 25 mM Na2SO4 and showed an increase by 27 % under 50 mM NaCl. The major volatile compound in leaves was linalool with 34.3 % of total essential oil constituents, followed by eugenol (19.8 %), 1.8-cineole (14.4 %) and methyl eugenol (5.2 %). Further, levels of eugenol and methyl eugenol were most modulated by salt, and the negative correlation between these two compounds reflects the stimulation of O-methyltransferase activity under both salts.  相似文献   

13.
Nodal explants with lateral buds and leaf-derived suspension cultures of sweet basil, Ocimum basilicum L., were cultured in 5 l airlift bioreactors for three weeks, thereby increasing the fresh wt of suspension cultures 2.5-fold. Rosmarinic acid accumulated at 29 micromicrog g(-1) dry wt in the suspension culture but, for micropropagated plants, it reached 178 microg g(-1) dry wt.  相似文献   

14.
Molecular Biology Reports - Germplasm identification is an essential connection linking the conservation and exploitation of crop genetic resources in several plant breeding programs. This study...  相似文献   

15.
This study investigates the genetic structure of the present‐day inhabitants of Beringia in order to answer questions concerning their origins and evolution. According to recent studies, the ancestors of Native Americans paused for a time in Beringia, during which they differentiated genetically from other Asians before peopling the New World. Furthermore, the Koryaks of Kamchatka share a “ubiquitous” allele (D9S1120) with Native Americans, indicating they may have descended from the same ancestral Beringian population that gave rise to the New World founders. Our results show that a genetic barrier exists between Kamchatkans (Koryaks and Even) and Bering Island inhabitants (Aleuts, mixed Aleuts, and Russians), based on Analysis of Molecular Variance (AMOVA) and structure analysis of nine autosomal short tandem repeats (STRs). This is supported by mitochondrial DNA evidence, but not by analysis of Y chromosome markers, as recent non‐native male admixture into the region appears to have partially obscured ancient population relationships. Our study indicates that while Aleuts are descended from the original New World founders, the Koryaks are unlikely to represent a Beringian remnant of the ancestral population that gave rise to Native Americans. They are instead, like the Even, more recent arrivals to Kamchatka from interior Siberia, and the “ubiquitous” allele in Koryaks may result from recent gene flow from Chukotka. Genbank accession numbers for mtDNA sequences: GQ922935‐GQ922973. Am J Phys Anthropol 143:62–74, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
 Weedy rice (Oryza sativa L.) is an important resource for breeding and for studying the evolution of rice. The present study was carried out to identify the genetic basis of the weedy rices distributed in various countries of the world. One hundred and fifty two strains of weedy rice collected from Bangladesh, Brazil, Bhutan, China, India, Japan, Korea, Nepal, Thailand and the USA were tested for variations in six morpho-physiological characteristics and in 14 isozyme loci. Twenty six weedy strains selected from the above materials were assayed for the Est-10 locus, six RAPD loci of the nuclear genome, and one chloroplast locus. From the results of multivariate analysis based on the morpho-physiological characteristics and the isozymes, weedy rice strains were classified into indica and japonica types, and each type was further divided into forms resembling cultivated and wild rice. Thus, four groups designated as I, II, III and IV were identified. Weedy strains of group I (indica-type similar to cultivars) were distributed mostly in temperate countries, group II (indica-type similar to wild rice) in tropical countries, group III (japonica-type similar to cultivars) in Bhutan and Korea, group IV ( japonica-type similar to wild rice) in China and Korea. In group I, classified as indica, several strains showed japonica-specific RAPD markers, while some others had japonica cytoplasm with indica-specific RAPD markers in a heterozygous state at several loci. One weedy strain belonging to group II showed a wild rice-specific allele at the Est-10 locus. However, in groups III and IV, no variation was ound either for the markers on Est-10 or for the RAPD loci tested. Judging from this study, weedy rice of group I might have originated at least partly from gene flow between indica and japonica, whereas that of group II most probably originated from gene flow between wild and cultivated indica rice. Weedy rice of group III is thought to have originated from old rice cultivars which had reverted to a weedy form, and that of group IV from gene flow between japonica cultivars and wild rice having japonica backgrounds. Received: 2 May 1996 / Accepted: 30 August 1996  相似文献   

17.
Molecular Breeding - The concentration degree of floret flowering date (CDFFD) is an important selection index for earliness breeding of peanut, while the genetic basis of CDFFD-related traits in...  相似文献   

18.
Hye Ryun Na 《Aquatic Botany》2010,92(3):207-213
The genetic relationship and diversity among four Typha taxa in East Asia were evaluated using amplified fragment length polymorphism (AFLP) markers. Three AFLP selective primer combinations generated a total of 707 amplification products, of which 704 (99.6%) were polymorphic. The unweighted pair-group method with arithmetic mean (UPGMA) dendrogram and principal component analysis (PCA) plot confirmed the taxonomic status of four separate species. East Asian Typha taxa separated into two groups: the first with Typha angustifolia and the second with T. orientalis, T. laxmanni, and T. latifolia with a high bootstrap value for UPGMA (93%) and a low first score for PCA (25%). The two clusters corresponded with two sections based on the bracteoles in the female flower: section Bracteolatae and section Ebracteolatae. T. angustifolia showed the highest genetic diversity among the four Typha taxa (percentage of polymorphic loci [PPL] = 71%, Ho = 0.157), whereas T. latifolia had the lowest genetic diversity (PPL = 40%, Ho = 0.117). Genetic diversity was related to the presence of the gap between male and female inflorescences. A positive correlation between genetic distance and geographic distance was clearly found in the two species with continuous inflorescences (T. latifolia and T. orientalis). This positive correlation was not observed in the other species with discontinuous spikes (T. angustifolia and T. laxmanni).  相似文献   

19.
Finger millet (Eleusine coracana (L.) Gaertn), holds immense agricultural and economic importance for its high nutraceuticals quality. Finger millets seeds are rich source of calcium and its proteins are good source of essential amino acids. In the present study, we developed 36 EST-SSR primers for the opaque2 modifiers and 20 anchored-SSR primers for calcium transporters and calmodulin for analysis of the genetic diversity of 103 finger millet genotypes for grain protein and calcium contents. Out of the 36 opaque2 modifiers primers, 15 were found polymorphic and were used for the diversity analysis. The highest PIC value was observed with the primer FMO2E33 (0.26), while the lowest was observed FMO2E27 (0.023) with an average value of 0.17. The gene diversity was highest for the primer FMO2E33 (0.33), however it was lowest for FMO2E27 (0.024) at average value of 0.29. The percentage polymorphism shown by opaque2 modifiers primers was 68.23 %. The diversity analysis by calcium transporters and calmodulin based anchored SSR loci revealed that the highest PIC was observed with the primer FMCA8 (0.30) and the lowest was observed for FMCA5 (0.023) with an average value of 0.18. The highest gene diversity was observed for primer FMCA8 (0.37), while lowest for FMCA5 (0.024) at an average of 0.21. The opaque2 modifiers specific EST-SSRs could able to differentiate the finger millet genotypes into high, medium and low protein containing genotypes. However, calcium dependent candidate gene based EST-SSRs could broadly differentiate the genotypes based on the calcium content with a few exceptions. A significant negative correlation between calcium and protein content was observed. The present study resulted in identification of highly polymorphic primers (FMO2E30, FMO2E33, FMO2-18 and FMO2-14) based on the parameters such as percentage of polymorphism, PIC values, gene diversity and number of alleles.  相似文献   

20.
To estimate genetic relationships among 46 local grape cultivars, RAPD analysis was performed with 25 decamer primers selected from a total of 60 primers. Genetic relationships among these cultivars were determined by calculating similarity indexes, from which a dendogram was derived. There was high genetic variation among the cultivars, with values of genetic diversity ranging from 0.553 to 0.952 using the Jaccard coefficient. UPGMA analysis of a distance matrix produced a dendogram with six clusters. The relatively high genetic similarity ratios observed for the cultivars was also reflected in the dendogram. In general, no relationship was encountered between the genetic similarity ratios of the cultivars and the results of previous ampelographic analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号