首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lu M  Zhang Y  Liu YM 《生理科学进展》2007,38(2):159-162
c-Ski/SnoN是由原癌基因c-ski/sno编码的核蛋白,属于Ski家族成员。近年来有研究表明c-Ski/SnoN是TGF-β1/Smad信号通路的重要负性调控因子,通过与Smad蛋白相互作用来抑制TGF-β1靶基因的活化。本文就c-Ski/SnoN对TGF-β1/Smad信号通路的调节作用,以及在肾间质纤维化的发生发展中的作用及机制作一综述。  相似文献   

2.
3.
Members of transforming growth factor-β (TGF-β) superfamily play important roles in diverse biological functions including early development. These extracellular factors exert their effects by interacting with membrane receptors followed by signal transduction by a group of Smad proteins. Smad7 is an inhibitory Smad protein that specifically antagonizes TGF-β and activin signaling. To characterize the developmental role of Smad7, a transgenic mouse model was generated using a 4.3 kb mouse Smad7 promoter driving β-galactosidase expression. In these mice, the Smad7 promoter defined a restrictive expression pattern of β-galactosidase in a tightly regulated temporal and spatial manner. The β-galactosidase gene was transiently expressed in the cardiovascular structures including heart cushion tissues and the endothelium of major arteries at E11.5 to E12.5. Through E12.5 to E17.5, β-galactosidase expression was prominently detected in the epithelium of developing cochlea and nasolacrimal duct. In addition, it was temporally expressed in trigeminal ganglion, the skeletal muscles surrounding major joints, primordium of the jaws, as well as genital tubercle. These studies indicated that the 4.3 kb Smad7 promoter contains sufficient regulatory elements to define controlled gene expression during mouse development.  相似文献   

4.
5.
Smad7 is an antagonist of TGF-β signaling pathway and the mechanism of its inhibitory effect is of great interest. We recently found that Smad7 could function in the nucleus by binding to the DNA elements containing the minimal Smad binding element CAGA box. In this work, we further applied single-molecule force spectroscopy to study the DNA-binding property of Smad7. Smad7 showed similar binding strength to the oligonucleotides corresponding to the CAGA-containing activin responsive element (ARE) and the PAI-1 promoter, as that of Smad4. However, Smad7 also exhibited a binding activity to the mutant ARE with the CAGA sequence substituted, indicating its DNA-binding specificity is different from other Smads. Moreover, we demonstrated that the MH2 domain of Smad7 had a higher binding affinity to the DNA elements than the full-length Smad7, while the N-terminal domain exhibited an inhibitory effect.  相似文献   

6.
Smad6 and Smad7 are inhibitory Smads (I-Smads) with differential inhibitory effects on the regulation of the cellular signalings induced by TGF-beta superfamily. Here, we show that phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) down-regulates Smad6 mRNA expression and up-regulates Smad7 mRNA expression in IMR-90, a human lung fibroblast cell line. These regulations of I-Smads by TPA were suppressed by one PKC inhibitor (G?6983), but not by another (G?6976). TPA treatment had little effect on the phosphorylation of novel PKCs (PKCdelta and PKCepsilon), but specifically induced PKCmu phosphorylation, and this effect was inhibited by G?6983, but not by G?6976. Additionally, G?6983 but not G?6976 inhibited ERK- and JNK-phosphorylation as well as Smad7 promoter activity induced by TPA. MEK inhibitor U0126 inhibited the down-regulation of Smad6 mRNA expression but not the up-regulation of Smad7 mRNA expression. In contrast, JNK inhibitor SP600125 had no such effects. Luciferase reporter analysis revealed that TPA did not induce NF-kappaB activation. In addition, TPA up-regulated Smad7 expression in the presence of NF-kappaB inhibitor TLCK. These findings indicate that TPA down-regulates Smad6 expression presumably via PKCmu-ERK-dependent pathway and up-regulates Smad7 expression via PKCmu-dependent mechanism(s) which need no MAPK and NF-kappaB activation.  相似文献   

7.
目的:探讨SD大鼠肝纤维化后肝组织及血清中转化生长因子-β1(Transforming Growth Factor-β1,TGF-β1)及Smad3的表达和变化,以及三七皂苷R1对肝纤维化的保护作用。方法:72只健康雄性SD大鼠分为对照组、二甲基亚硝胺(NDMA)组和三七皂苷R1组,再按不同时间点分为1、2、4周,3个亚组,每个亚组8只动物。NDMA组采用NDMA 2 m L/kg腹腔注射,三七皂苷R1组同时静脉注射三七皂苷R1,剂量为100 mg/kg体重,对照组注射等量的生理盐水。在各组的不同时间点采用RT-PCR及ELISA技术检测肝组织及血清中TGF-β1、Smad3的表达及变化。结果:1、TGF-β1、Smad3 m RNA及蛋白在各组中均有表达。2、对照组各时间点比较均无统计学意义(P>0.05)。NDMA组中,随着损伤时间的延长,TGF-β1、Smad3 m RNA及蛋白的表达逐渐上调,且各时间点与对照组比较有统计学意义(P<0.05)。而三七皂苷R1组TGF-β1、Smad3 m RNA及蛋白在各时间点均较NDMA组表达下调,有统计学意义(P<0.05)。结论:1、TGF-β1/Smad3信号参与了肝纤维化的发生和发展过程,且随损伤的逐渐加重,表达越高。2、三七皂苷R1可降低肝组织中TGF-β1/Smad3信号的表达,减轻肝细胞的纤维化,发挥保护肝组织损伤的作用。  相似文献   

8.
9.
10.
11.
P311 is an 8-kDa protein originally found in neurons and muscle. We recently showed that expression of P311 in NIH 3T3 cells induced a myofibroblast phenotype with low TGF-beta1 expression. Here we demonstrate that P311 downregulates not only TGF-beta1, but also TGF-beta2, expression, with no effect on TGF-beta3. In addition, P311 interacts with TGF-beta2 in a yeast two-hybrid system through a sequence encompassing part of the TGF-beta latent associated protein (LAP) and part of mature TGF-beta2. Coimmunoprecipitations demonstrated interaction between P311 and TGF-beta1 and 2, but not TGF-beta3. Additional coimmunoprecipitations after introducing LAP or mature TGF-beta1 into cells demonstrated P311 binding to LAP, but not to mature TGF-beta. P311 has a conserved PEST domain, which generally serves as a rapid degradation signal. Deletion of the PEST domain reversed the effect of P311 on TGF-beta isoforms. Finally, Smad3 activity was decreased in P311-expressing cells, but was corrected by exogenous TGF-beta1 treatment, which also elevated TGF-beta1 mRNA level. This suggested that P311 downregulates TGF-beta1 and 2 in part by blocking TGF-beta autoinduction.  相似文献   

12.
13.
Cartilage intermediate layer protein (CILP) is an extracellular matrix protein abundant in cartilaginous tissues. CILP is implicated in common musculoskeletal disorders, including osteoarthritis and lumbar disc disease. Regulation of the CILP gene is largely unknown, however. We have found that CILP mRNA expression is induced by TGF-β1 and dependent upon signaling via TGF-β receptors. TGF-β1 induction of CILP is mediated by Smad3, which acts directly through cis-elements in the CILP promoter region. Pathways other than Smad3 also are involved in TGF-β1 induction of CILP. These observations, together with the finding that CILP protein binds and inhibits TGF-β1, suggest that CILP and TGF-β1 may form a functional feedback loop that controls chondrocyte metabolism.  相似文献   

14.
15.
Yang Q  Han B  Xie RJ  Cheng ML 《生理学报》2007,59(2):190-196
本文采用免疫组化、Western blot及荧光实时定量PCR方法,动态观察链脲佐菌素(streptozocin,STZ)诱导的大鼠糖尿病肾病(diabetic nephropathy,DN)发生早期肾脏骨形态发生蛋白-7(bone morphogenetic protein-7,BMP-7)、Smad6、Smad7蛋白及mRNA表达。结果显示,在正常及DN大鼠肾小管均有BMP-7、Smad6、Smad7蛋白表达,以胞浆表达为主。DN大鼠BMP-7、Smad6蛋白表达较正常大鼠明显增多(P〈0.05),且BMP-7的mRNA表达呈先增加后降低的状态;而Smad7蛋白和mRNA的表达均呈先增加后降低的状态。转化生长因子-β1(transforming growth factor-β1,TGF-β1)及Ⅰ型胶原(collagen typeⅠ,COL-Ⅰ)mRNA在DN大鼠肾脏表达较正常大鼠明显增多(P〈0.05),且随着糖尿病进展有逐渐增加的趋势。结果提示,作为TGF-β超家族信号分子的一员,BMP-7信号及抑制性Smad通路在DN肾纤维化发生早期可能起重要的反馈性抑制作用。  相似文献   

16.
Downregulation of Ski and SnoN co-repressors by anisomycin   总被引:1,自引:0,他引:1  
Proteasome pathway regulates TGF-beta signaling; degradation of activated Smad2/3 and receptors turns TGF-beta signal off, while degradation of negative modulators such as Ski and SnoN maintains the signal. We have found that anisomycin is able to downregulate Ski and SnoN via proteasome as TGF-beta does, but through a mechanism independent of Smad activation. The mechanism used by anisomycin to downregulate Ski and SnoN is also independent of MAPK activation and protein synthesis inhibition. TGF-beta signal was the only pathway described causing Ski and SnoN degradation, thus this new effect of anisomycin on endogenous Ski and SnoN proteins suggests alternative processes to downregulate these negative modulators of TGF-beta signaling.  相似文献   

17.
18.
Transforming growth factor-β (TGF-β), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-γ compared to heterozygous control MEFs. Treatment with the PPAR-γ ligand 15d-PGJ2 failed to down-regulate collagen gene expression in PPAR-γ null MEFs, whereas reconstitution of these cells with ectopic PPAR-γ resulted in their normalization. Compared to control MEFs, PPAR-γ null MEFs displayed elevated levels of the Type I TGF-β receptor (TβRI), and secreted more TGF-β1 into the media. Furthermore, PPAR-γ null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-β, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-γ null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-β responses. Taken together, these results indicate that loss of PPAR-γ in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-β stimulation.  相似文献   

19.
20.
Oral mucositis, a severe oral ulceration, is a common toxic effect of radio- or chemoradio-therapy and a limiting factor to using the maximum dose of radiation for effective cancer treatment. Among cancer patients, at least 40% and up to 70%, of individuals treated with standard chemotherapy regimens or upper-body radiation, develop oral mucositis. To date, there is no FDA approved drug to treat oral mucositis in cancer patients. The key challenges for oral mucositis treatment are to repair and protect ulcerated oral mucosa without promoting cancer cell growth. Oral mucositis is the result of complex, multifaceted pathobiology, involving a series of signaling pathways and a chain of interactions between the epithelium and submucosa. Among those pathways and interactions, the activation of nuclear factor-kappa B (NF-κB) is critical to the inflammation process of oral mucositis. We recently found that activation of TGFβ(transforming growth factor β) signaling is associated with the development of oral mucositis. Smad7, the negative regulator of TGFβ signaling, inhibits both NF-κB and TGFβ activation and thus plays a pivotal role in the prevention and treatment of oral mucositis by attenuating growth inhibition, apoptosis, and inflammation while promoting epithelial migration. The major objective of this review is to evaluate the known functions of Smad7, with a particular focus on its molecular mechanisms and its function in blocking multiple pathological processes in oral mucositis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号