首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rod transmits absorption of a single photon by what appears to be a small reduction in the small number of quanta of neurotransmitter (Q(count)) that it releases within the integration period ( approximately 0.1 s) of a rod bipolar dendrite. Due to the quantal and stochastic nature of release, discrete distributions of Q(count) for darkness versus one isomerization of rhodopsin (R*) overlap. We suggested that release must be regular to narrow these distributions, reduce overlap, reduce the rate of false positives, and increase transmission efficiency (the fraction of R* events that are identified as light). Unsurprisingly, higher quantal release rates (Q(rates)) yield higher efficiencies. Focusing here on the effect of small changes in Q(rate), we find that a slightly higher Q(rate) yields greatly reduced efficiency, due to a necessarily fixed quantal-count threshold. To stabilize efficiency in the face of drift in Q(rate), the dendrite needs to regulate the biochemical realization of its quantal-count threshold with respect to its Q(count). These considerations reveal the mathematical role of calcium-based negative feedback and suggest a helpful role for spontaneous R*. In addition, to stabilize efficiency in the face of drift in degree of regularity, efficiency should be approximately 50%, similar to measurements.  相似文献   

2.
The concentration of cholera toxin required for half-maximal stimulation of cAMP production by Sertoli cell enriched cultures (4.48 X 10(2) microgram/ml) is greater than that required for half-maximal stimulation of 17beta-estradiol synthesis from testosterone (2.34 X 10(-4) microgram/ml), [3H]thymidine incorporation into DNA (1.48 X 10(-5) microgram/ml), or androgen binding protein production (2.43 X 10(-6) microgram/ml). The same relative dose response hierarchy was obtained with respect to stimulation of Sertoli cells with follicle stimulating hormone (FSH) preparations. Again, highest concentrations were required to elicit maximal cAMP production. The data are discussed in relation to an apparent paradox: If cAMP is the mediating 'second messenger' following stimulation by FSH or cholera toxin, why should highest concentrations of these agents be required to elicit 50% of maximal cAMP levels?  相似文献   

3.
Isolation of the pulmonary vein antrum can terminate atrial fibrillation, but the rationale has not been elucidated. In the present study, we show that sheep atrial effective refractory period (ERP) was heterogeneously shortened by acetylcholine administration. After perfusion with 15 muM acetylcholine, the shortest ERP occurred in the pulmonary vein antrum, which was recorded with the standard intracellular microelectrode technique (the ERP results in the pulmonary vein antrum, left atrial posterior wall, roof, free wall and appendage, and right atrial free wall were 52.0 +/- 1.6, 75.1 +/- 2.0, 77.2 +/- 1.7, 85.6 +/- 1.7, 64.3 +/- 2.1, and 90.5 +/- 1.3 ms, respectively; P < 0.05). Immunofluorescent staining revealed that muscarinic type 2 receptors (M(2)R) were also distributed heterogeneously in the atrial myocardium, with the highest density in the antrum (the relative fluorescent intensity results of the M(2)R in the pulmonary vein antrum, left atrial posterior wall, roof, free wall and appendage, and right atrial free wall were 62.64 +/- 2.56, 53.12 +/- 2.76, 51.83 +/- 2.45, 47.90 +/- 2.33, 55.27 +/- 2.08, and 45.53 +/- 2.02, respectively; P < 0.05), which was in accordance with the heterogeneity of ERP distribution. Thus the pulmonary vein antrum is a unique electrophysiological region with high sensitivity to acetylcholine, and its intensive response to acetylcholine is most likely associated with the dense M(2)R distribution of this region. Such an acetylcholine-induced ERP heterogeneity is possibly a substrate for atrial fibrillation and hence one of the potential electrophysiological bases for the isolation therapy.  相似文献   

4.
Attempts to optimize the recovery of light-stimulated phosphodiesterase activity following reassociation of the hypotonically extractable proteins derived from retinal rod segments with hypotonically stripped disc membranes lead to the following observations: the best reassociations were obtained by mixing proteins and stripped disc membranes under hypotonic conditions and slowly increasing the salt concentration; the binding of G-protein and phosphodiesterase to stripped disc membrane occurs in less than 5 minutes and the recovery of light-stimulated phosphodiesterase activation in response to subsaturating stimulus levels requires 2-3 h to plateau. Stripped disc membranes and proteins were reassociated in 'isotonic' buffers containing KCl/NaCl, KCl/NaCl plus Mg2+, or KCl/NaCl plus Ca2+. Large fractional rhodopsin bleaches produced nearly identical light-stimulated phosphodiesterase activities in each of these samples and in the control rod outer segment membranes. Rod outer segment membranes and reassociated stripped disc membrane samples containing divalent cations showed similar phosphodiesterase activities in response to low fractional rhodopsin bleaches (e.g. less than or equal to 0.1%), however, samples devoid of divalent cations during reassociation required rhodopsin bleaches up to 10-fold larger to elicit comparable phosphodiesterase activities. These results suggest that not all phosphodiesterase and/or G-protein molecules bound to the disc membrane surface are equivalent with regard to their efficiency of activation by bleached rhodopsin and that divalent cations can modulate the distribution of G-protein and/or phosphodiesterase between these populations.  相似文献   

5.
Rod sensitivity and visual pigment concentration in Xenopus   总被引:1,自引:1,他引:0       下载免费PDF全文
Xenopus larvae were raised on a vitamin A-free diet under constant illumination until their visual pigment content had decreased to between 8% of normal and an undetectably low level. After the intramuscular injection of 2.1 X 10(13-2.1 X 10(16) molecules of [3H]vitamin A, ocular tissue showed a rapid rate of uptake of label which reached a maximum level of incorporation by 48 h. Light- microscopic autoradiography revealed that the retinal uptake of label was concentrated within the receptor outer segments. Spectral transmissivity measurements at various times after injection were made upon intact retinas and upon digitonin extracts. They showed that visual pigment with a lambdamax of 504 nm was formed in the retina and that the amount formed was a function of incubation time and the magnitude of the dose administered. Electrophysiological measures of photoreceptor light responses were obtained from the PIII component of the electroretinogram, isolated with aspartate. The quantal flux required to elicit a criterion response was determined and related to the fraction of visual pigment present. The results showed that rod sensitivity varied linearly with the probability of quantal absorption.  相似文献   

6.
Rhodopsin is a G-protein-coupled receptor, in which retinal chromophore acts as inverse-agonist or agonist depending on its configuration and protonation state. Photostimulation of rhodopsin results in a pH-dependent equilibrium between the active state (Meta-II) and its inactive precursor (Meta-I). Here, we monitored conformational changes of rhodopsin using a fluorescent probe Alexa594 at the cytoplasmic surface, which shows fluorescence increase upon the generation of active state, by single-molecule measurements. The fluorescence intensity of a single photoactivated rhodopsin molecule alternated between two states. Interestingly, such a fluorescence alternation was also observed for ligand-free rhodopsin (opsin), but not for dark-state rhodopsin. In addition, the pH-dependences of Meta-I/Meta-II equilibrium estimated by fluorescence measurements deviated notably from estimates based on absorption spectra, indicating that both Meta-I and Meta-II are mixtures of two conformers. Our observations indicate that rhodopsin molecules intrinsically adopt both active and inactive conformations, and the ligand retinal shifts the conformational equilibrium. These findings provide dynamical insights into the activation mechanisms of G-protein-coupled receptors.  相似文献   

7.
Rhodopsin is a G-protein-coupled receptor, in which retinal chromophore acts as inverse-agonist or agonist depending on its configuration and protonation state. Photostimulation of rhodopsin results in a pH-dependent equilibrium between the active state (Meta-II) and its inactive precursor (Meta-I). Here, we monitored conformational changes of rhodopsin using a fluorescent probe Alexa594 at the cytoplasmic surface, which shows fluorescence increase upon the generation of active state, by single-molecule measurements. The fluorescence intensity of a single photoactivated rhodopsin molecule alternated between two states. Interestingly, such a fluorescence alternation was also observed for ligand-free rhodopsin (opsin), but not for dark-state rhodopsin. In addition, the pH-dependences of Meta-I/Meta-II equilibrium estimated by fluorescence measurements deviated notably from estimates based on absorption spectra, indicating that both Meta-I and Meta-II are mixtures of two conformers. Our observations indicate that rhodopsin molecules intrinsically adopt both active and inactive conformations, and the ligand retinal shifts the conformational equilibrium. These findings provide dynamical insights into the activation mechanisms of G-protein-coupled receptors.  相似文献   

8.
A rapid electrical potential, which we have named the M-potential, can be obtained from the Drosophila eye using a high energy flash stimulus. The potential can be elicited from the normal fly, but it is especially prominent in the mutant norp AP12 (a phototransduction mutant), particularly if the eye color pigments are genetically removed from the eye. Several lines of evidence suggest that the M-potential arises from photoexcitation of long-lived metarhodopsin. Photoexcitation of rhodopsin does not produce a comparable potential. The spectral sensitivity of the M-potential peaks at about 575 nm. The M-potential pigment (metarhodopsin) can be shown to photoconvert back and forth with a "silent pigment(s)" absorbing maximally at about 485 nm. The silent pigment presumably is rhodopsin. These results support the recent spectrophotometric findings that dipteran metarhodopsin absorbs at much longer wavelengths than rhodopsin. The M-potential probably is related to the photoproduct component of the early receptor potential (ERP). Two major differences between the M-potential and the classical ERP are: (a) Drosophila rhodopsin does not produce a rapid photoresponse, and (b) an anesthetized or freshly sacrificed animal does not yield the M-potential. As in the case of the ERP, the M-potential appears to be a response associated with a particular state of the fly visual pigment. Therefore, it should be useful in in vivo investigations of the fly visual pigment, about which little is known.  相似文献   

9.
Photoreceptor development begins in the larval eye imaginal disc, where eight distinct photoreceptor cells (R1-R8) are sequentially recruited into each of the developing ommatidial clusters. Final photoreceptor differentiation, including rhabdomere formation and rhodopsin expression, is completed during pupal life. During pupation, spalt was previously proposed to promote R7 and R8 terminal differentiation. Here we show that spalt is required for proper R7 differentiation during the third instar larval stage since the expression of several R7 larval markers (prospero, enhancer of split mdelta0.5, and runt) is lost in spalt mutant clones. In R8, spalt is not required for cell specification or differentiation in the larval disc but promotes terminal differentiation during pupation. We show that spalt is necessary for senseless expression in R8 and sufficient to induce ectopic senseless in R1-R6 during pupation. Moreover, misexpression of spalt or senseless is sufficient to induce ectopic rhodopsin 6 expression and partial suppression of rhodopsin 1. We demonstrate that spalt and senseless are part of a genetic network, which regulates rhodopsin 6 and rhodopsin 1. Taken together, our results suggest that while spalt is required for R7 differentiation during larval stages, spalt and senseless promote terminal R8 differentiation during pupal stages, including the regulation of rhodopsin expression.  相似文献   

10.
In vertebrate rods, photoisomerization of the 11-cis retinal chromophore of rhodopsin to the all-trans conformation initiates a biochemical cascade that closes cGMP-gated channels and hyperpolarizes the cell. All-trans retinal is reduced to retinol and then removed to the pigment epithelium. The pigment epithelium supplies fresh 11-cis retinal to regenerate rhodopsin. The recent discovery that tens of nanomolar retinal inhibits cloned cGMP-gated channels at low [cGMP] raised the question of whether retinoid traffic across the plasma membrane of the rod might participate in the signaling of light. Native channels in excised patches from rods were very sensitive to retinoid inhibition. Perfusion of intact rods with exogenous 9- or 11-cis retinal closed cGMP-gated channels but required higher than expected concentrations. Channels reopened after perfusing the rod with cellular retinoid binding protein II. PDE activity, flash response kinetics, and relative sensitivity were unchanged, ruling out pharmacological activation of the phototransduction cascade. Bleaching of rhodopsin to create all-trans retinal and retinol inside the rod did not produce any measurable channel inhibition. Exposure of a bleached rod to 9- or 11-cis retinal did not elicit channel inhibition during the period of rhodopsin regeneration. Microspectrophotometric measurements showed that exogenous 9- or 11-cis retinal rapidly cross the plasma membrane of bleached rods and regenerate their rhodopsin. Although dark-adapted rods could also take up large quantities of 9-cis retinal, which they converted to retinol, the time course was slow. Apparently cGMP-gated channels in intact rods are protected from the inhibitory effects of retinoids that cross the plasma membrane by a large-capacity buffer. Opsin, with its chromophore binding pocket occupied (rhodopsin) or vacant, may be an important component. Exceptionally high retinoid levels, e.g., associated with some retinal degenerations, could overcome the buffer, however, and impair sensitivity or delay the recovery after exposure to bright light.  相似文献   

11.
Desensitization of skate photoreceptors by bleaching and background light   总被引:1,自引:0,他引:1  
Through extracellular measurements of photoreceptor responses to flashed stimuli, we examined how the bleaching of rhodopsin affects increment receptor threshold in the isolated retina of the skate (Raja oscellata and R. erinacea). Both initially unbleached and previously bleached photoreceptors, when exposed to full-field luminous backgrounds of fixed intensity, attain approximately stable levels of increment threshold that vary with the intensity of the background light. Values of stabilized increment thresholds measured after various extents of bleaching (less than approximately 50%), when plotted against background intensity in log-log coordinates, tend to converge with increasing intensity of the background; this relationship of the increment threshold functions resembles that which Blakemore and Rushton (1965b) found to describe the transient effect of bleaching on psychophysical increment threshold for the human rod mechanism. Our data are consistent with the possibility that related photochemical processes govern the stabilized levels of receptor sensitivity exhibited by the isolated retina (a) during steady illumination and (b) long after substantial bleaching.  相似文献   

12.
The concentration of guanosine 3',5'-cyclic monophosphate (cyclic GMP) has been examined in suspensions of freshly isolated frog rod outer segments using conditions which previously have been shown to maintain the ability of outer segments to perform a light-induced permeability change (presence of calf serum, anti-oxidant, and low calcium concentration). Illumination causes a rapid decrease in cyclic GMP levels which has a half-time approximately 125 ms. With light exposures that bleach less than 100 rhodopsin molecules in each rod outer segment, at least 10(4)-10(5) molecules of cyclic GMP are hydrolyzed for each rhodopsin molecule bleached. Half of the total cyclic GMP in each outer segment, approximately 2 X 10(7) molecules, is contained in the light-sensitive pool. If outer segments are exposed to continuous illumination, using intensities which bleach between 5.0 X 10(1) and 5.0 X 10(4) rhodopsin molecules/outer segment per second, cyclic GMP levels fall to a value characteristic for the intensity used. This suggests that a balance between synthesis and degradation of cyclic GMP is established. This constant level appears to be regulated by the rate of bleaching rhodopsin molecules (by the intensity of illumination), not the absolute number of rhodopsin molecules bleached...  相似文献   

13.
On rod disc membranes, single photoactivated rhodopsin (R*) molecules catalytically activate many copies of the G-protein (Gt), which in turn binds and activates the effector (phosphodiesterase). We have performed master equation simulations of the underlying diffusional protein interactions on a rectangular 1-micron2 model membrane, divided into 15 x 15 cells. Mono- and bimolecular reactions occur within cells, and diffusional transitions occur between (neighboring) cells. Reaction and diffusion constants yield the related probabilities for the stochastic transitions. The calculated kinetics of active effector form a response that is essentially determined by the stochastic lifetime distribution of R* (with characteristic time tau R*) and the reaction constants of Gt activation. Only a short tau R* (approximately 0.3 s) and a high catalytic rate (3000-4000 Gt s-1 R*-1) are consistent with electrophysiological data. Although R* shut-off limits the rise of the response, the lifetime distribution of free R* is not translated into a corresponding variability of the response peaks, because 1) the lifetime distribution of catalytically engaged R* is distorted, 2) small responses are enlarged by an overshoot of active effector, and 3) larger responses tend to undergo saturation. Comparison of these results to published photocurrent waveforms may open ways to understand the relative uniformity of the rod response.  相似文献   

14.
An examination by a radioimmunoassay of the relative affinity of opsin and rhodopsin for rabbit antibody raised against bovine rhodopsin revealed that opsin was the preferred antigen. About 10-fold greater amounts of rhodopsin than opsin were required to achieve 50% inhibition of binding of 125I-labeled ligand in the RIA. Opsin was more reactive when examined in the light or dark, compared to rhodopsin incubated in the dark. Mixtures of opsin and rhodopsin (prepared by partial bleaching of rhodopsin or synthetic mixtures) exhibited increased reactivity with increasing mole fraction of opsin. This response was nonlinear, with small increases in opsin producing relatively large increases in reactivity. A partial fractionation of the antibody into two groups showing differential reactivities toward opsin and rhodopsin was achieved by affinity chromatography on opsin-Sepharose. However, with both groups, opsin was still the preferred antigen. Scatchard analysis of 125I-labeled rhodopsin and opsin produced nonlinear plots, indicating the presence of multiple species of antibody. The affinities and binding capacities were similar for both labeled antigens. In competitive binding studies, the antibody showed a strong preference for either labeled ligand (rhodopsin or opsin) as compared to the unlabeled material. These latter observations indicate that altering rhodopsin either by bleaching or iodination produced changes in the relative immunoreactivity of the molecule.  相似文献   

15.
Rhodopsin mutations are associated with the autosomal-dominant form of retinitis pigmentosa (RP). Here we report simultaneous occurrence of RP associated with bilateral nanophthalmos and acute angle-closure glaucoma in patient with a new mutation in rhodopsin (R135W). ARPE-19 cells were transfected with myc-tagged wild-type (WT) and R135W rhodopsin constructs. The half-life of WT and R135W rhodopsin was analyzed via cycloheximide chase analysis. We found that R135W rhodopsin was accumulated in the endoplasmic reticulum (ER) and induced unfolded protein response (UPR) and apoptosis. Moreover, chaperone HSP70 alleviated ER stress and prevented apoptosis induced by R135W rhodopsin by attenuating UPR signaling. These findings reveal the novel pathogenic mechanism of RP and suggest that chaperone HSP70 has potential therapeutic significance for RP.  相似文献   

16.
In invertebrate photoreceptors, when the light stimulus results in substantial net transfer of the visual pigment from the rhodopsin (R) to the metarhodopsin (M) state, the ordinary late receptor potential (LRP) is followed by a prolonged depolarizing afterpotential (PDA). The dependence of the amplitude of the PDA on the amount of pigment conversion is strongly supralinear, and the PDA duration also depends on this amount. These observations indicate an interaction among the elements of the PDA induction process and also make possible a test of the range of this interaction. The test consists of a comparison of the PDA after localized pigment conversion, obtained by strong spot illumination, to that after weaker diffuse illumination converting a comparable total amount of pigment. The experiment was performed on the barnacle lateral eye. The effective spot size was measured by the early receptor potential (ERP), in seawater saturated with CO2, which considerably reduced the electrical coupling between the photoreceptors. The ERP was also used to determine whether there is diffusion of R molecules into the illuminated spot. The spot illumination induced a PDA with small amplitude and long duration, while no detectable PDA was induced by the diffuse light. This indicates that the range of the PDA interaction is much smaller than the entire cell. In addition, the ERP results showed that there was no detectable diffusion of R molecules into the illuminated spot area over 30 min. This measurement, with a calculated correction for the microvillar geometry of the photoreceptor, enabled us to put an upper limit on the diffusion coefficient of the pigment molecules in the inact, unfixed barnacle photoreceptor of D less than 6 X 10(-9) cm2 s-1.  相似文献   

17.
Local measurements of the fall in oxygen pressure on stimulation of slices of the retina of the honeybee drone by flashes of light were made with oxygen microelectrodes and used to calculate the kinetics of the extra oxygen consumption (delta QO2) induced by each flash. The action spectrum for delta QO2 was obtained from response-intensity curves in response to brief (40 ms) monochromatic light flashes. The action spectrum of receptor potentials was obtained with the same experimental conditions. The two action spectra match closely: they deviate slightly from the photosensitivity spectrum of the drone rhodopsin (R). The deviation is thought to be due to wavelength-dependent light scattering and absorption in the preparation. In these experiments, the visual pigment was first illuminated with orange light, which is known to convert the bistable drone photopigment predominantly to the R state from the metarhodopsin (M) state. When long (300-900 ms) light flashes were used to elicit delta QO2, the responses to different wavelengths could not be matched in time course (as for the short flashes). Flashes producing large R-to-M conversions produced a prolonged delta QO2. The prolongation did not occur after double flashes, which produced both large R-to-M and M-to-R conversions. Similar changes in the length of afterpotentials in the photoreceptor cells and in a long-lasting decrease in photoreceptor intracellular K+ activity were found after long single or double flashes. The results are interpreted to show that the initial event for stimulation by light of metabolism in the drone retina is the same as that for stimulation of electrical responses (i.e., absorption of photons by R). Absorption of photons by M can produce an inhibitory effect on this stimulation.  相似文献   

18.
The nature of the primary photochemical events in rhodopsin and isorhodopsin is studied by using low temperature actinometry, low temperature absorption spectroscopy, and intermediate neglect of differential overlap including partial single and double configuration interaction (INDO-PSDCI) molecular orbital theory. The principal goal is a better understanding of how the protein binding site influences the energetic, photochemical, and spectroscopic properties of the bound chromophore. Absolute quantum yields for the isorhodopsin (I) to bathorhodopsin (B) phototransformation are assigned at 77 K by using the rhodopsin (R) to bathorhodopsin phototransformation as an internal standard (phi R----B = 0.67). In contrast to rhodopsin photochemistry, isorhodopsin displays a wavelength dependent quantum yield for photochemical generation of bathorhodopsin at 77 K. Measurements at seven wavelengths yielded values ranging from a low of 0.089 +/- 0.021 at 565 nm to a high of 0.168 +/- 0.012 at 440 nm. An analysis of these data based on a variety of kinetic models suggests that the I----B phototransformation encounters a small activation barrier (approximately 0.2 kcal mol-1) associated with the 9-cis----9-trans excited-state torsional-potential surface. The 9-cis retinal chromophore in solution (EPA, 77 K) has the smallest oscillator strength relative to the other isomers: 1.17 (all-trans), 0.98 (9-cis), 1.04 (11-cis), and 1.06 (13-cis). The effect of conformation is quite different for the opsin-bound chromophores. The oscillator strength of the lambda max absorption band of I is observed to be anomalously large (1.11) relative to the lambda max absorption bands of R (0.98) and B (1.07). The wavelength-dependent photoisomerization quantum yields and the anomalous oscillator strength associated with isorhodopsin provide important information on the nature of the opsin binding site. Various models of the binding site were tested by using INDO-PSDCI molecular orbital theory to predict the oscillator strengths of R, B, and I and to calculate the barriers and energy storage associated with the photochemistry of R and I for each model. Our experimental and theoretical investigation leads to the following conclusions: (a) The counterion (abbreviated as CTN) is not intimately associated with the imine proton in R, B, or I. The counterion lies underneath the plane of the chromophore in R and I, and the primary chromophore-counterion electrostatic interactions involve C15-CTN and C13-CTN. These interactions are responsible for the anomalous oscillator strength of I relative to R and B.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Semiempirical molecular orbital calculations are combined with 13C NMR chemical shifts to localize the counterion in the retinal binding site of vertebrate rhodopsin. Charge densities along the polyene chain are calculated for an 11-cis-retinylidene protonated Schiff base (11-cis-RPSB) chromophore with 1) a chloride counterion at various distances from the Schiff base nitrogen, 2) one or two chloride counterions at different positions along the retinal chain from C10 to C15 and at the Schiff base nitrogen, and 3) a carboxylate counterion out of the retinal plane near C12. Increasing the distance of the negative counterion from the Schiff base results in an enhancement of alternating negative and positive partial charge on the even- and odd-numbered carbons, respectively, when compared to the 11-cis-RPSB chloride model compound. In contrast, the observed 13C NMR data of rhodopsin exhibit downfield chemical shifts from C8 to C13 relative to the 11-cis-RPSB.Cl corresponding to a net increase of partial positive or decrease of partial negative charge at these positions (Smith, S. O., I. Palings, M. E. Miley, J. Courtin, H. de Groot, J. Lugtenburg, R. A. Mathies, and R. G. Griffin. 1990. Biochemistry. 29:8158-8164). The anomalous changes in charge density reflected in the rhodopsin NMR chemical shifts can be qualitatively modeled by placing a single negative charge above C12. The calculated fit improves when a carboxylate counterion is used to model the retinal binding site. Inclusion of water in the model does not alter the fit to the NMR data, although it is consistent with observations based on other methods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The relative absorption spectra of the bistable photopigment of single rhabdoms from the dorsal region of the retina of the honeybee drone were obtained using slices of retina fixed in glutaraldehyde; less accurate measurements on unfixed tissue gave difference spectra that were similar to those for fixed retinae. The method used was based on measurements of absorbance changes during saturating adaptations of the visual pigment to different monochromatic lights. It is similar to previous methods based on measurements of difference spectra amplitudes, but is simpler to use and more accurate. The predominant pigment has states that absorb maximally at 446 (rhodopsin) and 505 nm (metarhodopsin). In addition, there is a small amount of another pigment whose two states absorb maximally at approximately 340 (UV) and 460 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号