首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PDE4 splice variants are classified into long and short forms depending on the presence or absence of two unique N-terminal domains termed upstream conserved regions 1 and 2 (UCR1 and -2). We have shown previously that the UCR module mediates dimerization of PDE4 long forms, whereas short forms, which lack UCR1, behave as monomers. In the present study, we demonstrate that dimerization is an essential structural element that determines the regulatory properties and inhibitor sensitivities of PDE4 enzymes. Comparing the properties of the dimeric wild type PDE4D3 with several monomeric mutant PDE4D3 constructs revealed that disruption of dimerization ablates the activation of PDE4 long forms by either protein kinase A phosphorylation or phosphatidic acid binding. Moreover, the analysis of heterodimers consisting of a catalytically active and a catalytically inactive PDE4D3 subunit indicates that protein kinase A phosphorylation of both subunits is essential to fully activate PDE4 enzymes. In addition to affecting enzyme regulation, disruption of dimerization reduces the sensitivity of the enzymes toward the prototypical PDE4 inhibitor rolipram. Parallel binding assays indicated that this shift in rolipram sensitivity is likely mediated by a decrease in the number of inhibitor binding sites in the high affinity rolipram binding state. Thus, although dimerization is not a requirement for high affinity rolipram binding, it functions to stabilize PDE4 long forms in their high affinity rolipram binding conformation. Taken together, our data indicate that dimerization defines the properties of PDE4 enzymes and suggest a common structural and functional organization for all PDEs.  相似文献   

2.
The cAMP-specific phosphodiesterases (PDE4) enzymes contain unique "signature" regions of amino acid sequence, called upstream conserved regions 1 and 2 (UCR1 and UCR2). UCR1 and UCR2 are located between the extreme amino-terminal region and the catalytic region of the PDE4 enzymes. The UCR1 of the PDE4D3 isoform was used as a "bait" in a two-hybrid screen, which identified a PDE4D cDNA clone containing UCR2 and the catalytic region but not UCR1. Two-hybrid and "pull down" analysis of constructs incorporating various regions of the PDE4D3 cDNA demonstrated that the carboxyl-terminal region of UCR1 interacted specifically with the amino-terminal region of UCR2. The interaction was blocked by mutations of two positively charged amino acids (Arg-98 and Arg-101 to alanine) located within an otherwise largely hydrophobic region of UCR1. Mutation of three negatively charged amino acids in UCR2 (Glu-146, Glu-147, and Asp-149, all to alanine) also blocked the interaction. The phosphorylation of UCR1 by cAMP-dependent protein kinase (PKA) in vitro attenuated the ability of UCR1 to interact with UCR2. Mutation of the PKA substrate site in UCR1 (Ser-54) to aspartic acid, which mimics the activation of PDE4D3 by PKA, profoundly reduced the interaction between UCR1 and UCR2. Our data are consistent with a model in which UCR1 and UCR2 act as independent domains whose interaction is determined by electrostatic interactions and which may be disrupted by PKA phosphorylation. We suggest that the UCR1 and UCR2 domains may form a module that interacts with and regulates the PDE4 catalytic region.  相似文献   

3.
The cAMP-specific phosphodiesterase family 4, subfamily D, isoform 3 (PDE4D3) is shown to have FQF and KIM docking sites for extracellular signal-regulated kinase 2 (ERK2) (p42(MAPK)). These straddle the target residue, Ser(579), for ERK2 phosphorylation of PDE4D3. Mutation of either or both of these docking sites prevented ERK2 from being co-immunoprecipitated with PDE4D3, ablated the ability of epidermal growth factor to inhibit PDE4D3 through ERK2 action in transfected COS cells, and attenuated the ability of ERK2 to phosphorylate PDE4D3 in vitro. The two conserved NH(2)-terminal blocks of sequence, called upstream conserved regions 1 and 2 (UCR1 and UCR2), that characterize PDE4 long isoforms, are proposed to amplify the small, inherent inhibitory effect that ERK2 phosphorylation exerts on the PDE4D catalytic unit. In contrast to this, the lone intact UCR2 region found in PDE4D1 directs COOH-terminal ERK2 phosphorylation to cause the activation of this short isoform. From the analysis of PDE4D3 truncates, it is suggested that UCR1 and UCR2 provide a regulatory signal integration module that serves to orchestrate the functional consequences of ERK2 phosphorylation. The PDE4D gene thus encodes a series of isoenzymes that are either inhibited or activated by ERK2 phosphorylation and thereby offers the potential for ERK2 activation either to increase or decrease cAMP levels in cellular compartments.  相似文献   

4.
5.
Human phosphodiesterase 1 is regulated by a tandem of N-terminal calmodulin/Ca(2+)-binding domains. We grafted the tandems from hPDE1A3 and -B1 onto the cyanobacterial adenylyl cyclase CyaB1 thus replacing an intrinsic tandem GAF-domain. Cyclase activity was stimulated by Ca(2+)/calmodulin 1.9 to 4.4-fold, i.e. similarly as reported for hPDE1 regulation. hPDE4 long isoforms are activated by phosphorylation of a serine located in a conserved RRESF motif in a tandem of N-terminal upstream-conserved regions (UCR). We grafted the UCR tandems from hPDE4A4, -B1, and -D3 onto the CyaB1 cyclase as a reporter enzyme. Activity was enhanced 1.4 to 4.5-fold by respective phosphomimetic (S/D) point mutations. Similarly, cyclase activity was increased 2.5-fold by phosphorylation of the chimera with the PDE4D3 UCR tandem by cAMP-dependent protein kinase. We propose a common mechanism of activation in mammalian phosphodiesterases containing N-terminal tandem regulatory domains. A downstream region is suggested to alternate between random and ordered conformations and to enable switching between inactive, the catalytic domain occluding PDE homodimers and active monomeric PDE catalytic domains.  相似文献   

6.
The long cyclic AMP (cAMP)-specific phosphodiesterase isoform, PDE4A5 (PDE4A subfamily isoform variant 5), when transiently expressed in COS-7 cells, was shown in subcellular fractionation studies to be associated with both membrane and cytosol fractions, with immunofluorescence analyses identifying PDE4A5 as associated both with ruffles at the cell margin and also at a distinct perinuclear localisation. Deletion of the first nine amino acids of PDE4A5 (1) ablated its ability to interact with the SH3 domain of the tyrosyl kinase, LYN; (2) reduced, but did not ablate, membrane association; and (3) disrupted the focus of PDE4A5 localisation within ruffles at the cell margin. This deleted region contained a Class I SH3 binding motif of similar sequence to those identified by screening a phage display library with the LYN-SH3 domain. Truncation to remove the PDE4A5 isoform-specific N-terminal region caused a further reduction in membrane association and ablated localisation at the cell margin. Progressive truncation to delete the PDE4A long isoform common region and then the long isoform-specific UCR1 did not cause any further change in membrane association or intracellular distribution. However, deletion up to the super-short form splice junction generated an entirely soluble 'core' PDE4A species. We propose that multiple sites in the N-terminal noncatalytic portion of PDE4A5 have the potential to associate with intracellular structures and thus define its intracellular localisation. At least two such sites lie within the PDE4A5 isoform-specific N-terminal region and these appear to be primarily responsible for targeting PDE4A5 to, and organising it within, the cell margin; one is an SH3 binding motif able to interact with LYN kinase and the other lies within the C-terminal portion of the PDE4A5 unique region. A third membrane association region is located within the N-terminal portion of UCR2 and appears to be primarily responsible for targeting to the perinuclear region. Progressive N-terminal truncation, to delete defined regions of PDE4A5, identified activity changes occurring upon deletion of the SH3 binding site region and then upon deletion of the membrane association site region located within UCR2. This suggests that certain of these anchor sites may not only determine intracellular targeting but may also transduce regulatory effects on PDE4A5 activity.  相似文献   

7.
8.
RAW macrophages, which express the PDE4D3 and PDE4D5 cAMP phosphodiesterase isoforms, exhibited increased PDE4 activity when challenged with H2O2 in a fashion that was negated by treatment with the cell permeant antioxidant, N-acetyl cysteine and by diphenyleneiodonium chloride, an inhibitor of NADPH oxidase. In Cos1 cells transfected to express PDE4D3, challenge with H2O2 caused a rapid increase in both the activity and phosphorylation of PDE4D3. Lysates from H2O2-treated COS cells caused the phosphorylation of purified, recombinant PDE4D3 at two sites. One was the established ERK phosphorylation site at Ser579, located at the extreme C-terminus of the catalytic unit, and the other was a novel site at Ser239, located at the extreme N-terminus of the catalytic unit. Double Ser239Ala:Ser579Ala mutation of PDE4D3 prevented its H2O2-dependent phosphorylation both in vitro and in intact COS cells. Phosphorylation of PDE4D3 at Ser579 was ablated by treating COS cells with the MEK inhibitor, PD98059, which also negated activation. The activity of the Ser239Ala:Ser579Ala double mutant, and the Ser579Ala single PDE4D3 mutant was unaffected by H2O2 challenge of COS cells, whilst the Ser239Ala mutant was inhibited. Wortmannin inhibited the H2O2-dependent phosphorylation of PDE4D3 in COS cells by around 50%, whilst it fully ablated phosphorylation at Ser239 as well as ablating activation of PDE4D3. Neither immunodepletion of p70S6 kinase nor siRNA-mediated knockdown of mTor inhibited the H2O2-dependent phosphorylation of PDE4D3 at Ser239. Activation of PDE4D3 by challenge with H2O2 was not additive with activation through protein kinase A (PKA)-mediated phosphorylation of PDE4D3. Challenge with H2O2 did not alter PKA-mediated phosphorylation of PDE4D3 at Ser54. H2O2 dependent phosphorylation of PDE4D3, at Ser239 and Ser579, did not alter the sensitivity of PDE4D3 to inhibition by the selective PDE4 inhibitor, rolipram. An unknown protein kinase acting downstream of phosphatidyl inositol 3-kinase phosphorylates PDE4D3 at Ser239. This switches the effect of phosphorylation by ERK at Ser579 from inhibition to activation. We propose that phosphorylation at Ser239 attenuates interaction between either UCR2 or the UCR1/UCR2 module and the PDE4 catalytic unit so as to re-programme the functional outcome effect of phosphorylation by ERK. We identify a novel process through which reactive oxygen species activate long PDE4 isoforms so as to reduce cAMP levels and thereby promote inflammatory responses.  相似文献   

9.
The involvement of the Nuclear distribution element-like (Ndel1; Nudel) protein in the recruitment of the dynein complex is critical for neurodevelopment and potentially important for neuronal disease states. The PDE4 family of phosphodiesterases specifically degrades cAMP, an important second messenger implicated in learning and memory functions. Here we show for the first time that Ndel1 can interact directly with PDE4 family members and that the interaction of Ndel1 with the PDE4D3 isoform is uniquely disrupted by elevation of intracellular cAMP levels. While all long PDE4 isoforms are subject to stimulatory PKA phosphorylation within their conserved regulatory UCR1 domain, specificity for release of PDE4D3 is conferred due to the PKA-dependent phosphorylation of Ser13 within the isoform-specific, unique amino-terminal domain of PDE4D3. Scanning peptide array analyses identify a common region on Ndel1 for PDE4 binding and an additional region that is unique to PDE4D3. The common site lies within the stutter region that links the second coiled-coil region to the unstable third coiled-coil regions of Ndel1. The additional binding region unique to PDE4D3 penetrates into the start of the third coiled-coil region that can undergo tail-to-tail interactions between Ndel1 dimers to form a 4 helix bundle. We demonstrate Ndel1 self-interaction in living cells using a BRET approach with luciferase- and GFP-tagged forms of Ndel1. BRET assessed Ndel1–Ndel1 self-interaction is amplified through the binding of PDE4 isoforms. For PDE4D3 this effect is ablated upon elevation of intracellular cAMP due to PKA-mediated phosphorylation at Ser13, while the potentiating effects of PDE4B1 and PDE4D5 are resistant to cAMP elevation. PDE4D long isoforms and Ndel1 show a similar sub-cellular distribution in hippocampus and cortex and locate to post-synaptic densities. We show that Ndel1 sequesters EPAC, but not PKA, in order to form a cAMP signalling complex. We propose that a key function of the Ndel1 signalling scaffold is to signal through cAMP by sequestering EPAC, whose activity may thus be specifically regulated by sequestered PDE4 that also stabilizes Ndel1–Ndel1 self-interaction. In the case of PDE4D3, its association with Ndel1 is dynamically regulated by PKA input through its ability to phosphorylate Ser13 in the unique N-terminal region of this isoform, triggering the specific release of PDE4D3 from Ndel1 when cAMP levels are elevated. We propose that Ser13 may act as a redistribution trigger in PDE4D3, allowing it to dynamically re-shape cAMP gradients in distinct intracellular locales upon its phosphorylation by PKA.  相似文献   

10.
We employ a novel, dominant negative approach to identify a key role for certain tethered cyclic AMP specific phosphodiesterase-4 (PDE4) isoforms in regulating cyclic AMP dependent protein kinase A (PKA) sub-populations in resting COS1 cells. A fraction of PKA is clearly active in resting COS1 cells and this activity increases when cells are treated with the selective PDE4 inhibitor, rolipram. Point mutation of a critical, conserved aspartate residue in the catalytic site of long PDE4A4, PDE4B1, PDE4C2 and PDE4D3 isoforms renders them catalytically inactive. Overexpressed in resting COS1 cells, catalytically inactive forms of PDE4C2 and PDE4D3, but not PDE4A4 and PDE4B1, are constitutively PKA phosphorylated while overexpressed active versions of all these isoforms are not. Inactive and active versions of all these isoforms are PKA phosphorylated in cells where protein kinase A is maximally activated with forskolin and IBMX. By contrast, rolipram challenge of COS1 cells selectively triggers the PKA phosphorylation of recombinant, active PDE4D3 and PDE4C2 but not recombinant, active PDE4A4 and PDE4B1. Purified, recombinant PDE4D3 and PDE4A4 show a similar dose-dependency for in vitro phosphorylation by PKA. Disruption of the tethering of PKA type-II to PKA anchor proteins (AKAPs), achieved using the peptide Ht31, prevents inactive forms of PDE4C2 and PDE4D3 being constitutively PKA phosphorylated in resting cells as does siRNA-mediated knockdown of PKA-RII, but not PKA-RI. PDE4C2 and PDE4D3 co-immunoprecipitate from COS1 cell lysates with 250 kDa and 450 kDa AKAPs that tether PKA type-II and not PKA type-I. PKA type-II co-localises with AKAP450 in the centrosomal region of COS1 cells. The perinuclear distribution of recombinant, inactive PDE4D3, but not inactive PDE4A4, overlaps with AKAP450 and PKA type-II. The distribution of PKA phosphorylated inactive PDE4D3 also overlaps with that of AKAP450 in the centrosomal region of COS1 cells. We propose that a novel role for PDE4D3 and PDE4C2 is to gate the activation of AKAP450-tethered PKA type-II localised in the perinuclear region under conditions of basal cAMP generation in resting cells.  相似文献   

11.
Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamine-induced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between their N termini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P2, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively.  相似文献   

12.
13.
We have characterized the gene for human phosphodiesterase 8B, PDE8B, and cloned the full-length cDNA for human PDE8B (PDE8B1) and two splice variants (PDE8B2 and PDE8B3). The PDE8B gene is mapped to the long arm of chromosome 5 (5q13) and is composed of 22 exons spanning over approximately 200kb. The donor and acceptor splice site sequences match the consensus sequences for the exon-intron boundaries of most eukaryotic genes. PDE8B1 encodes an 885 amino acid enzyme, containing an N-terminal REC domain, a PAS domain, and a C-terminal catalytic domain. PDE8B2 and PDE8B3 both have deletion in the PAS domain and encode 838 and 788 amino acid proteins, respectively. RT-PCR analysis revealed that while PDE8B1 is the most abundant variant in thyroid gland, PDE8B3, but not PDE8B1, is the most abundant form in brain. These findings suggest that selective usage of exons produces three different PDE8B variants that exhibit a tissue-specific expression pattern.  相似文献   

14.
C2 domains are widespread Ca2+-binding modules. The active zone protein Piccolo (also known as Aczonin) contains an unusual C2A domain that exhibits a low affinity for Ca2+, a Ca2+-induced conformational change and Ca2+-dependent dimerization. We show here that removal of a nine-residue sequence by alternative splicing increases the Ca2+ affinity, abolishes the conformational change and abrogates dimerization of the Piccolo C2A domain. The NMR structure of the Ca2+-free long variant provides a structural basis for these different properties of the two splice forms, showing that the nine-residue sequence forms a beta-strand otherwise occupied by a nonspliced sequence. Consequently, Ca2+-binding to the long Piccolo C2A domain requires a marked rearrangement of secondary structure that cannot occur for the short variant. These results reveal a novel mechanism of action of C2 domains and uncover a structural principle that may underlie the alteration of protein function by short alternatively spliced sequences.  相似文献   

15.
16.
Perilipin A coats the lipid storage droplets in adipocytes and is polyphosphorylated by protein kinase A (PKA); the fact that PKA activates lipolysis in adipocytes suggests a role for perilipins in this process. To assess whether perilipins participate directly in PKA-mediated lipolysis, we have expressed constructs coding for native and mutated forms of the two major splice variants of the perilipin gene, perilipins A and B, in Chinese hamster ovary fibroblasts. Perilipins localize to lipid droplet surfaces and displace the adipose differentiation-related protein that normally coats the droplets in these cells. Perilipin A inhibits triacylglycerol hydrolysis by 87% when PKA is quiescent, but activation of PKA and phosphorylation of perilipin A engenders a 7-fold lipolytic activation. Mutation of PKA sites within the N-terminal region of perilipin abrogates the PKA-mediated lipolytic response. In contrast, perilipin B exerts only minimal protection against lipolysis and is unresponsive to PKA activation. Since Chinese hamster ovary cells contain no PKA-activated lipase, we conclude that the expression of perilipin A alone is sufficient to confer PKA-mediated lipolysis in these cells. Moreover, the data indicate that the unique C-terminal portion of perilipin A is responsible for its protection against lipolysis and that phosphorylation at the N-terminal PKA sites attenuates this protective effect.  相似文献   

17.
A cDNA selection technique has been used to isolate full-length human cDNAs of the phosphodiesterase 1 (PDE1) calcium calmodulin (CaM)-regulated phosphodiesterase gene family. We isolated cDNAs representing multiple splice variants of PDE1A, 1B and 1C from a variety of tissues. Included among these were two novel splice variants for PDE1A and 1B. The first, PDE1A5, encodes a 519-residue protein, which is different from PDE1A1 by the insertion of 14 residues, a divergent carboxy terminus and also differs from PDE1A3 through a divergent amino terminus. Our second novel splice variant represents the first occurrence of a splice variant of the PDE1B gene. PDE1B2 encodes a 516-residue protein and diverges from PDE1B1 by the replacement of the first 38 residues by an alternative 18, which is predicted to be functionally significant. Using the splice variant sequence differences to perform comparative Northern analysis, we have demonstrated that each variant has a differential tissue distribution.  相似文献   

18.
We have isolated and characterized rat cyclic nucleotide phosphodiesterase (PDE)11A, which exhibits properties of a dual-substrate PDE, and its splice variants (RNPDE11A2, RNPDE11A3, and RNPDE11A4). The deduced amino-acid sequence of the longest form of rat PDE11A splice variant, RNPDE11A4, was 94% identical with that of the human variant (HSPDE11A4). Rat PDE11A splice variants were expressed in a tissue-specific manner. RNPDE11A4 showed unique tissue distribution distinct from HSPDE11A4, which is specifically expressed in the prostate. Rat PDE11A splice variants were expressed in COS-7 cells, and their enzymatic characteristics were compared. Although the Km values for cAMP and cGMP were similar for all of them (1.3-1.6 and 2.1-3.9 microM, respectively), the Vmax values differed significantly (RNPDE11A4 > RNPDE11A2 > RNPDE11A3). Human PDE11A variants also displayed very similar Km values and significantly different Vmax values (HSPDE11A4 > HSPDE11A2 > HSPDE11A3 > HSPDE11A1). The Vmax values of HSPDE11A4 for cAMP and cGMP were at least 100 times higher than those of HSPDE11A1. These observations indicate unique characteristics of PDE11A splicing variants.  相似文献   

19.
The unique 88 amino acid N-terminal region of cAMP-specific phosphodiesterase-4D5 (PDE4D5) contains overlapping binding sites conferring interaction with the signaling scaffold proteins, betaarrestin and RACK1. A 38-mer peptide, whose sequence reflected residues 12 through 49 of PDE4D5, encompasses the entire N-terminal RACK1 Interaction Domain (RAID1) together with a portion of the beta-arrestin binding site. (1)H NMR and CD analyses indicate that this region has propensity to form a helical structure. The leucine-rich hydrophobic grouping essential for RACK1 interaction forms a discrete hydrophobic ridge located along a single face of an amphipathic alpha-helix with Arg34 and Asn36, which also play important roles in RACK1 binding. The Asn22/Pro23/Trp24/Asn26 grouping, essential for RACK1 interaction, was located at the N-terminal head of the amphipathic helix that contained the hydrophobic ridge. RAID1 is thus provided by a distinct amphipathic helical structure. We suggest that the binding of PDE4D5 to the WD-repeat protein, RACK1, may occur in a manner akin to the helix-helix interaction shown for G(gamma) binding to the WD-repeat protein, G(beta). A more extensive section of the PDE4D5 N-terminal sequence (Thr11-Ala85) is involved in beta-arrestin binding. Several residues within the RAID1 helix contribute to this interaction however. We show here that these residues form a focused band around the centre of the RAID1 helix, generating a hydrophobic patch (from Leu29, Val30 and Leu33) flanked by polar/charged residues (Asn26, Glu27, Asp28, Arg34). The interaction with beta-arrestin exploits a greater circumference on the RAID1 helix, and involves two residues (Glu27, Asp28) that do not contribute to RACK1 binding. In contrast, the interaction of RACK1 with RAID1 is extended over a greater length of the helix and includes Leu37/Leu38, which do not contribute to beta-arrestin binding. A membrane-permeable, stearoylated Val12-Ser49 38-mer peptide disrupted the interaction of both beta-arrestin and RACK1 with endogenous PDE4D5 in HEKB2 cells, whilst a cognate peptide with a Glu27Ala substitution selectively failed to disrupt PDE4D5/RACK1 interaction. The stearoylated Val12-Ser49 38-mer peptide enhanced the isoprenaline-stimulated PKA phosphorylation of the beta(2)-adrenergic receptors (beta(2)AR) and its activation of ERK, whilst the Glu27Ala peptide was ineffective in both these regards.  相似文献   

20.
Alternative splicing of cellular pre-mRNA is responsible for production of multiple mRNAs from individual genes. Splice variants are expressed in cell- and tissue-specific contexts that are important in development and physiology. Alternative splicing can serve as a regulatory mechanism whereby developmental programming and environmental factors/stimuli affect biological activities of translated proteins. Cyclooxygenase (COX)-1 and -2 genes produce splice variants whose biological expression, relevance, and activities have been of significant interest. COX variants are produced by a variety of splicing mechanisms. Four structural domains of the COX proteins (the amino terminal signal peptide, membrane-binding domain, dimerization domain, and catalytic domain) are defined by specific COX exons. COX splice variants may, therefore, result in potential changes in protein subcellular localization, dimerization, and activity. COX variant proteins may act in roles which diverge from those of COX-1 and -2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号