首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenine residues in DNA are oxidized under the action of ionizing radiation at the C-8 position to give 7,8-dihydro-8-oxoadenine. The formation of this lesion can be considered a cause of mutations and carcinogenesis. Oligodeoxyribonucleotides 39 and 47 bases long containing a single 7,8-dihydro-8-oxoadenine (8-hydroxyadenine) residue were synthesized by using nucleoside phosphoramidites. They were used as templates to study the copies obtained in vitro by the Klenow fragment and the thermostable Taq DNA polymerase. 7,8-Dihydro-8-oxoadenine does not block the replication and thymine is incorporated opposite the damage. The modifications of the DNA duplex conformation provoked by 7,8-dihydro-8-oxoadenine are minor. 1H-NMR spectroscopy shows that the duplex is in a B form, the sugar in a normal position in the helix and the modified base in the anti position. NMR confirms that 7,8-dihydro-8-oxoadenine exists predominantly in the keto form.  相似文献   

2.
This paper deals with the synthesis of a stable biotin–phosmidosine conjugate molecule 3 that is required for isolation of biomolecules that bind to phosmidosine (1). It was found that introduction of a biotin residue into the 6-N position of phosmidosine could be carried out by reaction of an N7-Boc-7,8-dihydro-8-oxoadenosine derivative 13 with phenyl chloroformate followed by displacement with a diamine derivative 6 along with the simultaneous removal of the Boc group and one of the two phenoxycarbonyl groups and the successive condensation with an N-tritylated biotin derivative 5. The condensation of an N-prolylphosphorodiamidite derivative 4 with an appropriately protected 7,8-dihydro-8-oxoadenosine derivative 17 having the biotin residue gave the coupling product 18, which was deprotected to give the biotin–phosmidosine (O-ethyl ester) conjugate 3.  相似文献   

3.
Recently we found that KMnO4 oxidation of DNA oligomers containing a 7,8-dihydro-8-oxoguanine (8-oxo-G) residue induces damage to the neighboring base residues; other modified bases, 7,8-dihydro-8-oxoadenine (8-oxo-A) and 5-hydroxyuracil (5-oh-U), show similar behavior in DNA. The present study indicated that the ability to induce damage, which could also occur by the oxidation of a 5-oh-C residue, was low as in the case of 5-oh-U. On the other hand, in order to examine the pathways and the intermediates for the oxidative degradation of 8-oxo-A, we have carried out the KMnO4 oxidation using an 8-oxo-2'-deoxyadenosine derivative as a model and have determined the structures of the three major products.  相似文献   

4.
Summary To determine the radiation sensitivity of an adenine defect inside the DNA chain, an oligonucleotide bearing 7,8-dihydro-8-oxoadenine was chemically synthesized by the phosphoramidite method. This damaged oligonucleotide32P-labelled at one end was gamma irradiated in an aerated aqueous solution, and heated with piperidine. The fragments obtained were separated by polyacrylamide sequencing gel electrophoresis, according to their chain lengths. Mean radiosensitivity coefficients for the four natural nucleotides and the relative radiation sensitivity of 7,8-dihydro-8-oxoadenine leading to chain rupture in alkaline medium, could be obtained from the band intensities by computer calculation. An unexpectedly high value was obtained for the damaged adenine residue. Determinations were performed for different doses of irradiation.  相似文献   

5.
Two gel electrophoretic methods are described for detection of 7, 8-dihydro-8-oxoguanine and 7,8-dihydro-8-oxoadenine based on their further oxidation with one-electron oxidants including IrCl62-and IrBr62-. The products of nucleobase oxidation lead to enhanced piperidine-sensitive cleavage and to highly visible stop points in a primer extension assay. 8-oxoG and 8-oxoA lesions may be distinguished by the latter's inability to be oxidized by IrBr62-compared to IrCl62-Comparison is also made to oxidation by MnO4-.  相似文献   

6.
Electrolytically reduced 6- and 8-nitro-5-deazaflavin derivatives have been found to interact to react specifically with guanine base by means of cyclic voltammetry. Electrolytic reductions of 6- and 8-nitro-5-deazaflavin derivatives in the presence of the 2'-deoxyguanosine under anaerobic conditions resulted in prominent formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine.  相似文献   

7.
Tobacco smoke, recognized as a major etiological factor for cancers of the upper aerodigestive tract, represents an abundant source of reactive oxygen species (ROS), which are believed to play a significant role in mutagenesis and carcinogenesis. An additional source of ROS in tissues exposed to tobacco smoke may be metabolic oxidation of polycyclic aromatic hydrocarbons (PAH). To investigate the relationships between oxidative DNA lesions and aromatic DNA adducts, six modified DNA bases 5-hydroxyuracil, 5-hydroxycytosine, 7,8-dihydro-8-oxoguanine, 7,8-dihydro-8-oxoadenine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 4,6-diamino-5-formamidopyrimidine and the total level of PAH-related DNA adducts were measured in cancerous and the surrounding normal larynx tissues (68 subjects), using gas chromatography/isotope-dilution mass spectroscopy with selected ion monitoring and the 32 P-postlabeling-HPLC assay, respectively. The levels of oxidative DNA lesions in cancerous and adjacent tissue were comparable; the differences between the two types of tissue were significant only for 5-hydroxypyrimidines (slightly higher levels were observed in the adjacent tissue). Comparable levels of DNA lesions in cancerous and the surrounding normal tissues observed in the larynx tumors support a field cancerization theory. The surrounding tissues may still be recognized as normal by histological criteria. However, molecular alterations resulting from the chronic tobacco smoke exposure, which equally affects larynx epithelia, may lead to multiple premalignant lesions. Thus, a demonstration of similar levels of DNA damage in cancerous and the adjacent tissue could explain a frequent formation of secondary tumors in the larynx and the frequent recurrence in this type of cancer. A weak, but distinct effect of tumor grading and metastatic status was observed in both kinds of tissue in the case of 5-hydroxyuracil, 5-hydroxycytosine, 7,8-dihydro-8-oxoguanine, 7,8-dihydro-8-oxoadenine. This effect was displayed as a gradual shift in the data distribution toward high values from G1 through G2-G3 and from non-metastatic to metastatic tumors. Since the levels of oxidative DNA base modifications tended to increase with the tumor aggressiveness, we postulate that the oxidative DNA lesions increase genetic instability and thus contribute to tumor progression in laryngeal cancer. No associations between aromatic adduct levels and oxidative DNA lesions were present, suggesting that the metabolism of PAH does not contribute significantly to the oxidative stress in larynx tissues, remaining the tobacco smoke ROS as a major source of oxidative DNA damage in the exposed tissue.  相似文献   

8.
This work investigated the structural and biological properties of DNA containing 7,8-dihydro-8-oxo-1,N6-ethenoadenine (oxo-ϵA), a non-natural synthetic base that combines structural features of two naturally occurring DNA lesions (7,8-dihydro-8-oxoadenine and 1,N6-ethenoadenine). UV-, CD-, NMR spectroscopies and molecular modeling of DNA duplexes revealed that oxo-ϵA adopts the non-canonical syn conformation (χ = 65º) and fits very well among surrounding residues without inducing major distortions in local helical architecture. The adduct remarkably mimics the natural base thymine. When considered as an adenine-derived DNA lesion, oxo-ϵA was >99% mutagenic in living cells, causing predominantly A→T transversion mutations in Escherichia coli. The adduct in a single-stranded vector was not repaired by base excision repair enzymes (MutM and MutY glycosylases) or the AlkB dioxygenase and did not detectably affect the efficacy of DNA replication in vivo. When the biological and structural data are viewed together, it is likely that the nearly exclusive syn conformation and thymine mimicry of oxo-ϵA defines the selectivity of base pairing in vitro and in vivo, resulting in lesion pairing with A during replication. The base pairing properties of oxo-ϵA, its strong fluorescence and its invisibility to enzymatic repair systems in vivo are features that are sought in novel DNA-based probes and modulators of gene expression.  相似文献   

9.
Tobacco smoke, recognized as a major etiological factor for cancers of the upper aerodigestive tract, represents an abundant source of reactive oxygen species (ROS), which are believed to play a significant role in mutagenesis and carcinogenesis. An additional source of ROS in tissues exposed to tobacco smoke may be metabolic oxidation of polycyclic aromatic hydrocarbons (PAH). To investigate the relationships between oxidative DNA lesions and aromatic DNA adducts, six modified DNA bases 5-hydroxyuracil, 5-hydroxycytosine, 7,8-dihydro-8-oxoguanine, 7,8-dihydro-8-oxoadenine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 4,6-diamino-5-formamidopyrimidine and the total level of PAH-related DNA adducts were measured in cancerous and the surrounding normal larynx tissues (68 subjects), using gas chromatography/isotope-dilution mass spectroscopy with selected ion monitoring and the 32 P-postlabeling-HPLC assay, respectively. The levels of oxidative DNA lesions in cancerous and adjacent tissue were comparable; the differences between the two types of tissue were significant only for 5-hydroxypyrimidines (slightly higher levels were observed in the adjacent tissue). Comparable levels of DNA lesions in cancerous and the surrounding normal tissues observed in the larynx tumors support a field cancerization theory. The surrounding tissues may still be recognized as normal by histological criteria. However, molecular alterations resulting from the chronic tobacco smoke exposure, which equally affects larynx epithelia, may lead to multiple premalignant lesions. Thus, a demonstration of similar levels of DNA damage in cancerous and the adjacent tissue could explain a frequent formation of secondary tumors in the larynx and the frequent recurrence in this type of cancer. A weak, but distinct effect of tumor grading and metastatic status was observed in both kinds of tissue in the case of 5-hydroxyuracil, 5-hydroxycytosine, 7,8-dihydro-8-oxoguanine, 7,8-dihydro-8-oxoadenine. This effect was displayed as a gradual shift in the data distribution toward high values from G1 through G2-G3 and from non-metastatic to metastatic tumors. Since the levels of oxidative DNA base modifications tended to increase with the tumor aggressiveness, we postulate that the oxidative DNA lesions increase genetic instability and thus contribute to tumor progression in laryngeal cancer. No associations between aromatic adduct levels and oxidative DNA lesions were present, suggesting that the metabolism of PAH does not contribute significantly to the oxidative stress in larynx tissues, remaining the tobacco smoke ROS as a major source of oxidative DNA damage in the exposed tissue.  相似文献   

10.
A general procedure to obtain tetra-substituted uric acid by stepwise N-alkylation is described. 2,6-Dichloropurine (1) was condensed with 1-propanol by Mitsunobu reaction to give 9-propyl congener (2). Treatment of 2 with ammonia gave adenine derivative (4a), which was converted to the 8-oxoadenine (5b) in 3 steps. Methylation of 5b proceeded site-specifically to give 6-amino-2-chloro-7,8-dihydro-7-methyl-9-propylpurin-8-one (6) as a sole product. Compound 6 was successively treated with NaNO2 and iodomethane to give 2-chloro-1,6,7,8-tetrahydro-1,7-dimethyl-9-propylpurin-6,8-dione (9) accompanied by the O6-methyl product (8) in 75% and 6.9%, respectively. After nucleophilic substitution of 9 with NaOAc, the product (11) was reacted with iodomethane to give the uric acid (12) and the 2-methoxy product (13) in 46% and 15.5%, respectively. However, the reaction of 11 with the benzylating agents gave only O-benzyl products (14a,b).  相似文献   

11.
Oxidative damage to DNA bases commonly resultsin the formation of oxidized purines, particularly 7,8-dihydro-8-oxoguanine (8-oxoG) and 7,8-dihydro-8-oxoadenine (8-oxoA), the former being a well-known mutagenic lesion. Since 8-oxoG is readily subject to further oxidation compared with normal bases, the insertion of a base during DNA synthesis opposite an oxidized form of 8-oxoG was investigated in vitro. A synthetic template containing a single 8-oxoG lesion was first treated with different one-electron oxidants or under singlet oxygen conditions and then subjected to primer extension catalyzed by Klenow fragment exo- (Kf exo-), calf thymus DNA polymerase alpha (pol alpha) or human DNA polymerase beta (pol beta). Consistent with previous reports, dAMP and dCMP are inserted selectively opposite 8-oxoG with all three DNA polymerases. Interestingly, oxidation of 8-oxoG was found to induce dAMP and dGMP insertion opposite the lesion by Kf exo- with transient inhibition of primer extension occurring at the site of the modified base. Furthermore, the lesion constitutes a block during DNA synthesis by pol alpha and pol beta. Experiments with an 8-oxoA-modified template oligonucleotide show that both 8-oxoA and an oxidized form of 8-oxoA direct insertion of dTMP by Kf exo-. Mass spectrometric analysis of 8-oxoG-containing oligonucleotides before and after oxidation with IrCl62-are consistent with oxidation of primarily the 8-oxoG site, resulting in formation of a guanidinohydantoin moiety as the major product. No evidence for formation of abasic sites was obtained. These results demonstrate that an oxidized form of 8-oxoG, possibly guanidinohydantoin, may direct misreading and misinsertion of dNTPs during DNA synthesis. If such a process occurred in vivo, it would represent a point mutagenic lesion leading to G-->T and G-->C transversions. However, the corresponding oxidized form of 8-oxoA primarily shows correct insertion of T during DNA synthesis with Kf exo-.  相似文献   

12.
A single 7,8-dihydro-8-oxoguanine (G8-OXO; 8-hydroxyguanine) adduct in the lacZ alpha gene of bacteriophage M13 DNA induces a targeted G-->T transversion after replication in Escherichia coli (Biochemistry, 29, 7024-7031 (1990)). This mutation is thought to be due to the facile formation during DNA synthesis of a G8-OXO.base pair, where G8-OXO is in the syn conformation about the deoxyglycosyl bond. A related modified purine, 7,8-dihydro-8-oxoadenine (A8-OXO; 8-hydroxyadenine), is an abundant product found in irradiated and oxidized DNAs. Similar to G8-OXO, as a mononucleoside A8-OXO assumes the syn conformation. This work has assessed the relative mutagenicities of A8-OXO and G8-OXO in the same experimental system. A deoxypentanucleotide containing A8-OXO [d(GCT-A8-OXOG)] was synthesized. After 5'-phosphorylation with [gamma-32P] ATP, the oligomer was ligated into a duplex M13mp19-derived genome at a unique NheI restriction site. Genomes containing either A8-OXO (at position 6275, [+] strand) or G8-OXO (position 6276) were denatured with heat and introduced into E.coli DL7 cells. Analysis of phage DNA from mutant plaques obtained by plating immediately after transformation (infective centers assay) revealed that G8-OXO induced G-->T transversions at an apparent frequency of approximately 0.3%. The frequency and spectrum of mutations observed in DNA sequences derived from 172 mutant plaques arising from the A8-OXO-modified DNA were almost indistiguishable from those generated from transfection of an adenine-containing control genome. We conclude that A8-OXO is at least an order of magnitude less mutagenic than G8-OXO in E.coli cells with normal DNA repair capabilities.  相似文献   

13.
The main objective of the present work depends on the hybridization of coumarin moiety as a vasorelaxant scaffold and pyrimidine ring with known potential cardiovascular activity in order to prepare some new potent antihypertensive candidates. Hence, two groups of pyrimidinyl coumarin derivatives were synthesized and evaluated for their vasorelaxing activity. These compounds were prepared via two routes; either preparation of the guanidinocoumarin 4 followed by a cocktail of cyclization reactions to yield a different array of 6-(substituted pyrimidin-2-yl)aminocoumarins 5-17, or through cyclization of the precursor chalcones 22a-g with guanidine hydrochloride to generate the corresponding final compounds, 8-(6-aryl-2-aminopyrimidin-4-yl)-7-methoxycoumarins 23a-g. The effect of these compounds and the coumarin intermediates 3, 4, 21 and 22a-g on nor-epinephrine induced contracture in thoracic rat aortic rings was investigated using prazocin as reference drug. Several derivatives showed promising activities either equal or even better than that of prazocin (IC(50) 0.487 mM). The most prospective compounds; the pyrimidinylamino coumarin derivatives 8, 17 (IC(50) 0.411, IC(50) 0.421 mM) and the chalcones 22b, 22e (IC(50) 0.371, 0.374 mM) that displayed the highest activity can be a base for lead optimization and simple but efficient design of new compounds. 2D-QSAR analysis was applied to find a correlation between the experimental vasorelaxant activities of the newly synthesized coumarin derivatives and their different physicochemical parameters. The result of this study showed that the increase in aqueous solubility while retaining good hydrophobic character of the overall molecule is the key for maintaining high relaxation activity.  相似文献   

14.
Two oligodeoxyribonucleotides, d-CTTCTTTTTTATTTT, I(A), and d-ATTATTTTTTATTTT, II(A), where C is 5-methylcytosine and A is 8-oxoadenine, were prepared and their interactions with the duplex d-GAAGAAAAAAYAAAA/d-TTTTZTTTTTTCTTC, III.IV(Y.Z), were studied. Oligomers I(A) and II(A) each form triplexes with III.IV(G.C) at temperatures below 20 degrees C as shown by continuous variation experiments, melting experiments, and circular dichroism (CD) spectroscopy. The CD spectra of these triplexes are almost identical to those formed by I(C) and II(C), oligomers which contain cytosine in place of 8-oxoadenine. This suggests that the 8-oxoadenine-containing triplexes have conformations which are very similar to those of the cytosine-containing triplexes. The melting temperature (Tm) for dissociation of the third strand of triplex II.III.IV(A.G.C) is 22 degrees C at pH 7.0 and 8.0, whereas the Tm of the corresponding transition in triplex II.III.IV(C.G.C) decreases from 28 degrees C at pH 7.0 to 17 degrees C at pH 8.0. The pH dependence of the Tm in the latter triplex reflects the necessity of protonating the N-3 of cytosine in order for it to form two hydrogen bonds with G of the G.C base pair. It appears that the keto form of 8-oxoadenine can potentially form two hydrogen bonds with the N-7 and O-6 atoms of G of the G.C base pair, when the 8-oxoadenine is in the syn conformation and in contrast to cytosine does not require protonation of the base. Oligomer I(A) does not form triplexes with III.IV(Y.Z) when Y.Z is A.T or T.A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Human DNA polymerase (pol) λ functions in base excision repair and non-homologous end joining. We have previously shown that DNA pol λ is involved in accurate bypass of the two frequent oxidative lesions, 7,8-dihydro-8-oxoguanine and 1,2-dihydro-2-oxoadenine during the S phase. However, nothing is known so far about the relationship of DNA pol λ with the S phase DNA damage response checkpoint. Here, we show that a knockdown of DNA pol λ, but not of its close homologue DNA pol β, results in replication fork stress and activates the S phase checkpoint, slowing S phase progression in different human cancer cell lines. We furthermore show that DNA pol λ protects cells from oxidative DNA damage and also functions in rescuing stalled replication forks. Its absence becomes lethal for a cell when a functional checkpoint is missing, suggesting a DNA synthesis deficiency. Our results provide the first evidence, to our knowledge, that DNA pol λ is required for cell cycle progression and is functionally connected to the S phase DNA damage response machinery in cancer cells.  相似文献   

16.
We previously reported that mutations in Mn- and Fe-superoxide dismutases and Fur, a repressor for iron uptake systems, simulated generation of hydroxyl radicals, and caused hypermutability in Escherichia coli. The predominant type of spontaneous mutation was GC --> TA, followed by AT --> CG, suggesting the involvement of 7,8-dihydro-8-oxoguanine (8-oxoG) and 1,2-dihydro-2-oxoadenine (2-oxoA) in DNA as well as 7,8-dihydro-8-oxodeoxyguanosine triphosphate (8-oxodGTP) and 1,2-dihydro-2-oxodeoxyadenosine triphosphate (2-oxodATP) in the nucleotide pool. To determine the targets contributing to oxidative mutagenesis, DNA or nucleotides, we characterized spontaneous mutations and compared the distribution to those in mutMY and mutT strains, in which GC --> TA and AT --> CG were predominantly induced, respectively. The hotspots and sequence contexts where AT --> CG occurred frequently in sodAB fur strain were almost identical to those in mutT strain,whereas, those where GC --> TA occurred frequently in sodAB fur strain were quite different from those in mutMY strain. These observations suggested that AT --> CG is due to 8-oxodGTP, while GC --> TA is produced by some other lesion(s). The 2-oxodATP is also a major oxidative lesion in nucleotides, and strongly induces GC --> TA. The expression of cDNA for MTH1, which can hydrolyze 2-oxodATP as well as 8-oxodGTP, partially but significantly, suppressed the GC --> TA mutator phenotype of the sodAB fur strain, whereas, it did not for the mutMY strain. Additionally, the sequence contextby 2-oxodATP in E. coli was similar to that in sodAB fur strain. These results suggested that the targets contributing to oxidative mutagenesis in sodAB fur strain are nucleotides such as dGTP and dATP, rather than DNA.  相似文献   

17.
Cells are continuously exposed to oxidative species, which cause several types of oxidative DNA lesions. Repair of some of these lesions has been well characterized but little is known about the repair of many DNA lesions. The oxidized adenine base, 7,8-dihydro-8-oxoadenine (8-oxoA), is a relatively common DNA lesion, which is believed to be mutagenic in mammalian cells. This study investigates repair of 8-oxoA in nuclear and mitochondrial mammalian extracts. In nuclei, 8-oxoA:C and 8-oxoA:G base pairs are recognized and cleaved; in contrast, only 8-oxoA:C base pairs are cleaved in mitochondria. High stability of the DNA helix increased the efficiency of incision of 8-oxoA, and the efficiency decreased at DNA bends and condensed regions of the helix. Using liver extracts from mice knocked out for 8-oxoguanine DNA glycosylase 1 (OGG1), we demonstrated that OGG1 is the only glycosylase that incises 8-oxoA, when base-paired with cytosine in mitochondria and nuclei, but a different enzyme incises 8-oxoA when base-paired with guanine in the nucleus. Consistent with this result, a covalent DNA-protein complex was trapped using purified human OGG1 or human nuclear or mitochondrial extracts with a DNA substrate containing an 8-oxoA:C base pair.  相似文献   

18.
Ionizing radiation and radiomimetic anticancer agents induce clustered DNA damages that are thought to lead to deleterious biological consequences, due to the challenge that clustered damage may present to the repair machinery of the cell. Specific oligonucleotides, containing either dihydrothymine (DHT) or 7,8-dihydro-8-oxoguanine (8-oxoG) opposite to specific lesions at defined positions on the complementary strand, have been used to determine the kinetic constants, K(M), k(cat), and specificity constants, for excision of DHT and 8-oxoG by the Escherichia coli base excision repair proteins, endonuclease III (Nth) and formamidopyrimidine glycosylase (Fpg), respectively. For excision of DHT opposite to 8-oxoadenine by Nth or Fpg proteins, or 8-oxoG opposite to 8-oxoG by Fpg, the major change in the specificity constant occurs when the second lesion on the complementary strand is one base to the site opposite to DHT or 8-oxoG. The specificity constants for excision of DHT or 8-oxoG by both proteins are reduced by up to 2 orders of magnitude when an abasic site or a strand break is opposite on the complementary strand. Whereas the values of K(M) are only slightly affected by the presence of a second lesion, the major change is seen as a reduction in the values of k(cat). The binding of Fpg protein to oligonucleotides containing 8-oxoG is inhibited, particularly when a single strand break is near to 8-oxoG on the complementary strand. It is inferred that not only the binding affinity of Fpg protein to the base lesion but also the rate of excision of the damaged base is reduced by the presence of another lesion, particularly a single strand break or an AP site on the complementary strand.  相似文献   

19.
Adenines mismatched with guanines or 7,8-dihydro-8-oxo-deoxyguanines that arise through DNA replication errors can be repaired by either base excision repair or mismatch repair. The human MutY homolog (hMYH), a DNA glycosylase, removes adenines from these mismatches. Human MutS homologs, hMSH2/hMSH6 (hMutSalpha), bind to the mismatches and initiate the repair on the daughter DNA strands. Human MYH is physically associated with hMSH2/hMSH6 via the hMSH6 subunit. The interaction of hMutSalpha and hMYH is not observed in several mismatch repair-defective cell lines. The hMutSalpha binding site is mapped to amino acid residues 232-254 of hMYH, a region conserved in the MutY family. Moreover, the binding and glycosylase activities of hMYH with an A/7,8-dihydro-8-oxo-deoxyguanine mismatch are enhanced by hMutSalpha. These results suggest that protein-protein interactions may be a means by which hMYH repair and mismatch repair cooperate in reducing replicative errors caused by oxidized bases.  相似文献   

20.
8-Oxo-7,8-dihydroguanine (8-hydroxyguanine) is oxidized more easily than normal nucleobases, which can produce spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh). These secondary oxidation products of 8-oxo-7,8-dihydroguanine are highly mutagenic when formed within DNA. To evaluate the mutagenicity of the corresponding oxidation products of 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-hydroxy-2'- deoxyguanosine 5'-triphosphate) in the nucleotide pool, Escherichia coli cells deficient in the mutT gene were treated with H(2)O(2), and the induced mutations were analyzed. Moreover, the 2'-deoxyriboside 5'-triphosphate derivatives of Sp and Gh were also introduced into competent E. coli cells. The H(2)O(2) treatment of mutT E. coli cells resulted in increase of G:C → T:A and A:T → T:A mutations. However, the incorporation of exogenous Sp and Gh 2'-deoxyribonucleotides did not significantly increase the mutation frequency. These results suggested that the oxidation product(s) of 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate induces G:C → T:A and A:T → T:A mutations, and that the 2'-deoxyriboside 5'-triphosphate derivatives of Sp and Gh exhibit quite weak mutagenicity, in contrast to the bases in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号