首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sequence comparisons among methionyl-tRNA synthetases from different organisms reveal only one block of homology beyond the last beta strand of the mononucleotide fold. We have introduced a series of semi-conservative amino acid replacements in the conserved motif of yeast methionyl-tRNA synthetase. The results indicate that replacements of two polar residues (Asn584 and Arg588) affected specifically the aminoacylation reaction. The location of these residues in the tertiary structure of the enzyme is compatible with a direct interaction of the amino acid side-chains with the tRNA anticodon.  相似文献   

2.
Cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae is a dimer made up of identical subunits (Mr 63,000) each of these containing three cysteines (residues 255, 512 and 519 in the amino acid sequence). Thiol-specific probes were used to label these cysteines and study the resulting effect of the modification on the kinetic parameters of both the ATP/PPi exchange and tRNA aminoacylation reactions. Using the classical techniques of protein chemistry it was shown that none of the three cysteines was labelled with iodoacetic acid, whilst N-ethylmaleimide and 5,5'-dithiobis(2-nitrobenzoate) reacted with Cys512 and Cys255, respectively. Only the latter modification was accompanied by a decrease in the rates of both enzyme activities whilst the Km values for the various substrates remained unaffected. Site-directed mutagenesis was also used to replace each of the three cysteines by other residues, either individually or simultaneously. For these experiments the enzyme was expressed in Escherichia coli using an expression vector bearing the structural gene in which the first 13 codons were replaced by the first 14 of the CII lambda gene. The resulting substitution in the amino-terminal part of the expressed enzyme had no effect on the kinetic parameters, compared to those of the enzyme purified from S. cerevisiae. Taking into account the consequences of such substitutions, as well as those of chemical modifications on the two reactions catalysed by the enzyme. ATP/PPi exchange and tRNA aminoacylation, it could be concluded that none of these three cysteines plays any essential role in either substrate binding or catalysis.  相似文献   

3.
Cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae is an alpha 2 dimer (alpha, Mr 63,000), each alpha containing 12 histidines. The covalent incorporation of 6-7 mol of diethyl pyrocarbonate per monomer corresponded to complete enzyme inactivation. This inactivation was reversed by hydroxylamine hydrolysis which regenerates free histidine (and tyrosine) while leaving the carbethoxy group still attached to the epsilon-amino group of lysine. Three histidines, one tyrosine, and four lysines were the main targets of the reagent. Site-directed mutagenesis was also tried to replace each of these modified residues. Given the unstability of the carbethoxy-imidazole bond, the nine histidines that were not modified by diethyl pyrocarbonate were mutated too. For these experiments, the enzyme was expressed in Escherichia coli by using a vector bearing the structural gene in which the first 13 codons were replaced by the first 14 of the CII lambda gene. This substitution had no effect on the kinetic parameters. The combined results of chemical modification and site-directed mutagenesis show that one histidine seems to be part of the active site while two others play an important structural role. On the other hand, labeled lysines and tyrosine are nonessential residues. These results are discussed in light of two recent articles establishing the existence of a second family of aminoacyl-tRNA synthetases devoid of the HIGH and KMSKS consensus sequences and containing no Rossmann's domain in their three-dimensional structures.  相似文献   

4.
Pseudomonas aeruginosa PAO1 secretes a siderophore, pyoverdine(PAO), which contains a short peptide attached to a dihydroxyquinoline moiety. Synthesis of this peptide is thought to be catalyzed by nonribosomal peptide synthetases, one of which is encoded by the pvdD gene. The first module of pvdD was overexpressed in Escherichia coli, and the protein product was purified. L-Threonine, one of the amino acid residues in pyoverdine(PAO), was an effective substrate for the recombinant protein in ATP-PP(i) exchange assays, showing that PvdD has peptide synthetase activity. Other amino acids, including D-threonine, L-serine, and L-allo-threonine, were not effective substrates, indicating that PvdD has a high degree of substrate specificity. A three-dimensional modeling approach enabled us to identify amino acids that are likely to be critical in determining the substrate specificity of PvdD and to explore the likely basis of the high substrate selectivity. The approach described here may be useful for analysis of other peptide synthetases.  相似文献   

5.
The crystal structures of aspartyl-tRNA synthetase (AspRS) from Thermus thermophilus, a prokaryotic class IIb enzyme, complexed with tRNA(Asp) from either T. thermophilus or Escherichia coli reveal a potential intermediate of the recognition process. The tRNA is positioned on the enzyme such that it cannot be aminoacylated but adopts an overall conformation similar to that observed in active complexes. While the anticodon loop binds to the N-terminal domain of the enzyme in a manner similar to that of the related active complexes, its aminoacyl acceptor arm remains at the entrance of the active site, stabilized in its intermediate conformational state by non-specific interactions with the insertion and catalytic domains. The thermophilic nature of the enzyme, which manifests itself in a very low kinetic efficiency at 17 degrees C, the temperature at which the crystals were grown, is in agreement with the relative stability of this non-productive conformational state. Based on these data, a pathway for tRNA binding and recognition is proposed.  相似文献   

6.
Homologous genes for threonine tRNAs with the anticodon CGU have been identified in the region of the proBA operon of Escherichia coli and downstream from the fimbrial subunit gene of Pseudomonas aeruginosa. tRNAs with the anticodon CGU have not previously been identified from either of these bacterial species. Sequence analyses have shown that these genes are similar to other bacterial tRNA genes, and that the predicted structure conforms to the standard cloverleaf model, including retention of all invariant and semi-invariant bases. Analysis of upstream sequences suggests that these genes have associated promoters and are probably expressed in vivo.  相似文献   

7.
8.
Cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae is a dimer made up of identical subunits of Mr 64,000 as shown by biochemical and crystallographic analyses. Previous studies have emphasized the high sensitivity of the amino-terminal region (residues 1-32) to proteolytic enzymes. This work reports the results of limited tryptic or chymotryptic digestion of the purified enzyme which gives rise to a truncated species that has lost the first 50-64 residues with full retention of both the activity and the dimeric structure. In contrast the larger tryptic fragment is distinguished from the whole enzyme by its weaker retention on heparin-substituted agarose gels. The cleaved N-terminal part presents peculiar structural features, such as a high content in lysine residues arranged in a palindromic fashion. The properties of the trypsin-modified enzyme and of the cleaved amino-terminal region are discussed in relation to the known structural characteristics of aspartyl-tRNA synthetase and of other eukaryotic aminoacyl-tRNA synthetases.  相似文献   

9.
G Ghosh  H Pelka  L H Schulman 《Biochemistry》1990,29(9):2220-2225
We have previously shown that the anticodon of methionine tRNAs contains most, if not all, of the nucleotides required for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase [Schulman, L. H., & Pelka, H. (1988) Science 242, 765-768]. Previous cross-linking experiments have also identified a site in the synthetase that lies within 14 A of the anticodon binding domain [Leon, O., & Schulman, L. H. (1987) Biochemistry 26, 5416-5422]. In the present work, we have carried out site-directed mutagenesis of this domain, creating conservative amino acid changes at residues that contain side chains having potential hydrogen-bond donors or acceptors. Only one of these changes, converting Trp461----Phe, had a significant effect on aminoacylation. The mutant enzyme showed an approximately 60-100-fold increase in Km for methionine tRNAs, with little or no change in the Km for methionine or ATP or in the maximal velocity of the aminoacylation reaction. Conversion of the adjacent Pro460 to Leu resulted in a smaller increase in Km for tRNA(Mets), with no change in the other kinetic parameters. Examination of the interaction of the mutant enzymes with a series of tRNA(Met) derivatives containing base substitutions in the anticodon revealed sequence-specific interactions between the Phe461 mutant and different anticodons. Km values were highest for tRNA(mMet) derivatives containing the normal anticodon wobble base C. Base substitutions at this site decreased the Km for aminoacylation by the Phe461 mutant, while increasing the Km for the wild-type enzyme and for the Leu460 mutant to values greater than 100 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
《Gene》1996,172(1):165-166
The CDP-diglyceride synthetase (CDS)-encoding gene (cds) from Pseudomonas aeruginosa PAO1 was cloned and sequenced. The gene possessed an open reading frame of 813 bp capable of encoding a putative polypeptide of 271 amino acids (aa) (28 699 Da). The deduced aa sequence of CDS revealed a 67% similarity (45% identity) to Escherichia coli CDS.  相似文献   

11.
12.
The chrA gene of Pseudomonas aeruginosa plasmid pUM505 encodes the hydrophobic protein ChrA, which confers resistance to chromate by the energy-dependent efflux of chromate ions. Chromate-sensitive mutants were isolated by in vivo random mutagenesis. Transport experiments with cell suspensions of selected mutants showed that 51CrO4(2-) extrusion was drastically lowered as compared to suspensions of the strain with the wild-type plasmid, confirming that the mutations affected a chromate efflux system. DNA sequence analysis showed that most point mutations affected amino acids clustered in the N-terminal half of ChrA, altering either cytoplasmic regions or transmembrane segments, and replaced residues moderately to highly conserved in ChrA homologs. PhoA and LacZ translational fusions were used to confirm the membrane topology at the N-terminal half of the ChrA protein.  相似文献   

13.
14.
A cDNA clone encoding rat liver aspartyl-tRNA synthetase was isolated by probing a lambda gt11 recombinant cDNA expression library with antibodies directed against the corresponding polypeptide from sheep liver. The 1930-base pairs-long cDNA insert allowed the expression in Escherichia coli of an active enzyme of mammalian origin. The nucleotide sequence of that cDNA, corresponding to the DRS1 gene, was determined. The open reading frame of DRS1 corresponds to a protein of Mr = 57,061, in good agreement with the previously determined molecular weight of the purified enzyme. The deduced amino acid sequence shows extensive homologies with that of yeast cytoplasmic aspartyl-tRNA synthetase, more than 50% of the residues being identical. In rat liver, aspartyl-tRNA synthetase occurs in two distinct forms: a dimeric enzyme and a component of a multienzyme complex comprising the nine aminoacyl-tRNA synthetases specific for arginine, aspartic acid, glutamic acid, glutamine, isoleucine, leucine, lysine, methionine, and proline. The primary structure of the DRS1 gene product is discussed in relation to the occurrence of two distinct forms of that enzyme.  相似文献   

15.
The structure of a recombinant protein, TyrRS(delta4), corresponding to the anticodon arm binding domain of Bacillus stearothermophilus tyrosyl-tRNA synthetase, has been solved, and its dynamics have been studied by nuclear magnetic resonance (NMR). It is the first structure described for such a domain of a tyrosyl-tRNA synthetase. It consists of a five-stranded beta sheet, packed against two alpha helices on one side and one alpha helix on the other side. A large part of the domain is structurally similar to other functionally unrelated RNA binding proteins. The basic residues known to be essential for tRNA binding and charging are exposed to the solvent on the same face of the molecule. The structure of TyrRS(delta4), together with previous mutagenesis data, allows one to delineate the region of interaction with tRNATyr.  相似文献   

16.
17.
Enzymatic systems that exploit pericyclic reaction mechanisms are rare. A recent addition to this class is the enzyme PchB, an 11.4-kDa isochorismate pyruvate lyase from Pseudomonas aeruginosa. The apo and pyruvate-bound structures of PchB reveal that the enzyme is a structural homologue of chorismate mutases in the AroQalpha class despite low sequence identity (20%). The enzyme is an intertwined dimer of three helices with connecting loops, and amino acids from each monomer participate in each of two active sites. The apo structure (2.35 A resolution) has one dimer per asymmetric unit with nitrate bound in an open active site. The loop between the first and second helices is disordered, providing a gateway for substrate entry and product exit. The pyruvate-bound structure (1.95 A resolution) has two dimers per asymmetric unit. One has two open active sites like the apo structure, and the other has two closed active sites with the loop between the first and second helices ordered for catalysis. Determining the structure of PchB is part of a larger effort to elucidate protein structures involved in siderophore biosynthesis, as these enzymes are crucial for bacterial iron uptake and virulence and have been identified as antimicrobial drug targets.  相似文献   

18.
The crystal structure of Pseudomonas aeruginosa fucose-specific lectin LecB was determined in its metal-bound and metal-free state as well as in complex with fucose, mannose and fructopyranose. All three monosaccharides bind isosterically via direct interactions with two calcium ions as well as direct hydrogen bonds with several side-chains. The higher affinity for fucose is explained by the details of the binding site around C6 and O1 of fucose. In the mannose and fructose complexes, a carboxylate oxygen atom and one or two hydroxyl groups are partly shielded from solvent upon sugar binding, preventing them from completely fulfilling their hydrogen bonding potential. In the fucose complex, no such defects are observed. Instead, C6 makes favourable interactions with a small hydrophobic patch. Upon demetallization, the C terminus as well as the otherwise rigid metal-binding loop become more mobile and adopt multiple conformations.  相似文献   

19.
A number of aromatic residues were seen to cluster in the upper portion of the three-dimensional structure of the FpvA ferric pyoverdine receptor of Pseudomonas aeruginosa, reminiscent of the aromatic binding pocket for ferrichrome in the FhuA receptor of Escherichia coli. Alanine substitutions in three of these, W362, W391, and F795, markedly compromised ferric pyoverdine binding and transport, consistent with a role of FpvA in ferric pyoverdine recognition.  相似文献   

20.
The formation of amidase was studied in mutants from Pseudomonas aeruginosa PAO lacking glutamine synthetase activity. It appeared that catabolite repression of amidase synthesis by succinate was partially relieved when cellular growth was limited by glutamine. Under these conditions, a correlation between amidase and urease formation was observed. The results suggest that amidase formation in strain PAO is subject to nitrogen control and that glutamine or some compound derived from it mediates the nitrogen repression of amidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号