首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We assessed the repeatability and accuracy of a relatively new, resistance-based sensor (Tekscan 6900) for measuring lumbar spine facet loads, pressures, and contact areas in cadaver specimens. Repeatability of measurements in the natural facet joint was determined for five trials of four specimens loaded in pure moment (+/- 7.5 N m) flexibility tests in axial rotation and flexion-extension. Accuracy of load measurements in four joints was assessed by applying known compressive loads of 25, 50, and 100 N to the natural facet joint in a materials testing machine and comparing the known applied load to the measured load. Measurements of load were obtained using two different calibration approaches: linear and two-point calibrations. Repeatability for force, pressure, and area (average of standard deviation as a percentage of the mean for all trials over all specimens) was 4-6% for axial rotation and 7-10% for extension. Peak resultant force in axial rotation was 30% smaller when calculated using the linear calibration method. The Tekscan sensor overestimated the applied force by 18 +/- 9% (mean+/-standard deviation), 35 +/- 7% and 50 +/- 9% for compressive loads of 100, 50, and 25 N, respectively. The two-point method overestimated the loads by 35 +/- 16%, 45 +/- 7%, and 56 +/- 10% for the same three loads. Our results show that the Tekscan sensor is repeatable. However, the sensor measurement range is not optimal for the small loads transmitted by the facets and measurement accuracy is highly dependent on calibration protocol.  相似文献   

2.
A. C. Powles  E. J. Campbell 《CMAJ》1978,118(5):501-4,552
The mixed venous carbon dioxide tension (PVCO2) can be measured at the bedside by a rebreathing equilibrium technique that is quick, simple and noninvasive. Only one brief period of rebreathing is required. The technique is accurate even when the lungs are not normal, and gives a graphic record that allows verification of the accuracy of the estimate. The PVCO2 is affected mainly by changes in alveolar ventilation and cardiac output. It can be measured instead of the arterial carbon dioxide tension (PACO2) to follow changes in alveolar ventilation when the cardiac output is normal (PaCO2 = 0.8 PVCO2). When the cardiac output is abnormal, measurement of both PaCO2 and PvCO2 is useful in determining how much the cardiac output is reduced. Consideration of the relation between oxygen consumption and carbon dioxide production suggests that the equation PaCO2 = 0.8 PVCO2 - 12 indicates a reduction in cardiac output that may impair the oxygen supply to tissues. Simple corrections can be applied to allow for variations in arterial oxygen saturation and hemoglobin concentration that will affect this relationship.  相似文献   

3.
Intra-articular injection of drugs is increasingly used in human medicines. We report a method for the direct administration of a test substance to the synovial fluid of the canine stifle joint. This method caused little distress or pathology, making it suitable for pre-clinical assessment of new drugs in dogs and other species.  相似文献   

4.
5.
6.
7.
A novel method for the measurement of knee joint forces in-vivo is described. A thin (0.2mm) flexible electronic pressure sensor was inserted through a narrow arthroscopic portal into the osteoarthritic medial compartment of the knee joint. The sensor partially covered the load bearing area. The surgery was performed under local anaesthetic during normal arthroscopic examination following patient consent. Results are presented for 11 patients. The method was used in a pilot study to assess the effects of four valgus knee braces on medial compartment forces. An analysis of variance could not detect un-loading by any brace although there were large variations in force output. These variations may be attributable to shifts in the sensor position. In-vivo measurement of joint force is technically feasible.  相似文献   

8.
A new transducer capable of direct measurement of time-dependent loads in human lumbar facet joints was developed and tested. The transducer was comprised of a force-sensitive resistor (FSR) in series with a pressure-sensitive film. A wide range of experiments revealed the performance attributes and limitations of the FSR. The output signal of the FSR is actually sensitive to both force and area of contact independently. Therefore, a pressure-sensitive film was used to quantify the contact area. At least two transformation equations were calculated for each FSR corresponding to known contact areas. Each equation was a linearization of the log of the FSR output vs the log of the applied ramp loads. Coefficients of determination (CD) were calculated for small (21 mm2) and large (32 mm2) contact areas, and were found to exceed 0.900 for all data. The average of nine cycles was nearly linear for some FSRs (CD of 0.999). FSR output signal and contact area were recorded in cadaveric lumbar facets under ramp load. The appropriate transformation equation was determined by a linear interpolation between benchmark equations based on the contact area measured in vitro. Facet force measurements compared well with those of other researchers. The transducer was found to be quite easy to use.  相似文献   

9.
10.
11.
The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter‐ and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf‐IT, a new smartphone application for measuring leaf area and other trait‐related areas. Leaf‐IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well‐established, commercial software WinFOLIA using the Altman–Bland method. Area measurements of standardized objects show that Leaf‐IT measures area with high accuracy and precision. Area measurements with Leaf‐IT of real leaves are comparable to those of WinFOLIA. Leaf‐IT is an easy‐to‐use application running on a wide range of smartphones. That increases the portability and use of Leaf‐IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.  相似文献   

12.
Our aim was to clarify the relationship between power output and the different mechanical parameters influencing it during squat jumps, and to further use this relationship in a new computation method to evaluate power output in field conditions. Based on fundamental laws of mechanics, computations were developed to express force, velocity and power generated during one squat jump. This computation method was validated on eleven physically active men performing two maximal squat jumps. During each trial, mean force, velocity and power were calculated during push-off from both force plate measurements and the proposed computations. Differences between the two methods were not significant and lower than 3% for force, velocity and power. The validity of the computation method was also highlighted by Bland and Altman analyses and linear regressions close to the identity line (P<0.001). The low coefficients of variation between two trials demonstrated the acceptable reliability of the proposed method. The proposed computations confirmed, from a biomechanical analysis, the positive relationship between power output, body mass and jump height, hitherto only shown by means of regression-based equations. Further, these computations pointed out that power also depends on push-off vertical distance. The accuracy and reliability of the proposed theoretical computations were in line with those observed when using laboratory ergometers such as force plates. Consequently, the proposed method, solely based on three simple parameters (body mass, jump height and push-off distance), allows to accurately evaluate force, velocity and power developed by lower limbs extensor muscles during squat jumps in field conditions.  相似文献   

13.
The basic aim of the present contribution is the qualitative simulation of healing phenomena typically encountered in hard and soft tissue mechanics. The mechanical framework is provided by the theory of open system thermodynamics, which will be formulated in the spatial as well as in the material motion context. While the former typically aims at deriving the density and the spatial motion deformation field in response to given spatial forces, the latter will be applied to determine the material forces in response to a given density and material deformation field. We derive a general computational framework within the finite element context that will serve to evaluate both the spatial and the material motion problem. However, once the spatial motion problem has been solved, the solution of the material motion problem represents a mere post-processing step and is thus extremely cheap from a computational point of view. The underlying algorithm will be elaborated systematically by means of two prototype geometries subjected to three different representative loading scenarios, tension, torsion, and bending. Particular focus will be dedicated to the discussion of the additional information provided by the material force method. Since the discrete material node point forces typically point in the direction of potential material deposition, they can be interpreted as a driving force for the healing mechanism.Blues the healer, John Lee Hooker [1989]  相似文献   

14.
Histamine-immunoreactivity was investigated in the planarians Dugesia tigrina and Polycelis nigra. Specific antisera against a histamine-protein conjugate were used, and 1-ethyl—3 (3-dimethyl-aminopropyl) carbodiimide was used both as coupling agent to prepare the antigen and as a tissue fixative. In D. tigrina, histamine-immunoreactivity was restricted to photoreceptor cells in the cerebral eye. In P. nigra, nerve fibers were found in the ventral nerve cord and nerves running laterally from these. The epidermal eyes did not display histamine-immunoreactivity. The results suggest that histamine may be a transmitter in some of the most primitive animals. They also suggest that the distribution of histamine may differ in planarians.  相似文献   

15.
Thermoregulatory ability and behavior influence organismal responses to their environment. By measuring thermal preferences, researchers can better understand the effects that temperature tolerances have on ecological and physiological responses to both biotic and abiotic stressors. However, because of funding limitations and confounders, measuring thermoregulation can often be difficult. Here, we provide an effective, affordable (~$50 USD per unit), easy to construct, and validated apparatus for measuring the long-term thermal preferences of animals. In tests, the apparatus spanned temperatures from 9.29 to 33.94 °C, and we provide methods to further increase this range. Additionally, we provide simple methods to non-invasively measure animal and substrate temperatures and to prevent temperature preferences of the focal organisms from being confounded with temperature preferences of its prey and its humidity preferences. To validate the apparatus, we show that it was capable of detecting individual-level consistency and among individual-level variation in the preferred body temperatures of Southern toads (Anaxyrus terrestris) and Cuban tree frogs (Osteopilus septentrionalis) over three-weeks. Nearly every aspect of our design is adaptable to meet the needs of a multitude of study systems, including various terrestrial amphibious, and aquatic organisms. The apparatus and methods described here can be used to quantify behavioral thermal preferences, which can be critical for determining temperature tolerances across species and thus the resiliency of species to current and impending climate change.  相似文献   

16.
An express electrochemical method for determining the metabolic activity of live cells based on the possibility of an electron exchange between an electrode and elements of the biological electron transfer chain in the presence of a mediator is proposed. This method is useful for studying any live cells (animal, plant, and microbial), including anaerobic, dormant, and spore cells. The sample preparation and measurement itself does not take more than 30 min. The detection limit in a volume of 15 ml amounts to 105 cells/ml. The applicability of the assessment method of the metabolic activity level during the transition of the bacteria Mycobacterium smegmatis into an uncultivable dormant state was demonstrated. This method is of special value for medicine and environmental control, detecting latent forms of pathogens. An optimal combination of the methods for the express analysis of latent pathogens is proposed.  相似文献   

17.
An express electrochemical method for determining the metabolic activity of live cells based on the possibility of an electron exchange between an electrode and elements of the biological electron transfer chain in the presence of a mediator is proposed. This method is useful for studying any live cells (animal, plant, and microbial), including anaerobic, dormant, and spore cells. The sample preparation and measurement itself does not take more than 30 min. The detection limit in a volume of 15 ml amounts to 10-5 cells/ml. The applicability of the assessment method of the metabolic activity level during the transition of the bacteria Mycobacterium smegmatis into an uncultivable dormant state was demonstrated. This method is of special value for medicine and environmental control, detecting latent forms of pathogens. An optimal combination of the methods for the express analysis of latent pathogens is proposed.  相似文献   

18.
Three metabolic models for the production of ethanol, glycerol, and carbohydrates in yeast are optimized with respect to different production rates. While originally nonlinear, all three optimization problems are reduced in such a way that methods of linear programming can be used. The optimizations lead to profiles of enzyme activities that are compatible with the physiology of the cells, which guarantees their viability and fitness, and yield higher rates of the desired final end products than the original systems. In order to increase ethanol rate production at least three times, six enzymes must be modulated. By contrast, when the production of glycerol or carbohydrates is optimized, modulation of just one enzyme (in the case of glycerol) or two enzymes (in the case of carbohydrates) is necessary to yield significant increases in product flux rate. Comparisons of our results with those obtained from other methods show great similarities and demonstrate that both are valid methods. The choice of one or the other method depends on the question of interest. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 758-772, 1997.  相似文献   

19.
Indentation using the atomic force microscope (AFM) has potential to measure detailed micromechanical properties of soft biological samples. However, interpretation of the results is complicated by the tapered shape of the AFM probe tip, and its small size relative to the depth of indentation. Finite element models (FEMs) were used to examine effects of indentation depth, tip geometry, and material nonlinearity and heterogeneity on the finite indentation response. Widely applied infinitesimal strain models agreed with FEM results for linear elastic materials, but yielded substantial errors in the estimated properties for nonlinear elastic materials. By accounting for the indenter geometry to compute an apparent elastic modulus as a function of indentation depth, nonlinearity and heterogeneity of material properties may be identified. Furthermore, combined finite indentation and biaxial stretch may reveal the specific functional form of the constitutive law--a requirement for quantitative estimates of material constants to be extracted from AFM indentation data.  相似文献   

20.
A simple and cheap device has been designed which makes it possible to quantify a vertical jump. The parameters which can be measured or calculated with this device include: height of the jump, duration of thrust, maximal velocity and thus the corresponding maximal power output. The device was tested on 22 young soccer players for whom the height of the jump (0.47 m, SEM 0.015) and maximal power output (34.9 W. kg-1, SEM 1.04) were considered. The device is proposed for assessing training methods and sports aptitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号