首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial lipid macroamphiphiles extracted with phenol/water can be purified in one step by hydrophobic interaction chromatography. Lipids and the major part of protein are separated from macroamphiphiles during phenol/water extraction. Coextracted nucleic acids, polysaccharides, and residual protein are effectively removed by column chromatography on octyl-Sepharose whereby macroamphiphiles are primarily adsorbed and later eluted with a buffered propanol gradient. The procedure is applicable to macroamphiphiles with various lipid structures as was demonstrated using the diacylglycerol-containing lipoglycan of Micrococcus luteus, the lipid A-containing lipopolysaccharide of Salmonella typhimurium, and the diglyceryl tetraether lipoglycans of Thermoplasma acidophilum and Thermoplasma volcanicum. On elution from octyl-Sepharose, separation into molecular species of different compositions was observed with the lipopolysaccharide of S. typhimurium and the lipoglycan of T. volcanicum. It was also shown that, after phenol/water extraction, membrane lipids are completely recoverable from the phenol layer, which makes it possible to isolate lipids along with macroamphiphiles from the same sample of bacteria.  相似文献   

2.
Mycobacterium tuberculosis (Mtb) virulence is decreased by genetic deletion of the lipoprotein LprG, but the function of LprG remains unclear. We report that LprG expressed in Mtb binds to lipoglycans, such as lipoarabinomannan (LAM), that mediate Mtb immune evasion. Lipoglycan binding to LprG was dependent on both insertion of lipoglycan acyl chains into a hydrophobic pocket on LprG and a novel contribution of lipoglycan polysaccharide components outside of this pocket. An lprG null mutant (Mtb ΔlprG) had lower levels of surface-exposed LAM, revealing a novel role for LprG in determining the distribution of components in the Mtb cell envelope. Furthermore, this mutant failed to inhibit phagosome-lysosome fusion, an immune evasion strategy mediated by LAM. We propose that LprG binding to LAM facilitates its transfer from the plasma membrane into the cell envelope, increasing surface-exposed LAM, enhancing cell envelope integrity, allowing inhibition of phagosome-lysosome fusion and enhancing Mtb survival in macrophages.  相似文献   

3.
The cell envelopes of gram-positive bacteria contain structurally diverse membrane-anchored macroamphiphiles (lipoteichoic acids and lipoglycans) whose functions are poorly understood. Since regulation of membrane composition is an important feature of adaptation to life at higher temperatures, we have examined the nature of the macroamphiphiles present in the thermophilic actinomycetes Thermobifida fusca and Rubrobacter xylanophilus. Following hot-phenol-water extraction and purification by hydrophobic interaction chromatography, Western blotting with a monoclonal antibody against lipoteichoic acid strongly suggested the presence of a polyglycerophosphate lipoteichoic acid in T. fusca. This structure was confirmed by chemical and nuclear magnetic resonance analyses, which confirmed that the lipoteichoic acid is substituted with β-glucosyl residues, in common with the teichoic acid of this organism. In contrast, several extraction methods failed to recover significant macroamphiphilic carbohydrate- or phosphate-containing material from R. xylanophilus, suggesting that this actinomycete most likely lacks a membrane-anchored macroamphiphile. The finding of a polyglycerophosphate lipoteichoic acid in T. fusca suggests that lipoteichoic acids may be more widely present in the cell envelopes of actinomycetes than was previously assumed. However, the apparent absence of macroamphiphiles in the cell envelope of R. xylanophilus is highly unusual and suggests that macroamphiphiles may not always be essential for cell envelope homeostasis in gram-positive bacteria.  相似文献   

4.
The cell envelopes of actinomycetes contain lipidated macroamphiphiles, of which the most extensively characterised are the lipoarabinomannans of mycobacteria and related bacteria. We have investigated the mycolic acid-containing actinomycete Gordonia bronchialis and identified the presence of a lipoarabinomannan-like lipoglycan. The extraction and purification procedures recovered a second amphiphilic fraction with properties suggesting a phosphatidylinositol mannoside, consistent with studies of other Gordonia species.Dedicated to the memory of our former colleague Dr. David Bendell.  相似文献   

5.
Innate immune recognition is the first line of host defense against invading microorganisms. It is a based on the detection, by pattern recognition receptors (PRRs), of invariant molecular signatures that are unique to microorganisms. TLR2 is a PRR that plays a major role in the detection of Gram-positive bacteria by recognizing cell envelope lipid-linked polymers, also called macroamphiphiles, such as lipoproteins, lipoteichoic acids and mycobacterial lipoglycans. These microbe-associated molecular patterns (MAMPs) display a structure based on a lipid anchor, being either an acylated cysteine, a glycosylated diacylglycerol or a mannosyl-phosphatidylinositol respectively, and having in common a diacylglyceryl moiety. A fourth class of macroamphiphile, namely lipoglycans, whose lipid anchor is made, as for lipoteichoic acids, of a glycosylated diacylglycerol unit rather than a mannosyl-phosphatidylinositol, is found in Gram-positive bacteria and produced by certain Actinobacteria, including Micrococcus luteus, Stomatococcus mucilaginosus and Corynebacterium glutamicum. We report here that these alternative lipoglycans are also recognized by TLR2 and that they stimulate TLR2-dependant cytokine production, including IL-8, TNF-α and IL-6, and cell surface co-stimulatory molecule CD40 expression by a human macrophage cell line. However, they differ by their co-receptor requirement and the magnitude of the innate immune response they elicit. M. luteus and S. mucilaginosus lipoglycans require TLR1 for recognition by TLR2 and induce stronger responses than C. glutamicum lipoglycan, sensing of which by TLR2 is dependent on TLR6. These results expand the repertoire of MAMPs recognized by TLR2 to lipoglycans based on a glycosylated diacylglycerol lipid anchor and reinforce the paradigm that macroamphiphiles based on such an anchor, including lipoteichoic acids and alternative lipoglycans, induce TLR2-dependant innate immune responses.  相似文献   

6.
Lipoglycans such as the mycobacterial lipoarabinomannans (LAM) are important cell envelope components of actinomycetes. To further our understanding of the diversity of these enigmatic macromolecules the lipoglycan composition of Dietzia maris has been investigated. Phenol-water extraction and hydrophobic interaction chromatography were used to purify a lipoglycan which was unusually small and predominantly lipomannan in nature. The presence of minor levels of arabinose along with components consistent with the presence of a phosphatidylinositol anchor suggest that this lipoglycan is a novel representative of the lipomannan/LAM structural archetype. This was further supported by the observed cross-reaction of the D. maris lipoglycan with an antiserum raised against LAM from Mycobacterium tuberculosis. These findings reveal a previously unsuspected diversity in the lipoglycan composition of the mycolic acid containing actinomycetes and are further discussed in relation to the apparent absence of phosphatidylinositolmannoside glycolipids in D. maris.  相似文献   

7.
Abstract A lipoglycan has been extracted from cells of Propionibacterium freudenreichii by the standard procedures used to isolate lipoteichoic acids from Gram-positive bacteria. The polymer was purified by chromatography and shown to contain mannose, inositol, glycerol, fatty acids and phosphate. The presence of the components of phosphatidylinositol suggests the lipoglycan may be a mannan anchored to the membrane by a covalently linked phosphatidylinositol although alternative structures cannot be excluded.  相似文献   

8.
The genus Corynebacterium is part of the phylogenetic group nocardioform actinomycetes, which also includes the genus Mycobacterium. Members of this phylogenetic group have a characteristic cell envelope structure, which is dominated by complex lipids and amongst these, lipoglycans are of particular interest. The disruption of NCgl2106 in C. glutamicum resulted in a mutant devoid of monoacylated phosphatidyl-myo-inositol dimannoside (Ac(1)PIM(2)) resulting in the accumulation of Ac(1)PIM(1) and cessation of phosphatidyl-myo-inositol (PI) based lipomannan (Cg-LM, now also termed 'Cg-LM-A') and lipoarabinomannan (Cg-LAM) biosynthesis. Interestingly, SDS-analysis of the lipoglycan fraction from the mutant revealed the synthesis of a single novel lipoglycan, now termed 'Cg-LM-B'. Further chemical analyses established the lipoglycan possessed an alpha-D: -glucopyranosyluronic acid-(1 --> 3)-glycerol (GlcAGroAc(2)) based anchor which was then further glycosylated by 8-22 mannose residues, with Man(12-20)GlcAGroAC(2) molecular species being the most abundant, to form a novel lipomannan structure (Cg-LM-B). The deletion of NCgl2106 in C. glutamicum has now provided a useful strain, in addition with a deletion mutant of NCgl0452 in C. glutamicum for the purification of Cg-LM-A and Cg-LM-B. Interestingly, both Cg-LM species induced a similar production of TNF-alpha by a human macrophage cell line suggesting that the phospho-myo-inositol residue of the PI-anchor does not play a key role in lipoglycan pro-inflammatory activity.  相似文献   

9.
Innate immune system is the first line of host defense against invading microorganisms. It relies on a limited number of germline-encoded pattern recognition receptors that recognize conserved molecular structures of microbes, referred to as pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs). Bacterial cell wall macroamphiphiles, namely Gram-negative bacteria lipopolysaccharide (LPS), Gram-positive bacteria lipoteichoic acid (LTA), lipoproteins and mycobacterial lipoglycans, are important molecules for the physiology of bacteria and evidently meet PAMP/MAMP criteria. They are well suited to innate immune recognition and constitute non-self signatures detected by the innate immune system to signal the presence of an infective agent. They are notably recognized via their lipid anchor by Toll-like receptors (TLRs) 4 or 2. Here, we review our current knowledge of the molecular bases of macroamphiphile recognition by TLRs, with a special emphasis on mycobacterial lipoglycan detection by TLR2.  相似文献   

10.
Cell envelope composition and organisation in the genus Rhodococcus   总被引:2,自引:0,他引:2  
A knowledge of the organisation of the rhodococcal cell envelope is of fundamental importance if the environmental and biotechnological significance of these bacteria are to be understood and succesfully exploited. The genus Rhodococcus belongs to a distinctive suprageneric taxon, the mycolata, which includes among others the genera Corynebacterium, Mycobacterium and Nocardia. Members of this taxon exhibit an unusual complexity in their cell envelope composition and organisation compared to other Gram-positive bacteria. Models that describe the architecture of the mycobacterial cell envelope are extrapolated here to provide a model of the rhodococcal cell envelope. The rhodococcal cell envelope is dominated by the presence of an arabinogalactan cell wall polysaccharide and large 2-alkyl 3-hydroxy branched-chain fatty acids, the mycolic acids, which are covalently assembled into a peptidoglycan–arabinogalactan–mycolic acid matrix. This review further emphasises that the mycolic acids in this complex form the basis of an outer lipid permeability barrier. The localisation and roles of other cell envelope components, notably complex free lipids, lipoglycans, proteins and lipoproteins are also considered.  相似文献   

11.
Mannose-capped lipoarabinomannan (ManLAM) is a complex lipoglycan abundantly present in the Mycobacterium tuberculosis cell envelope. Many biological properties have been ascribed to ManLAM, from directly interacting with the host and participating in the intracellular survival of M. tuberculosis, to triggering innate and adaptive immune responses, including the activation of CD1b-restricted T cells. Due to its structural complexity, ManLAM is considered a heterogeneous population of molecules which may explain its different biological properties. The presence of various modifications such as fatty acids, succinates, lactates, phosphoinositides and methylthioxylose in ManLAM have proven to correlate directly with its biological activity and may potentially be involved in the interactions between CD1b and the T cell population. To further delineate the specific ManLAM epitopes involved in CD1b-restricted T cell recognition, and their potential roles in mediating immune responses in M. tuberculosis infection, we established a method to resolve ManLAM into eight different isoforms based on their different isoelectric values. Our results show that a ManLAM isoform with an isoelectric value of 5.8 was the most potent in stimulating the production of interferon-γ in different CD1b-restricted T-cell lines. Compositional analyses of these isoforms of ManLAM revealed a direct relationship between the overall charge of the ManLAM molecule and its capacity to be presented to T cells via the CD1 compartment.  相似文献   

12.
Pathogenic staphylococci are now regarded in the scientific community as antibiotic resistant 'superbugs' because they have an amazing capacity to acquire resistance traits. Surprisingly, antibiotic development has decelerated. Promising targets for drug development are enzymes involved in the biosynthesis of cell envelope structures such as peptidoglycan, teichoic acids, membrane lipids, or cell wall associated adhesins. Compounds that inactivate or neutralize the most aggressive toxins such as the superantigens and the pore forming toxins have also been considered. In the past decade, global regulatory systems have been studied that contribute to virulence and might be candidates for target development. Targets that are particularly promising include all enzymatic reactions that are unique to bacteria and that are involved in central metabolism, such as methionine-tRNA(fMet) formyltransferase or the peptide deformylase, which have been successfully used for designing new inhibitors. There are also several known antibiotics that have roused new interest especially if they are active against multi-resistant staphylococci. Various cell wall components are promising candidates for active and passive immunization strategies such as capsule, slime, teichoic acids or cell wall bound adhesins. Several new targets for drugs or vaccines will arise from the functional analysis of the staphylococcal genomes that contain many hitherto unknown targets.  相似文献   

13.
A fast and sensitive HPLC method using fluorescence detection is developed to quantitate 1-pyrenyldiazomethane (PDAM) derivatized fatty acids derived from the lipid components of both the capsular meningococcal polysaccharide and other impurities such as endotoxin in various meningococcal vaccine samples. The HPLC method is capable of well resolving 13 relevant fatty acids within 40min by using a multi-stage acetonitrile/water gradient. Endotoxin values measured by HPLC well correlated with results from the standard Limulus amebocyte lysate (LAL) assay. Furthermore, the fatty acid profiles of various process intermediate samples as well as final purified polysaccharide products were determined to better understand and characterize the purification process.  相似文献   

14.
Mycobacterium spp. possess a complex cell envelope that consists of a plasma membrane, a peptidoglycan-arabinogalactan complex which in turn is esterified by mycolic acids that form with other non-bound lipids an asymmetric permeability barrier and an outer layer, also called a capsule in the case of pathogenic species. In order to investigate the functional roles of the cell envelope components, especially those of the major pathogens Mycobacterium tuberculosis and Mycobacterium leprae, it is necessary to fractionate the envelope by breaking the unusual wall that covers these bacteria. To this aim we first compared the efficiency of high pressure (cell disrupter/French press) with those of pathogen-compatible breakage methods such as sonication, bead beater and lysozyme treatment using the non-pathogenic Mycobacterium smegmatis. When the distribution of various specific markers of the cell envelope compartments, which include mycolic acids, arabinose, NADH oxidase activity, cell wall and cytosolic proteins, were determined sonication combined with lysozyme treatment was found to be the best option. The protocol of subcellular fractionation was then validated for pathogenic species by applying the method to Mycobacterium bovis BCG cells, an attenuated strain of the M. tuberculosis complex.  相似文献   

15.
In the present work we investigated the role of killed Propionibacterium acnes or a soluble polysaccharide extracted from bacterium cell wall in modulated experimental immunization with plasmidial DNA. We used a plasmid, p154/13, containing a gene-encoding catalytic domain of Trypanosoma cruzi (T. cruzi) trans-sialidase. As previously described, immunization of BALB/c mice with p154/13 elicited humoral, cell-mediated and protective immune responses against T. cruzi infection. In this study we describe that both P. acnes and its soluble polysaccharide fraction have the ability to modulate the immune response elicited by p154/13. Treatment with these adjuvants enhanced specific trans-sialidase Th1 immune response, as revealed by a lower IgG1/IgG2a ratio and stronger in vitro IFN-gamma synthesis by CD4+ T cells. The most important fact was that treatment with P. acnes or its soluble polysaccharide fraction in the presence of p154/13 significantly reduced the peak of parasitemia observed 7 to 8 days after T. cruzi challenge. These data suggest that P. acnes or its soluble polysaccharide fraction may improve the protective potential of a DNA vaccine against experimental T. cruzi infection.  相似文献   

16.
The WecA transferase is an integral membrane protein and a member of the polyprenyl phosphate N-acetylhexosamine-1-phosphate transferase superfamily. It initiates the biosynthesis of various bacterial cell envelope components such as the lipopolysaccharide O-antigen. We report on the first large-scale enzymatic synthesis, purification, and characterization of the undecaprenyl-pyrophosphoryl-N-acetylglucosamine product of the WecA transferase. This is an essential lipid intermediate for the biosynthesis of various bacterial cell envelope components. Its availability in a pure form will allow the biochemical and structural characterization of the various enzymes requiring it as a substrate for the synthesis of cell wall polymers.  相似文献   

17.
Rhodococcus is an important industrial microorganism that possesses diverse metabolic capabilities; it also has a cell envelope, composed of an outer layer of mycolic acids and glycolipids. Selected Rhodococcus species when induced are capable of transforming nitriles to the corresponding amide by the enzyme nitrile hydratase (NHase), and subsequently to the corresponding acid via an amidase. This nitrile biochemistry has generated interest in using the rhodococci as biocatalysts. It was hypothesized that altering sugars in the growth medium might impact cell envelope components and have effects on NHase. When the primary carbon source in growth media was changed from glucose to fructose, maltose, or maltodextrin, the NHase activity increased. Cells grown in the presence of maltose and maltodextrin showed the highest activities against propionitrile, 197 and 202?units/mg cdw, respectively. Stability of NHase was also affected as cells grown in the presence of maltose and maltodextrin retained more NHase activity at 55?°C (45 and 23?%, respectively) than cells grown in the presence of glucose or fructose (19 and 10?%, respectively). Supplementation of trehalose in the growth media resulted in increased NHase stability at 55?°C, as cells grown in the presence of glucose retained 40?% NHase activity as opposed to 19?% without the presence of trehalose. Changes in cell envelope components, such mycolic acids and glycolipids, were evaluated by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC), respectively. Changing sugars and the addition of inducing components for NHase, such as cobalt and urea in growth media, resulted in changes in mycolic acid profiles. Mycolic acid content increased 5 times when cobalt and urea were added to media with glucose. Glycolipids levels were also affected by the changes in sugars and addition of inducing components. This research demonstrates that carbohydrate selection impacts NHase activity and stability. Cell envelope components such as mycolic acids are also influenced by sugars and inducers such as cobalt and urea. This is information that can be useful when implementing rhodococcal catalysts in industrial applications.  相似文献   

18.
Mycolic acids are major and specific lipid components of the cell envelope of mycobacteria that include the causative agents of tuberculosis and leprosy, Mycobacterium tuberculosis and Mycobacterium leprae, respectively. Subtle structural variations that are known to be crucial for both their virulence and the permeability of their cell envelope occur in mycolic acids. Among these are the introduction of cyclopropyl groups and methyl branches by mycolic acid S-adenosylmethionine-dependent methyltransferases (MA-MTs). While the functions of seven of the M. tuberculosis MA-MTs have been either established or strongly presumed nothing is known of the roles of the remaining umaA gene product and those of M. smegmatis MA-MTs. Mutants of the M. tuberculosis umaA gene and its putative M. smegmatis orthologue, MSMEG0913, were created. The lipid extracts of the resulting mutants were analyzed in detail using a combination of analytical techniques such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and proton nuclear magnetic resonance spectroscopy, and chemical degradation methods. The M. smegmatis mutants no longer synthesized subtypes of mycolates containing a methyl branch adjacent to either trans cyclopropyl group or trans double bond at the "proximal" position of both alpha- and epoxy-mycolates. Complementation with MSMEG0913, but not with umaA, fully restored the wild-type phenotype in M. smegmatis. Consistently, no modification was observed in the structures of mycolic acids produced by the M. tuberculosis umaA mutant. These data proved that despite their synteny and high similarity umaA and MSMEG0913 are not functionally orthologous.  相似文献   

19.
The type VI secretion system (T6SS) is a versatile molecular weapon used by many bacteria against eukaryotic hosts or prokaryotic competitors. It consists of a cytoplasmic bacteriophage tail‐like structure anchored in the bacterial cell envelope via a cytoplasmic baseplate and a periplasmic membrane complex. Rapid contraction of the sheath in the bacteriophage tail‐like structure propels an inner tube/spike complex through the target cell envelope to deliver effectors. While structures of purified contracted sheath and purified membrane complex have been solved, because sheaths contract upon cell lysis and purification, no structure is available for the extended sheath. Structural information about the baseplate is also lacking. Here, we use electron cryotomography to directly visualize intact T6SS structures inside Myxococcus xanthus cells. Using sub‐tomogram averaging, we resolve the structure of the extended sheath and membrane‐associated components including the baseplate. Moreover, we identify novel extracellular bacteriophage tail fiber‐like antennae. These results provide new structural insights into how the extended sheath prevents premature disassembly and how this sophisticated machine may recognize targets.  相似文献   

20.
The cell envelope of Aeromonas salmonicida contains a lipopolysaccharide (LPS) essential for the physical integrity and functioning of bacterial cell membrane. Using a recently developed in-source fragmentation technique, we screened 39 typical and atypical isolates of A. salmonicida and established their O-chain polysaccharide structure by capillary electrophoresis-mass spectrometry (CE-MS), compositional and linkage analyses and comparison to the previously determined O-chain polysaccharide structure of A. salmonicida strain A449. These studies have demonstrated that A. salmonicida isolates fall into three distinct structural types, types A-C, based on chemical structures of their respective O-chain polysaccharide components. Subsequent immunoblotting and serological studies with salmon polyclonal antisera produced to formalin-fixed cells of A. salmonicida strains A449, N4705 and 33659 representing three structural types A-C revealed that variations in the O-chain polysaccharide structure have led to significant serological differences between strains belonging to type A and non-type A, where non-type A species include chemically separated structural types B and C. Due to the presence of common antigenic determinants shared by their respective O-chain polysaccharide components, serological cross-reactions were observed between A. salmonicida strains belonging to structural types B and C. These findings suggest the possibility of developing LPS-based classification system of A. salmonicida sub-species consisting of two serologically distinct types, type A and non-type A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号