首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BM Foda  KM Downey  JC Fisk  LK Read 《Eukaryotic cell》2012,11(9):1119-1131
Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3'-to-5' progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain.  相似文献   

2.
3.
The poly(A)-binding protein (PABP), a protein that contains four conserved RNA recognition motifs (RRM1-4) and a C-terminal domain, is expressed throughout the eukaryotic kingdom and promotes translation through physical and functional interactions with eukaryotic initiation factor (eIF) 4G and eIF4B. Two highly divergent isoforms of eIF4G, known as eIF4G and eIFiso4G, are expressed in plants. As little is known about how PABP can interact with RNA and three distinct translation initiation factors in plants, the RNA binding specificity and organization of the protein interaction domains in wheat PABP was investigated. Wheat PABP differs from animal PABP in that its RRM1 does not bind RNA as an individual domain and that RRM 2, 3, and 4 exhibit different RNA binding specificities to non-poly(A) sequences. The PABP interaction domains for eIF4G and eIFiso4G were distinct despite the functional similarity between the eIF4G proteins. A single interaction domain for eIF4G is present in the RRM1 of PABP, whereas eIFiso4G interacts at two sites, i.e. one within RRM1-2 and the second within RRM3-4. The eIFiso4G binding site in RRM1-2 mapped to a 36-amino acid region encompassing the C-terminal end of RRM1, the linker region, and the N-terminal end of RRM2, whereas the second site in RRM3-4 was more complex. A single interaction domain for eIF4B is present within a 32-amino acid region representing the C-terminal end of RRM1 of PABP that overlaps with the N-proximal eIFiso4G interaction domain. eIF4B and eIFiso4G exhibited competitive binding to PABP, supporting the overlapping nature of their interaction domains. These results support the notion that eIF4G, eIFiso4G, and eIF4B interact with distinct molecules of PABP to increase the stability of the interaction between the termini of an mRNA.  相似文献   

4.
The mitochondrial RNA-binding proteins (MRP) 1 and 2 play a regulatory role in RNA editing and putative role(s) in RNA processing in Trypanosoma brucei. Here, we report the purification of a high molecular weight protein complex consisting solely of the MRP1 and MRP2 proteins from the mitochondrion of T. brucei. The MRP1/MRP2 complex natively purified from T. brucei and the one reconstituted in Escherichia coli in vivo bind guide (g) RNAs and pre-mRNAs with dissociation constants in the nanomolar range, and efficiently promote annealing of pre-mRNAs with their cognate gRNAs. In addition, the MRP1/MRP2 complex stimulates annealing between two non-cognate RNA molecules suggesting that along with the cognate duplexes, spuriously mismatched RNA hybrids may be formed at some rate in vivo. A mechanism of catalysed annealing of gRNA/pre-mRNA by the MRP1/MRP2 complex is proposed.  相似文献   

5.
The U1A protein is a sequence-specific RNA binding protein found in the U1 snRNP particle where it binds to stem/loop II of U1 snRNA. U1A contains two 'RNP' or 'RRM' (RNA Recognition Motif) domains, which are common to many RNA-binding proteins. The N-terminal RRM has been shown to bind specifically to the U1 RNA stem/loop, while the RNA target of the C-terminal domain is unknown. Here, we describe experiments using a 102 amino acid N-terminal RRM of U1A (102A) and a 25-nucleotide RNA stem/loop to measure the binding constants and thermodynamic parameters of this RNA:protein complex. Using nitrocellulose filter binding, we measure a dissociation constant KD = 2 x 10(-11) M in 250 mM NaCl, 2 mM MgC2, and 10 mM sodium cacodylate, pH 6 at room temperature, and a half-life for the complex of 5 minutes. The free energy of association (delta G degrees) of this complex is about -14 kcal/mol in these conditions. Determination of the salt dependence of the binding suggests that at least 8 ion-pairs are formed upon complex formation. A mutation in the RNA loop sequence reduces the affinity 10 x, or about 10% of the total free energy.  相似文献   

6.
The gene encoding ribosomal protein L25, a primary rRNA-binding protein, was isolated from the protozoan parasite Trypanosoma brucei. Hybridization studies indicate that multiple copies of the gene are present per T. brucei haploid genome. The C-terminal domain of L25 protein from T. brucei is strikingly similar to L23a protein from rat, L25 proteins from fungal species, and L23 proteins from eubacteria, archaebacteria, and chloroplasts. A phylogenetic analysis of L23/25 proteins and the putative binding sites on their respective LSU-rRNAs (large subunit rRNAs) provides a rare opportunity to study molecular co-evolution between an RNA molecule and the protein that binds to it.  相似文献   

7.
Human neuronal Elav-like proteins contain three RNP-type RNA recognition motifs (RRMs). Previous reports demonstrated that a single RRM of the proteins is not sufficient to bind to the uridine-rich stretch in the 3' untranslated region of mRNAs and that the bi-RRM peptide consisting of the first two RRMs is necessary for the binding. The present study was designed to examine the potential contributions of the first two RRMs when binding to a cytokine mRNA. Deletions of the internal or terminal amino acid residues of the first RRM (RRM1) of the HuC/ple21 ELAV-like protein completely abolished RNA binding. However, removal of any region of the second RRM (RRM2) except for the eight amino acid residues, which correspond to the potent fourth beta-sheet structure of RRM2, did not affect RNA binding. Conjugation of the eight amino acid residues to RRM1 enhanced the RNA binding as well as the entire RRM2, indicating that the octapeptide of RRM2 can be compensated for by the binding function of RRM2. The present study also showed that the substitutions of glutamic acid at 42 for aspartic acid and leucine at 44 for phenylalanine in the first potent alpha-helix structure of RRM1, as were seen in another ELAV-like protein Hel-N1, markedly affected the RNA binding.  相似文献   

8.
Ciganda M  Williams N 《PloS one》2012,7(1):e30029
P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are essential and are involved in ribosome biogenesis. Here, we show that these proteins interact in vitro with the 5S rRNA with nearly identical binding characteristics in the absence of other cellular factors. The T. brucei 5S rRNA has a complex secondary structure and presents four accessible loops (A to D) for interactions with RNA-binding proteins. In other eukaryotes, loop C is bound by the L5 ribosomal protein and loop A mainly by TFIIIA. The binding of P34 and P37 to T. brucei 5S rRNA involves the LoopA region of the RNA, but these proteins also protect the L5 binding site located on LoopC.  相似文献   

9.
RNA recognition motif (RRM) domains bind both nucleic acids and proteins. Several proteins that contain two closely spaced RRM domains were previously found in protein complexes formed by the cap region of human topoisomerase I, a nuclear enzyme responsible for DNA relaxation or phosphorylation of SR splicing proteins. To obtain molecular insight into specific interactions between the RRM proteins and the cap region of topo I we examined their binary interactions using the yeast two-hybrid system. The interactions were established for hnRNP A1, p54(nrb) and SF2/ASF, but not for hnRNP L or HuR. To identify the amino acid pattern responsible for binding, experimental mutagenesis was employed and computational modelling of these processes was carried out. These studies revealed that two RRM domains and six residues of the consensus sequence are required for the binding to the cap region. On the basis of the above data, a structural model for the hnRNP A1-topoisomerase I complex was proposed. The main component of the hnRNP A1 binding site is a hydrophobic pocket on the beta-surface of the first RRM domain, similar to that described for Y14 protein interacting with Mago. We demonstrated that the interaction between RRM domains and the cap region was important for the kinase reaction catalyzed by topoisomerase I. Together with the previously described inhibitory effect of RRM domains of SF2/ASF on DNA cleavage, the above suggests that the binding of RRM proteins could regulate the activity of topoisomerase I.  相似文献   

10.
One of the unique aspects of RNA processing in trypanosomatid protozoa is the presence of a cap 4 structure (m7Gpppm2(6)AmpAmpCmpm3Um) at the 5' end of all mRNAs. The cap 4 becomes part of the mRNA through trans-splicing of a 39-nucleotide-long sequence donated by the spliced leader RNA. Although the cap 4 modifications are required for trans-splicing to occur, the underlying mechanism remains to be determined. We now describe an unconventional nuclear cap binding complex (CBC) in Trypanosoma brucei with an apparent molecular mass of 300 kDa and consisting of five protein components: the known CBC subunits CBP20 and importin-alpha and three novel proteins that are only present in organisms featuring a cap 4 structure and trans-splicing. Competitive binding studies are consistent with a specific interaction between the CBC and the cap 4 structure. Downregulation of several individual components of the T. brucei CBC by RNA interference demonstrated an essential function at an early step in trans-splicing. Thus, our studies are consistent with the CBC providing a mechanistic link between cap 4 modifications and trans-splicing.  相似文献   

11.
12.
The Rbp proteins in cyanobacteria are RNA-binding proteins with a single RNA recognition motif or RRM. A comprehensive assembly of genomic data suggests that there are two major classes of Rbp proteins (classes I and II) that diverged before the diversification of cyanobacteria. Class I proteins are further classified into two types with or without a C-terminal glycine-rich domain. The results of selection from a random RNA pool suggest that RbpA1 (class I) has affinity to C-rich and G-rich sequences. In vitro RNA binding assay with homopolymers indicated that class II protein has low affinity to poly(G) in contrast with class I proteins. Site-specific mutagenesis analysis of the RRM in RbpA1 showed that the aromatic residues Tyr4 or Phe46 are important in RNA binding as well as maintenance of secondary structure. We also tested various truncated proteins lacking the C-terminal domain as well as point mutants. Most of these proteins exhibited decreased affinity to RNA. Circular dichroism analysis as well as chromatographic analysis showed that Tyr4 and Phe46 are also important in maintaining the structure of RbpA1 protein. The C-terminal glycine-rich domain itself does not contribute much to the RNA-binding, but Arg83 which is located close to the C-terminal end of RRM is important in the RNA-binding.  相似文献   

13.
14.
L J Otero  M P Ashe    A B Sachs 《The EMBO journal》1999,18(11):3153-3163
Translation initiation in extracts from Saccharomyces cerevisiae involves the concerted action of the cap-binding protein eIF4E and the poly(A) tail-binding protein Pab1p. These two proteins bind to translation initiation factor eIF4G and are needed for the translation of capped or polyadenylated mRNA, respectively. Together, these proteins synergistically activate the translation of a capped and polyadenylated mRNA. We have discovered that excess Pab1p also stimulates the translation of capped mRNA in extracts, a phenomenon that we define as trans-activation. Each of the above activities of Pab1p requires its second RNA recognition motif (RRM2). We have found that RRM2 from human PABP cannot substitute functionally for yeast RRM2. Using the differences between human and yeast RRM2 sequences as a guide, we have mutagenized yeast RRM2 and discovered residues that are required for eIF4G binding and poly(A)-dependent translation but not for trans-activation. Similarly, other residues within RRM2 were found to be required for trans-activation but not for eIF4G binding or poly(A)-dependent translation. These data show that Pab1p has at least two biochemically distinct activities in translation extracts.  相似文献   

15.
By virtue of its preferential binding to poly(U) tails on small RNA precursors and nuclear localisation motif, the La protein has been implicated for a role in the stabilisation and nuclear retention of processing intermediates for a variety of small RNAs in eukaryotic cells. As the universal substrate for trans-splicing, the spliced leader RNA is transcribed as a precursor with just such a tail. La protein was targeted for selective knockdown by inducible RNA interference in Trypanosoma brucei. Of three RNA interference strategies employed, a p2T7-177 vector was the most effective in reducing both the La mRNA as well as the protein itself from induced cells. In the relative absence of La protein T. brucei cells were not viable, in contrast to La gene knockouts in yeast. A variety of potential small RNA substrates were examined under induction, including spliced leader RNA, spliced leader associated RNA, the U1, U2, U4, and U6 small nuclear RNAs, 5S ribosomal RNA, U3 small nucleolar RNA, and tRNATyr. None of these molecules showed significant variance in size or abundance in their mature forms, although a discrete subset of intermediates appear for spliced leader RNA and tRNATyr intron splicing under La depletion conditions. 5'-end methylation in the spliced leader RNA and U1 small nuclear RNA was unaffected. The immediate cause of lethality in T. brucei was not apparent, but may represent a cumulative effect of multiple defects including processing of spliced leader RNA, tRNATyr and other unidentified RNA substrates. This study indicates that La protein binding is not essential for maturation of the spliced leader RNA, but does not rule out the presence of an alternative processing pathway that could compensate for the absence of normally-associated La protein.  相似文献   

16.
Trypanosomatids, such as the sleeping sickness parasite Trypanosoma brucei, contain a ~ 20S RNA-editing complex, also called the editosome, which is required for U-insertion/deletion editing of mitochondrial mRNAs. The editosome contains a core of 12 proteins including the large interaction protein A1, the small interaction protein A6, and the editing RNA ligase L2. Using biochemical and structural data, we identified distinct domains of T. brucei A1 which specifically recognize A6 and L2. We provide evidence that an N-terminal domain of A1 interacts with the C-terminal domain of L2. The C-terminal domain of A1 appears to be required for the interaction with A6 and also plays a key role in RNA binding by the RNA-editing ligase L2 in trans. Three crystal structures of the C-terminal domain of A1 have been elucidated, each in complex with a nanobody as a crystallization chaperone. These structures permitted the identification of putative dsRNA recognition sites. Mutational analysis of conserved residues of the C-terminal domain identified Arg703, Arg731 and Arg734 as key requirements for RNA binding. The data show that the editing RNA ligase activity is modulated by a novel mechanism, i.e. by the trans-acting RNA binding C-terminal domain of A1.  相似文献   

17.
18.
It was reported previously that four baby hamster kidney (BHK) proteins with molecular masses of 108, 60, 50, and 42 kDa bind specifically to the 3'-terminal stem-loop of the West Nile virus minus-stand RNA [WNV 3'(-) SL RNA] (P. Y. Shi, W. Li, and M. A. Brinton, J. Virol. 70:6278-6287, 1996). In this study, p42 was purified using an RNA affinity column and identified as TIAR by peptide sequencing. A 42-kDa UV-cross-linked viral RNA-cell protein complex formed in BHK cytoplasmic extracts incubated with the WNV 3'(-) SL RNA was immunoprecipitated by anti-TIAR antibody. Both TIAR and the closely related protein TIA-1 are members of the RNA recognition motif (RRM) family of RNA binding proteins. TIA-1 also binds to the WNV 3'(-) SL RNA. The specificity of these viral RNA-cell protein interactions was demonstrated using recombinant proteins in competition gel mobility shift assays. The binding site for the WNV 3'(-) SL RNA was mapped to RRM2 on both TIAR and TIA-1. However, the dissociation constant (K(d)) for the interaction between TIAR RRM2 and the WNV 3'(-) SL RNA was 1.5 x 10(-8), while that for TIA-1 RRM2 was 1.12 x 10(-7). WNV growth was less efficient in murine TIAR knockout cell lines than in control cells. This effect was not observed for two other types of RNA viruses or two types of DNA viruses. Reconstitution of the TIAR knockout cells with TIAR increased the efficiency of WNV growth, but neither the level of TIAR nor WNV replication was as high as in control cells. These data suggest a functional role for TIAR and possibly also for TIA-1 during WNV replication.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号