首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
In two trials involving the artificial insemination of 194 ewes, the fertility of ram semen was examined following freezing, either in pellet form or in straws, and after storage in a chilled state (15 degrees C) for up to 16 hours. Estrus was synchronized in ewes by intravaginal sponge (MAP) treatment for 14 days. At sponge removal 600 IU PMSG was injected and the ewes received two inseminations 50 and 60 hours later. Fertility was assessed at lambing. In trial 1, the mean lambing rate of 52% (16 31 ) for semen frozen in pellets was higher than 29% (9 31 ) for semen frozen in straws but this difference was not significant. In trial 2, ewes inseminated with chilled semen and semen frozen in pellets had lambing rates of 83% (44 53 ) and 55% (44 79 ) respectively (P<0.001).  相似文献   

2.
In three experiments, the onset of oestrus, time of ovulation and lambing after intrauterine insemination with frozen-thawed semen were examined following synchronisation of oestrus using intravaginal progestagen-impregnated sponges (inserted for 12 days) and an injection of PMSG at sponge removal.

The number (and percentage) of ewes detected in oestrus 12, 24, 36, 48, 60 and 72 h after sponge removal was 1 (0.3), 2 (0.6), 17 (5.2), 120 (36.7), 65 (20.0) and 10 (3.1) respectively. One hundred and twelve ewes (34.3%) remained unmarked. Egg fertilisation rates were not different between ewes irrespective of time of onset of oestrus or whether or not ewes were marked.

The median time of ovulation with respect to sponge removal (with 95% fiducial limits) for ewes joined with vasectomised rams (10:1) at spronge removal (teased ewes) was 55.8 h (54.61–57.09) and for unteased ewes 59.7 h (58.27–61.12).

In the third experiment, a total of 394 ewes were inseminated by laparoscopy with frozen-thawed semen. The percentage of ewes lambing and lambs born per ewe inseminated, and number of lambs born per ewe lambing for inseminations 48, 60, 72 and 78 h after sponge removal were 45.9, 57.7 and 1.25; 55.1, 72.0 and 1.31; 57.4, 80.9 and 1.41; and 39.3, 60.7 and 1.54, and for 59 control ewes receiving fresh semen by cervical insemination 47.5, 69.5 and 1.46 respectively. The lambing data after insemination with frozen semen was not different to that of the controls. The percentage of ewes lambing and lambs born per ewe inseminated increased with time of insemination at 48, 60 and 72 h (linear, P < 0.01) but was lower for inseminations at 78 h after sponge removal. Number of lambs born per ewe lambing increased with time of insemination after sponge removal (linear, P < 0.05).  相似文献   


3.
Progestagen-impregnated vaginal sponges + PMSG were used to synchronize oestrus in crossbred adult ewes which were inseminated 56 h after sponge removal with 0.5 ml diluted semen containing 400, 200, 100, 50 or 25 x 10(6) spermatozoa per insemination. The diluent was skim milk-citrate or pooled seminal plasma. There was no difference in reproductive performance due to the insemination medium. Fertility (no. of ewes lambing) after insemination of 400 or 200 x 10(6) spermatozoa was 68% and was similar to that observed after natural service at progestagen-induced oestrus. When less than or equal to 100 x 10(6) spermatozoa were inseminated, fertility fell markedly and the number of lambs per ewe inseminated decreased. A decrease in litter size also occurred. The data indicate that insemination of 200 x 10(6) spermatozoa, i.e. less than 10% of the number in a single ram ejaculate, allows normal conception rates in progestagen-treated ewes.  相似文献   

4.
A transcervical technique (the Guelph System for transcervical AI) was used to inseminate 2060 ewes on 65 farms (average 31 ewes, range 5 to 107) in Ontario, Canada, from October 1990 to September 1992, using previously frozen semen. Estrus was synchronized using progestagen pessaries and PMSG with median inseminations done at 54 h from pessary removal. Maiden ewes were not included. Only ewes in which the cervix could be penetrated were inseminated with 150 million spermatozoa per insemination. A total of 1809 were penetrated and inseminated (penetration rate 87.8%). Success of penetration increased from 76.3% in the first 500 ewes to 97.9% in the last 500 (P=0.01). Cervical penetration was more successful in ewes in the accelerated lambing program (92.3%, average 3.1 mo since the previous lambing) than those in the annual lambing program (82.4%, average 7.0 mo since the previous lambing; P=0.06). The lambing rate for ewes bred during the combined traditional breeding seasons (Fall of 1990, 1991, 1992) was 50.7% compared to 24.4% for ewes bred at other periods (P=0.00001). The average time required for handling and insemination decreased from 8.62 min in the first 500 ewes to 3.62 min in the last 500 ewes. The Guelph System for Transcervical AI was found to be successful for cervical penetration in most ewes. Penetration success was affected by period since the last lambing and by inseminator experience. The lambing rate was higher for ewes bred during the traditional Fall breeding seasons than during other times of the year.  相似文献   

5.
In this study, we tested the hypothesis that insemination of mares with twice the recommended dose of cooled semen (2 x 10(9) spermatozoa) would result in higher pregnancy rates than insemination with a single dose (1 x 10(9) spermatozoa) or with 1 x 10(9) spermatozoa on each of 2 consecutive days. A total of 83 cycles from 61 mares was used. Mares were randomly assigned to 1 of 3 treatment groups when a 40-mm follicle was detected by palpation and ultrasonography. Mares in Group 1 were inseminated with 1 x 10(9) progressively motile spermatozoa that had been cooled in a passive cooling unit to 5 degrees C and stored for 24 h. A second aliquot of semen from the same collection was stored for an additional 24 h and inseminated at 48 h after collection. Mares in Group 2 were inseminated once with 1 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. Group 3 mares were inseminated once with 2 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. All mares were given 2500 IU i.v. hCG at the first insemination. Pregnancy was determined by ultrasonography 12, 14 and 16 d after ovulation. On Day 16, mares were administered i.m. 10 mg of PGF2 alpha and, upon returning to estrus, were randomly reassigned to a group for repeated treatment. Semen was collected from one of 3 stallions every 3 d; mares with a 40-mm ovarian follicle were inseminated with semen from the stallion collected on the preceding day. Semen was allocated into doses containing 1 x 10(9) progressively motile spermatozoa, diluted with dried skim milk-glucose extender to a concentration of 25 x 10(6) motile spermatozoa/ml (total volume 40 ml), placed in a passive cooling unit and cooled to 5 degrees C for 24 or 48 h. Response was measured by number of mares showing pregnancy. Data were analyzed by Chi square. Mares inseminated twice with 1 x 10(9) progressively motile spermatozoa on each of two consecutive days had a higher pregnancy rate (16/25, 64%; P < 0.05) than mares inseminated once with 1 x 10(9) progressively motile spermatozoa (9/29, 31%) or those inseminated once with 2 x 10(9) progressively motile spermatozoa (12/29, 41%). Pregnancy rates did not differ significantly (P > 0.10) among stallions (69, 34 and 32%). Interval from last insemination to ovulation was 0.9, 2.0 and 2.0 d for mares in Groups 1, 2 and 3, respectively. Based on these results, the optimal insemination regimen is a dose of 1 x 10(9) progressively motile spermatozoa given on two consecutive days. However, a shorter interval (< or = 24 h rather than > 0.9 d) between insemination and ovulation may affect pregnancy rates, and needs to be investigated.  相似文献   

6.
Ram semen was prepared in a buffered glucose-saline solution containing 3% (v/v) egg yolk so that insemination doses of 25 or 100 million spermatozoa in volumes of 50 or 250 μl could be given per ewe at artificial insemination (AI). Fertility was significantly reduced by dilution and, within the treatments of diluted semen, significantly higher lambing rates followed the use of doses of 100 million spermatozoa. The volume of the AI dose had no significant effect on fertility.Of 945 inseminations performed using diluted semen, 388 were with samples that had been cooled to 5°C and stored chilled for 5 or 18 hr. The mean lambing result of 40% for freshly diluted semen was significantly higher than 31.6% and 30.2% for samples stored chilled for 5 and 18 hr respectively. Ewes inseminated with doses of chilled semen containing 25 million spermatozoa had a low lambing rate of 21.3%. The presence of 7.5% glycerol (v/v) in the diluent did not significantly affect the fertility of chilled semen.  相似文献   

7.
Three experiments were conducted to examine the effect of dose of inseminate, number of uterine horns inseminated and site of insemination on subsequent fertility of Merino ewes after synchronisation of oestrus, with progestagen-impregnated sponges (inserted for 12 days) and an injection of PMSG, and intrauterine insemination with frozen-thawed semen.The percentages of ewes lambing after insemination with 0.5, 5, 25 and 50 × 106 spermatozoa were 29.3, 26.8, 56.3 and 62.1% respectively. A similar trend was observed in a second test resulting in 23.5, 38.8 and 53.1% ewes lambing after insemination with 5, 10 and 20 × 106 spermatozoa respectively.The percentage of ewes lambing was higher for ewes inseminated in two uterine horns than one horn (76.8 vs. 44.9, P < 0.001). When semen was deposited in the tip, middle and bottom of the uterine horn, the percentages of ewes lambing and lambs born per ewe inseminated were 43.6 and 52.7, 52.8 and 84.9, and 41.2 and 64.7% respectively. Although site of insemination did not affect the percentage of ewes lambing, the percentage of lambs born per ewe inseminated was higher after insemination in the middle of the uterine horn than at the other sites (P < 0.001).  相似文献   

8.
The objective of this study was to design an AI protocol using cooled semen to obtain pregnancies in the llama. Each raw ejaculate was subdivided into four aliquots which were extended 1:1 with: (1) 11% lactose-egg yolk (L-EY), (2) Tris-citrate-fructose-egg yolk (T-F-EY), (3) PBS-llama serum (S-PBS) and (4) skim milk-glucose (K). Each sample reached 5°C in 2.5 h and remained at that temperature during 24 h. Percentages of the semen variables (motility, live spermatozoa) in ejaculates and samples cooled with L-EY were significantly greater than those obtained when cooling with the other extenders; therefore this extender was used (1:1) for all inseminations. Females were randomly divided into four groups (A-D) according to insemination protocol. Group A: females were inseminated with a fixed dose of 12 × 10(6) live spermatozoa kept at 37°C. Group B: females were inseminated with a fixed dose of 12 × 10(6) live spermatozoa, cooled to 5°C and kept for 24 h. Group C: females were inseminated with the whole ejaculate (variable doses), cooled to 5°C and kept for 24 h. These groups (A-C) were inseminated between 22 and 24 h after induction of ovulation. Group D: females were inseminated with the whole ejaculate (variable doses), cooled to 5°C, kept for 24 h and AI was carried out within 2 h after ovulation. Pregnancy rates were 75%, 0%, 0% and 23% for groups A, B, C and D respectively. These results indicate that it is possible to obtain llama pregnancies with AI using cooled semen and that the success of the technique would depend on the proximity to ovulation.  相似文献   

9.
Accelerated lambing system is heavily reliant on reproductive technologies meant to enable off the season breeding in sheep. Therefore, the present study was programmed to assess the effect of breeding season (BS) on fertility of sheep following estrus synchronization (ES) and fixed time artificial insemination (FTAI). A total of 248 and 365 ewes were synchronized and inseminated during the BS (Febuary–March and July–September) and non-breeding season (NBS) respectively, during 2012–14. Synchronization of estrus was done by AVIKESIL-S, intra-vaginal progesterone sponges kept in situ in vagina for 12 days. 200 IU eCG was administered intramuscularly on 12th day after sponge withdrawal. FTAI was performed twice in ewes exhibiting signs of estrus at 48 and 56h after sponge removal, using liquid chilled semen of Patanwadi/Malpura rams containing 100 million sperm. Breeding season had no significant (p<0.05) effect on estrus synchronization. The estrous responses during the BS and NBS were 84.68% and 83.29% respectively. The lambing percentage during BS was 66.67%, which is significantly (p<0.05) higher than the lambing percentage of NBS (57.57%). Although, the lambing percentage in NBS maneuvered ewes were lower than the BS ewes but still the technology can be used to offset the effect of anestrus and to augment production in sheep.  相似文献   

10.
Ram semen was processed for freezing after initial dilution with a modified Tris-fructose diluent. Two aliquots were processed by cooling gradually to 5 degrees C, further dilution, equilibration and freezing in 0.5 ml straws either in pressurized liquid nitrogen (LN(2)) vapor (Method A) or on a block of dry ice (Method B). A third aliquot was cooled rapidly to 16 degrees C and then slowly to 5 degrees C, diluted further, equilibrated and frozen in straws in pressurized LN(2) vapor (Method C). The second dilution was carried out using a new diluent based on dextran-lactose. The diluted semen was equilibrated for 2 h before freezing. Semen was evaluated by artificial insemination (AI). The fertility of ewes bred by a double insemination with frozen-thawed semen processed by Methods A, B and C was 73% (n = 33), 67% (n = 30) and 80% (n = 30), respectively. In comparison, the fertility of ewes inseminated with fresh semen was 93% (n = 31). These preliminary data indicate an acceptable fertility can be achieved by AI with frozen-thawed semen processed using improved procedures.  相似文献   

11.
A total of 415 fat tailed ewes were randomly assigned to two groups to assess the effect of duration of melengestrol acetate (MGA) (9 versus 12d) administration on reproductive parameters associated with laparoscopic artificial insemination. At the end of MGA treatment, ewes in each group were subdivided and inseminated with one of two different insemination doses (10×10(7) or 20×10(7) sperm per 0.5 ml insemination dose) of fresh diluted semen. Inseminations were carried out 11-18 h after first detected estrus. Ewes were screened for their return to oestrus from 10 to 21 days post AI and inseminated at their returned oestrus. Pregnancy diagnosis was done from approximately 55 days after insemination in both synchronized and return estrus. For short (9-day) and long (12-day) term MGA treated groups, estrus rates were 62% versus 89% (P<0.0001), respectively. Ewes (n=115) that returned to estrus were inseminated (7-11h after estrus detection) with fresh diluted semen at different doses (20×10(7) or 40×10(7) or 60×10(7) sperm per 0.5 ml insemination dose). Pregnancy rates were 41% and 44% for short term and long term MGA treated ewes, respectively. Pregnancy rate of ewes which returned to oestrus was 53.4%. There was a significant (P<0.05) increase in pregnancy rates (38-52% for 11-16 h; 63% for 17-18 h) when insemination was held at 17-18 h after first detected estrus following MGA treatments. Pregnancy rates were found to be similar in ewes inseminated with 10×10(7) (36%) or 20×10(7) (47%) motile spermatozoa at first AI, and 20×10(7) (44%) or 40×10(7) (59%) or 60×10(7)(48%) at second AI. It was concluded that short term MGA treated ewes were recorded with lower estrus rates but was similar to pregnancy rates with long term MGA treatment. Acceptable pregnancy rates were achieved in MGA induced estrus when insemination is conducted at 17-18 h after estrus onset and with 20×10(7) sperm per insemination dose.  相似文献   

12.
The widespread use of artificial insemination (AI) in sheep is currently prevented due to the lack of a cost effective insemination technique utilising frozen-thawed semen. The objective of the present study was to determine if the deposition of frozen-thawed semen in the vaginal fornix would result in a pregnancy rate comparable to that achieved following cervical insemination. Multiparous ewes of various breeds were synchronised and inseminated into either the vaginal fornix (n=78) or the cervix (n=79), at 57 h post sponge removal, with frozen-thawed semen. Information on mucus secretion and the depth to which it was possible to penetrate the cervix at insemination (cervically inseminated ewes only) was recorded at the time of AI. Pregnancy rate was subsequently determined either by return to service (oestrus) or after slaughter 30 days post insemination. Insemination site did not significantly influence pregnancy rate using frozen-thawed semen (36.2% compared to 27.6% for cervical and vaginal fornix insemination, respectively; P=0.26). Whilst depth of cervical penetration was positively associated with pregnancy rate (P<0.05), this association needs to be interpreted with caution as none of the ewes where the cervix could not be penetrated (score=0) was pregnant. In conclusion, pregnancy rate following insemination of frozen-thawed semen into the vaginal fornix was within 10% points of that obtained following cervical AI of frozen-thawed semen. As insemination into the vaginal fornix is technically easier than cervical insemination, it may be more practical for use in large scale applications.  相似文献   

13.
Three experiments were conducted to evaluate the effects of egg yolk and(or) glycerol added to a nonfat dried skim milk-glucose (NDSMG) extender on motion characteristics and fertility of stallion spermatozoa. In Experiment 1, ejaculates from each of 8 stallions were exposed to each of 4 extender treatments: 1) NDSMG, 2) NDSMG + 4% egg yolk (EY), 3) NDSMG + 4% glycerol (GL), and 4) NDSMG + 4% egg yolk + 4% glycerol (EY + GL). Samples were cooled at -0.7 degrees C/min from 37 to 20 degrees C; subsamples were then cooled at -0.05 or -0.5 degrees C/min from 20 to 5 degrees C. Percentages of motile spermatozoa (MOT) and progressively motile spermatozoa (PMOT) were determined at 6, 24 and 48 h after initiation of cooling. There was no overall effect (P > 0.05) of cooling rate. PMOT was highest (P < 0.05) for spermatozoa extended in NDSMG + GL at 48 h. At 24 and 48 h, MOT and PMOT were lowest (P < 0.05) for spermatozoa extended in NDSMG + EY. In Experiment 2, ejaculates from 8 stallions were exposed to each of 4 treatments: 1) NDSMG, 2) NDSMG + EY, 3) semen centrifuged in NDSMG and resuspended in NDSMG, and 4) semen centrifuged in NDSMG and resuspended in NDSMG + EY. Samples were cooled from 20 to 5 degrees C at each of 2 rates (-0.05, -0.5 degrees C/min). A detrimental interaction between seminal plasma and egg yolk was noted for PMOT at 6 h and for both MOT and PMOT at > or = 24 h postcooling. Experiment 3 determined if egg yolk or glycerol affected fertility. The seminal treatments were 1) NDSMG, 2) NDSMG + EY with previous removal of seminal plasma, and 3) NDSMG + GL. All samples were cooled to 5 degrees C and stored 24 h before insemination. Embryo recovery rates 7 d after ovulation were lower for mares inseminated with spermatozoa cooled in NDSMG + EY (17%, 4/24) or NDSMG + GL (13%, 3/24) extenders, than semen cooled in NDSMG (50%, 12/24). We concluded that egg yolk (with seminal plasma removal) or glycerol added to NDSMG extender did not depress MOT or PMOT of cooled stallion spermatozoa but adversely affected fertility.  相似文献   

14.
We studied the influence of two different extenders, a milk-based versus a TRIS-based extender, using a split-sample technique, on fertility after single and double vaginal inseminations in natural estrous in Norwegian Crossbred ewes. Semen from 21 Norwegian Crossbred rams, all aged approximately 0.5 years, was used for AI of totally 561 Norwegian Crossbred ewes housed at 37 different farms. The farmers performed the inseminations themselves. The ewes were allocated to four parallel groups based on the two extenders and single or double inseminations (2 x 2). The farmers were recommended to inseminate the ewes between 12 and 24 h after detection of natural standing estrous. Vaginal insemination with cooled liquid semen diluted in the milk-based extender resulted in a statistically significant (P<0.01) better fertility of about 10% units both as 25-day NR (non return rate)-and lambing rates, compared with semen diluted in the TRIS-based extender. Double inseminations gave significantly higher (P=0.03) fertility results for both extenders expressed as 25-day NR results, but was not quite statistically significant when expressed as lambing rates (P=0.06) compared with single insemination. The overall 25-day NR results for the milk-based extender (66.4%) after single inseminations is in accordance with both the national results (67.1%) based on vaginal inseminations of 11,377 ewes, as well as with the results from a previous study in the same region achieving a 25-day NR results of 63.3%. In conclusion, liquid ram semen diluted in a milk-based extender and vaginally inseminated once in natural heat, with a semen dose of 150 x 10(6) spermatozoa, gave acceptable fertility results and is to be recommended as the method of choice in Norway.  相似文献   

15.
Twenty ewes were used as donors in a 2x2 factorial design experiment to investigate the effects of two different insemination times (48 vs 60 h after pessary withdrawal), with or without sedation, on the ovum recovery rate 5 d after insemination, the proportion of transferable embryos recovered, and the subsequent survival rate of embryos transferred to recipients. The ovum recovery rate following intauterine insemination at 48 h after progestagen pessary withdrawal was 63.8 and 53.4% for sedated and nonsedated control ewes, respectively. Following intrauterine insemination at 60 h the corresponding values for sedated and control ewes were 72.6 and 73.9%, respectively. The proportion of transferable quality embryos recovered was not affected by sedation but was improved by insemination at 48 h rather than 60 h after pessary withdrawal (100 vs 35.4%). Embryo survival following laparoscopic transfer to recipients from donor ewes inseminated at 48 h, with or without sedation was 38.8% (7 18 ) and 50% (7 14 ), respectively. Following intrauterine insemination of the donors at 60 h, the survival rate in recipients was reduced for embryos transferred from both the sedated and control ewes to 6.25% (1 16 ) and 36.3% (4 11 ). It is concluded that delaying the timing of intrauterine insemination relative to pessary withdrawal and the use of acepromazine maleate as a sedative at the time of insemination are deleterious to embryo development and subsequent viability.  相似文献   

16.
It has become a common practice in the equine breeding industry to send 2 insemination doses for breeding with transported cooled semen, one to be used for the initial insemination upon arrival, and the other to be held a second insemination the next day. One fertile stallion and 36 fertile mares were used to determine if breeding once with 1 dose of semen cooled for 24 h would improve fertility compared with breeding twice, 1 d apart, with half the dose of semen cooled for 24 h on the first day of breeding and half cooled for 48 h on the second day of breeding. Mares were given two intramuscular injections of 10 mg PGF2 alpha 14 d apart. Following the second injection, mares were teased with a stallion and their ovaries were scanned by transrectal ultrasonography daily. When a dominant follicle (> 35 mm diameter) was detected, 1500 units hCG were injected intravenously, and the mares were inseminated. Semen was collected in advance of anticipated breeding, mixed in nonfat dry milk solids-glucose extender to a concentration of 25 million sperm/mL, and placed in 2 commercial cooling containers for 24 or 48 h of storage prior to breeding. Mares were randomly assigned to 1 of 2 insemination treatment groups: 1) Group T1 (n = 18), in which mares were inseminated on the day of hCG injection with 500 million spermatozoa cooled for 24 h, or 2) Group T2 (n = 18), in which mares were inseminated on the day of hCG injection with 250 million spermatozoa cooled for 24 h, and again on the following day with 250 million spermatozoa cooled for 48 h. Pregnancy status was confirmed by transrectal ultrasonographic examination at 14 and 16 d after ovulation. Pregnancy rates were the same for both insemination treatment groups (12/18; 67%). There was no advantage to holding half of the insemination dose for rebreeding on the following day.  相似文献   

17.
The effect of different thawing procedures for ram semen frozen in minitubes and mini straws on the fertility of sheep was tested in a field trial in which 727 Norwegian crossbred ewes, aged between six months and five-and-a-half years from nine farms, were inseminated with frozen-thawed semen in natural estrous. Minitubes were thawed at 70 degrees C for 8 s (T70) and mini straws either at 70 degrees C for 5 s (S70), 50 degrees C for 9 s (S50), or 35 degrees C for 12 s (S35). Cervical insemination with 200 x 10(6) spermatozoa resulted in 25-day non-return rates of 78.7, 69.0, 73.6, and 72.9% (overall 73.6%), respectively, and lambing rates of 77.6, 66.1, 71.4, and 68.9% (overall 71.0%), respectively. There was a significantly higher lambing rate for T70 compared to S35 (P=0.03) and S70 (P=0.02), respectively, but not compared to S50 (P=0.29). Age of the ewes (P=0.02), farmers (P=0.02) and the interaction between farmer x straw type/thawing temperature (P=0.01) had a significant effect on the lambing rate. In conclusion, the superior fertility results achieved for minitubes compared to mini straws have to be carefully evaluated in relation to the possible application of a more rational semen production and simplified semen handling at AI, when using mini straws thawed at 35 degrees C.  相似文献   

18.
In the horse industry, milk or milk-based extenders are used routinely for dilution and storage of semen cooled to 4-8 degrees C. Although artificial insemination (AI) with chilled and transported semen has been in use for several years, pregnancy rates are still low and variable related to variable semen quality of stallions. Over the years, a variety of extenders have been proposed for cooling, storage and transport of stallion semen. Fractionation of milk by microfiltration, ultrafiltration, diafiltration and freeze-drying techniques has allowed preparation of purified milk fractions in order to test them on stallion sperm survival. Finally, a high protective fraction, native phosphocaseinate (NPPC), was identified. A new extender, INRA96, based on modified Hanks' salts, supplemented with NPPC was then developed for use with cooled/stored semen.Four experiments were conducted to compare INRA96 and milk-based extenders under various conditions of storage. The diluted semen was maintained under aerobic conditions when stored at 15 degrees C, and anaerobic conditions when stored at 4 degrees C. In experiment 1, split ejaculates from 13 stallions were diluted either in INRA96 extender then stored at 15 degrees C or diluted in Kenney or INRA82 extenders and then stored at 4 degrees C for 24h, until insemination. In experiment 2, semen from two stallions was extended in INRA96 then inseminated immediately or stored at 15 degrees C for 3 days until insemination. In experiment 3, semen from three stallions was diluted in INRA96 then stored at 15 or 4 degrees C for 24h until insemination, finally, in experiment 4, split ejaculates from four stallions were diluted in INRA96 or E-Z Mixin extenders then stored at 4 degrees C for 24h until insemination. Experiment 1 demonstrated that at 15 degrees C, INRA96 extender significantly improved pregnancy rate per cycle compared to Kenney or INRA82 extenders at 4 degrees C after 24h of storage (57%, n=178 versus 40%, n=171, respectively; P<0.01). Experiment 2 showed that semen stored at 15 degrees C for 3 days can achieve pregnancy at a fertility rate per cycle of 48% (n=52) compared to 68% (n=50, immediate insemination, P=0.06). Experiment 3 demonstrated that INRA96 extender can be as efficient at 15 degrees C (54%, n=37) as at 4 degrees C (54%, n=35) after 24h of storage. Finally, experiment 4 showed that INRA96 extender used at 4 degrees C (59%, n=39) seems to improve fertility per cycle compared to E-Z Mixin at 4 degrees C (49%, n=39, P=0.25), but this result has to be confirmed.These results demonstrate that semen diluted in INRA96 extender and stored at 15 degrees C can be an alternative to semen diluted in milk-based extenders and stored at 4 degrees C for "poor cooler" stallions. Furthermore, INRA96 extender can be as efficient at 15 degrees C as at 4 degrees C, for preserving sperm motility and fertility.  相似文献   

19.
20.
The objective was to compare the reproductive performance of a new PGF-based timed artificial insemination (TAI) protocol in sheep (Synchrovine®: two doses of PGF, 7 d apart) to a traditional progesterone-eCG (P4-eCG) protocol, considering the effects of seminal state, AI-times, and AI-pathway. Three experiments involving 1297 multiparous Australian Merino ewes were done during the physiologic breeding season (location 32 °S-57 °W). Reproductive performance was assessed as non-return rate to service 21 d after AI (NRR21d), based on detection with androgenized wethers, as well as Fertility (pregnant/inseminated ewes), Prolificacy (fetuses/pregnant ewe), and Fecundity (fetuses/inseminated ewe), which were based on transabdominal ultrasonography 50 d after TAI. In Experiment 1, Synchrovine® treated ewes TAI cervically with fresh semen at 42, 48, or 54 h had similar NRR21d (0.51, 0.46, 0.57), Fertility (0.27, 0.31, 0.26), and Fecundity (0.29, 0.32, 0.27), all of which were lower (P < 0.05) than in a control P4-eCG group inseminated at 54 h (0.61, 0.48, 0.52, NRR21d, Fertility and Fecundity respectively). In Experiment 2, using chilled semen and cervical TAI, Synchrovine® treated ewes inseminated at 42 h yielded lower (P < 0.05) NRR21d, Fertility and Fecundity (0.28, 0.06, 0.06) compared to 48 (0.43, 0.24, 0.24) and 54 h (0.44, 0.22, 0.23). In Experiment 3 with chilled semen, Synchrovine® treated ewes TAI into the cervix at 51 or 57 h were similar in NRR21d (0.16 vs 0.20), Fertility (0.12 vs 0.14), and Fecundity (0.12 vs 0.15), respectively; but lower (P < 0.05) than P4-eCG treated ewes TAI at 54 h (0.34, 0.28, and 0.33 for NRR21d, Fertility and Fecundity respectively). Synchrovine® treated ewes intrauterine TAI at 51 or 57 h yielded similar NRR21d (0.51 vs 0.58), Fertility (0.43 vs 0.51), and Fecundity (0.45 vs 0.56) respectively, but lower (P < 0.05) results compared to P4-eCG treated ewes (0.75, 0.71, and 0.88 for NRR21d, Fertility and Fecundity respectively). In conclusion, AI-time in Synchrovine® treated ewes with fresh semen might be extended (42 to 54 h after the second PGF), but should be delayed to 48-54 h with chilled semen and cervical AI. Independent of the seminal state, AI-time or AI-pathway, Synchrovine® yielded lower reproductive results than a conventional P4-eCG protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号