首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate the effect of hydroxocobalamin (OH-Cbl) on transformation of high concentrations of carbon tetrachloride (CT) by Acetobacterium woodii (ATCC 29683). Complete transformation of 470 microM (72 mg/liter [aqueous]) CT was achieved by A. woodii within 2.5 days, when 10 microM OH-Cbl was added along with 25.2 mM fructose. This was approximately 30 times faster than A. woodii cultures (live or autoclaved) and medium that did not receive OH-Cbl and 5 times faster than those controls that did receive OH-Cbl, but either live A. woodii or fructose was missing. CT transformation in treatments with only OH-Cbl was indicative of the important contribution of nonenzymatic reactions. Besides increasing the rate of CT transformation, addition of fructose and OH-Cbl to live cultures increased the percentage of [(14)C]CT transformed to (14)CO(2) (up to 31%) and (14)C-labeled soluble materials (principally L-lactate and acetate), while decreasing the percentage of CT reduced to chloroform and abiotically transformed to carbon disulfide. (14)CS(2) represented more than 35% of the [(14)C]CT in the presence of reduced medium and OH-Cbl. Conversion of CT to CO was a predominant pathway in formation of CO(2) in the presence of live cells and added fructose and OH-Cbl. These results indicate that the rate and distribution of products during cometabolic transformation of CT by A. woodii can be improved by the addition of fructose and OH-Cbl.  相似文献   

2.
An oxygen-labile carbon monoxide dehydrogenase was purified to at least 98% homogeneity from fructose-grown cells of Acetobacterium woodii. Gel filtration and electrophoresis experiments gave molecular weights of 480,000 and 153,000, respectively, of the active enzyme. The molecular weights for the subunits are 80,000 and 68,000; the subunits occur in equal proportion. The small subunit of the A. woodii enzyme differs in size from that of the Clostridium thermoaceticum enzyme; however, the large subunits are similar. The specific activity of the A. woodii enzyme, measured at 30 degrees C and pH 7.6, is 500 mumol of CO oxidized min-1 mg-1 with 20 mM methyl viologen as the electron acceptor. Analysis revealed (number per dimer) iron (9), acid-labile sulfide (12), nickel (1.4), and magnesium or zinc (1). This metal content is quite similar to that of the C. thermoaceticum enzyme (Ragsdale et al., J. Biol. Chem. 258:2364-2369, 1983). The nickel as well as the iron-sulfur clusters are redox-active, as was found for the C. thermoaceticum enzyme (Ragsdale et al., Biochem. Biophys. Res. Commun. 108:658-663, 1982). CO can reduce and CO2 can oxidize the iron-sulfur clusters. The enzyme is inhibited by cyanide, but CO2 in the presence of reduced methyl viologen or CO alone can reverse or prevent this inhibition. Several ferredoxins, flavodoxin, and rubredoxin and some artificial electron carriers were tested for their relative rates of reaction with the CO dehydrogenases from A. woodii, C. thermoaceticum, and Clostridium formicoaceticum. Rubredoxin was by far the most reactive acceptor and is proposed to be the primary natural electron carrier for the acetogenic CO dehydrogenases.  相似文献   

3.
Carbon monoxide dehydrogenase (CODH) plays a key role in acetate synthesis by the acetogenic bacterium, Clostridium thermoaceticum. Acetobacterium woodii, like C. thermoaceticum contains high levels of CODH. In this work we show that crude extracts of A. woodii synthesize acetate from methyl tetrahydrofolate or methyl iodide, carbon monoxide and coenzyme A (CoA). The purified CODH from A. woodii catalyzes an exchange reaction between CO and the carbonyl group of acetyl-CoA even faster than the C. thermoaceticum enzyme, indicating the CODH of A. woodii, like that of C. thermoaceticum is an acetyl-CoA synthetase. Fluorescence and EPR studies further support this postulate by demonstrating that CODH binds CoA near the CO binding site involving a tryptophan residue. The UV absorption spectra and the amino acid compositions of A. woodii and C. thermoaceticum CODHs are very similar. Evidence is presented using purified enzymes from A. woodii that the synthesis of acetyl-CoA occurs by a pathway similar to that utilized by C. thermoaceticum.  相似文献   

4.
Growth of Acetobacterium woodii on fructose was stimulated by Na+; this stimulation was paralleled by a shift of the acetate-fructose ratio from 2.1 to 2.7. Growth on H2-CO2 or on methanol plus CO2 was strictly dependent on the presence of sodium ions in the medium. Acetate formation from formaldehyde plus H2-CO by resting cells required Na+, but from methanol plus H2-CO did not. This is analogous to H2-CO2 reduction to methane by Methanosarcina barkeri, which involves a sodium pump (V. Müller, C. Winner, and G. Gottschalk, Eur. J. Biochem. 178:519-525, 1988). This suggests that the reduction of methylenetetrahydrofolate to methyltetrahydrofolate is the Na+-requiring reaction. A sodium gradient (Na+ out/Na+ in = 32, delta pNa = -91 mV) was built up when resting cells of A. woodii were incubated under H2-CO2. Acetogenesis was inhibited when the delta pNa was dissipated by monensin.  相似文献   

5.
Acetate synthesis from CO2 by Acetobacterium woodii may occur as in homoacetate-fermenting clostridia, as indicated by high levels of enzymes of the tetrahydrofolate pathway and by pyruvate-dependent formation of acetate from methyl-B12 and methyltetrahydrofolate.  相似文献   

6.
The catabolism of methanol, formate, or carbon monoxide to acetate or butyrate or both was examined in two acetogenic bacteria. Butyribacterium methylotrophicum simultaneously transformed methanol and formate mainly to butyrate with concomitant H2 and CO2 production and consumption. In contrast, methanol plus CO was primarily converted to acetate, and only slight amounts of CO2 were produced. In vivo 13C nuclear magnetic resonance analysis of [13C]methanol transformation by B. methylotrophicum indicated that methanol was predominantly incorporated into the methyl of acetate. 13CO2 was produced and then consumed, and butyrate was formed from the condensation of two acetate precursors. The analysis of the position of acetate labeled by a given 13C single-carbon substrate when B. methylotrophicum or Acetobacterium woodii was grown in the presence of a second one-carbon substrate indicated two trends: when methanol was consumed, CO, CO2, or formate predominantly labeled the acetate carboxyl; when CO was consumed, CO2 and formate were principally funneled into the acetate methyl group, and CO remained a better carboxyl precursor. These data suggest a model of acetate synthesis via the combined operation of two readily reversible single-carbon pathways which are linked by CO2.  相似文献   

7.
Five anaerobic bacteria were tested for their abilities to transform tetrachloromethane so that information about enzymes involved in reductive dehalogenations of polychloromethanes could be obtained. Cultures of the sulfate reducer Desulfobacterium autotrophicum transformed some 80 microM tetrachloromethane to trichloromethane and a small amount of dichloromethane in 18 days under conditions of heterotrophic growth. The acetogens Acetobacterium woodii and Clostridium thermoaceticum in fructose-salts and glucose-salts media, respectively, degraded some 80 microM tetrachloromethane completely within 3 days. Trichloromethane accumulated as a transient intermediate, but the only chlorinated methanes recovered at the end of the incubation were 8 microM dichloromethane and traces of chloromethane. Desulfobacter hydrogenophilus and an autotrophic, nitrate-reducing bacterium were unable to transform tetrachloromethane. Reduction of chlorinated methanes was thus observed only in the organisms with the acetyl-coenzyme A pathway. Experiments with [14C]tetrachloromethane were done to determine the fate of this compound in the acetogen A. woodii. Radioactivity in an 11-day heterotrophic culture was largely (67%) recovered in CO2, acetate, pyruvate, and cell material. In experiments with cell suspensions to which [14C]tetrachloromethane was added, 14CO2 appeared within 20 s as the major transformation product. A. woodii thus catalyzes reductive dechlorinations and transforms tetrachloromethane to CO2 by a series of unknown reactions.  相似文献   

8.
Five anaerobic bacteria were tested for their abilities to transform tetrachloromethane so that information about enzymes involved in reductive dehalogenations of polychloromethanes could be obtained. Cultures of the sulfate reducer Desulfobacterium autotrophicum transformed some 80 microM tetrachloromethane to trichloromethane and a small amount of dichloromethane in 18 days under conditions of heterotrophic growth. The acetogens Acetobacterium woodii and Clostridium thermoaceticum in fructose-salts and glucose-salts media, respectively, degraded some 80 microM tetrachloromethane completely within 3 days. Trichloromethane accumulated as a transient intermediate, but the only chlorinated methanes recovered at the end of the incubation were 8 microM dichloromethane and traces of chloromethane. Desulfobacter hydrogenophilus and an autotrophic, nitrate-reducing bacterium were unable to transform tetrachloromethane. Reduction of chlorinated methanes was thus observed only in the organisms with the acetyl-coenzyme A pathway. Experiments with [14C]tetrachloromethane were done to determine the fate of this compound in the acetogen A. woodii. Radioactivity in an 11-day heterotrophic culture was largely (67%) recovered in CO2, acetate, pyruvate, and cell material. In experiments with cell suspensions to which [14C]tetrachloromethane was added, 14CO2 appeared within 20 s as the major transformation product. A. woodii thus catalyzes reductive dechlorinations and transforms tetrachloromethane to CO2 by a series of unknown reactions.  相似文献   

9.
Nickel requirement and factor F430 content of methanogenic bacteria.   总被引:16,自引:5,他引:16       下载免费PDF全文
Methanobacterium thermoautotrophicum has been reported to require nickel for growth and to contain high concentrations of a nickel tetrapyrrole designated factor F430. In this communication it is shown that all methanogenic bacteria investigated incorporated nickel during growth and also synthesized factor F430. This was also true for Methanobrevibacter smithii, which is dependent on acetate as a carbon source, and for Methanosarcina barkeri growing on acetate or methanol as energy sources. Other bacteria, including Acetobacterium woodii and Clostridium thermoaceticum, contained no factor F430. It is further shown that two yellow nickel-containing degradation products were formed from factor F430 when heated at pH 7. This finding explains why several forms of factor F430 were found in methanogenic bacteria when a heat step was employed in the purification procedure.  相似文献   

10.
Acetobacterium woodii, Acetohalobium arabaticum, Clostridium formicoaceticum, and Sporomusa silvacetica were found to contain carbonic anhydrase (CA). Minimal to no CA activity was detected in Moorella thermoautotrophica, Moorella thermoacetica subsp. "pratumsolum," Sporomusa termitida, and Thermoanaerobacter kivui. Of the acetogens tested, A. woodii had the highest CA specific activity, approximately 14 U mg of protein(-1), in extracts of either glucose- or H2-CO2-cultivated cells. CA of A. woodii was cytoplasmic and was purified approximately 300-fold to a specific activity of 5,236 U mg of protein(-1). Intracellular acetate concentrations inhibited CA activity of A. woodii by 50 to 85%, indicating that intracellular acetate may affect in situ CA activity.  相似文献   

11.
Mass analysis was used to determine the amount of acetate which is totally synthesized from (13)CO(2) during fermentations by Clostridium formicoaceticum, C. acidiurici, C. cylindrosporum, Butyribacterium rettgeri, and Diplococcus glycinophilus. In the fermentation of fructose by C. formicoaceticum, 27% of the acetate was found to be totally synthesized from CO(2), and the remaining acetate was unlabeled, having been formed from fructose. Evidence is presented that the purine-fermenting organisms, C. acidiurici and C. cylindrosporum, totally synthesized about 9% of the acetate from CO(2), and that the methyl group of an additional 9% was formed from CO(2). The remaining acetate was formed from the carbons of the purine and not via CO(2). It has been postulated that the fermentation of the purines and synthesis of acetate from CO(2) both occur via derivatives of tetrahydrofolate. Evidence is presented that a compartmentalization of these folate intermediates is required if both the purine degradation and the CO(2) utilization involve identical intermediates. Neither B. rettgeri nor D. glycinophilus incorporated sufficient (13)CO(2) into acetate to allow determination of the types of acetate by mass analysis, although they did incorporate labeled (14)CO(2) in both positions of acetate.  相似文献   

12.
The fermentative capacities of the acetogenic bacterium Peptostreptococcus productus U-1 (ATCC 35244) were examined. Although acetate was formed from all the substrates tested, additional products were produced in response to CO2 limitation. Under CO2-limited conditions, fructose-dependent growth yielded high levels of lactate as a reduced end product; lactate was also produced under CO2-enriched conditions when fructose concentrations were elevated. In the absence of supplemental CO2, xylose-dependent growth yielded lactate and succinate as major reduced end products. Although supplemental CO2 and acetogenesis stimulated cell yields on fructose, xylose-dependent cell yields were decreased in response to CO2 and acetogenesis. In contrast, glycerol-dependent growth yielded high levels of ethanol in the absence of supplemental CO2, and pyruvate was subject to only acetogenic utilization independent of CO2. CO2 pulsing during the growth of CO2-limited fructose cultures stopped lactate synthesis immediately, indicating that CO2-limited cells were nonetheless metabolically poised to respond quickly to exogenous CO2. Resting cells that were cultivated at the expense of fructose without supplemental CO2 readily consumed fructose in the absence of exogenous CO2 and formed only lactate. Although the specific activity of lactate dehydrogenase was not appreciably influenced by supplemental C02 during cultivation, cells cultivated on fructose under CO2-enriched conditions displayed minimal capacities to consume fructose in the absence of exogenous CO2. These results demonstrate that the utilization of alternative fermentations for the conservation of energy and growth of P. productus U-1 is augmented by the relative availability of CO2 and growth substrate.  相似文献   

13.
Regulation of hexose phosphate metabolism in Acetobacter xylinum   总被引:6,自引:1,他引:5       下载免费PDF全文
The metabolism of glucose and fructose was studied in resting succinate-grown cells of Acetobacter xylinum. From fructose only cellulose and CO(2) were formed by the cells, whereas from glucose, gluconate was formed much more rapidly than these two products. The molar ratio of sugar converted into cellulose to sugar converted into CO(2) was significantly greater than unity for both hexoses. The pattern of label retention in the cellulose formed by the cells from specifically (14)C-labelled glucose, fructose or gluconate corresponded to that of hexose phosphate in a pentose cycle. On the other hand, the isotopic configuration of cellulose arising from variously singly (14)C-labelled pyruvate did not agree with the operation of a pentose cycle on gluconeogenic hexose phosphate. Readily oxidizable tricarboxylic acid-cycle intermediates such as acetate, pyruvate or succinate promoted cellulose synthesis from fructose and gluconate although retarding their oxidation to CO(2). The incorporation into cellulose of C-1 of fructose was greatly increased in the presence of these non-sugar substrates, although its oxidation to CO(2) was greatly diminished. It is suggested that the flow of hexose phosphate carbon towards cellulose or through the pentose cycle in A. xylinum is regulated by an energy-linked control mechanism.  相似文献   

14.
The nitrifying bacterium Nitrosomonas europaea can obtain all its carbon for growth from CO(2) and all its energy and reductant for growth from the oxidation of NH(3) and is considered an obligate chemolithoautotroph. Previous studies have shown that N. europaea can utilize limited amounts of certain organic compounds, including amino acids, pyruvate, and acetate, although no organic compound has been reported to support the growth of N. europaea. The recently completed genomic sequence of N. europaea revealed a potential permease for fructose. With this in mind, we tested if N. europaea could utilize fructose and other compounds as carbon sources to support growth. Cultures were incubated in the presence of fructose or other organic compounds in sealed bottles purged of CO(2). In these cultures, addition of either fructose or pyruvate as the sole carbon source resulted in a two- to threefold increase in optical density and protein content in 3 to 4 days. Studies with [(14)C]fructose showed that >90% of the carbon incorporated by the cells during growth was derived from fructose. Cultures containing mannose, glucose, glycerol, mannitol, citrate, or acetate showed little or no growth. N. europaea was not able to grow with fructose as an energy source, although the presence of fructose did provide an energy benefit to the cells. These results show that N. europaea can be grown in CO(2)-free medium by using fructose and pyruvate as carbon sources and may now be considered a facultative chemolithoorganotroph.  相似文献   

15.
Clostridium formicoaceticum ferments fructose labeled with (14)C in carbon 1, 4, 5, or 6 via the Embden Meyerhof pathway. In fermentations of fructose in the presence of (14)CO(2), acetate is formed labeled equally in both carbons. Extracts convert the methyl groups of 5-methyltetrahydrofolate and methyl-B(12) to the methyl group of acetate in the presence of pyruvate. Formate dehydrogenase, 10-formyltetrahydrofolate synthetase, 5,10-methenyltetrahydrofolate cyclohydrolase, 5,10-methylenetetrahydrofolate dehydrogenase, and 5,10-methylenetetrahydrofolate reductase are present in extracts of C. formicoaceticum. These enzymes are needed for the conversion of CO(2) to 5-methyltetrahydrofolate. It is proposed that acetate is totally synthesized from CO(2) via the reactions catalyzed by the enzymes listed above and that 5-methyltetra-hydrofolate and a methylcorrinoid are intermediates in this synthesis.  相似文献   

16.
Acetobacterium woodii produced catechol (up to 7.84 mM) by demethylating 2-methoxyphenol during growth in the presence or absence of fructose. The highest product concentrations were obtained when 2-methoxyphenol was the sole energy source but the highest substrate conversion (97%) was obtained in fructose-limited chemostat culture. Growing cells were the most suitable form of the biocatalyst since the catalytic activity was 5-fold higher than in harvested cells.  相似文献   

17.
Cultures of Acetobacterium woodii and Clostridium thermoaceticum growing on fructose or glucose, respectively, were found to produce small, but significant amounts of carbon monoxide. In the gas phase of the cultures up to 53 ppm CO were determined. The carbon monoxide production was completely inhibited by 1 mM cyanide. Cultures and cell suspensions of both acetogens incorporated 14CO specifically into the carboxyl group of acetate. This CO fixation into C1 of acetate was unaffected by cyanide (1 mM). The findings are taken to indicate that CO (in a bound form) is the physiological precursor of the C1 of acetate in acetate synthesis from CO2. The cyanide inhibition experiments support the hypothesis that the cyanide-sensitive carbon monoxide dehydrogenase may serve to reduce CO2 to CO rather than to incorporate the carbonyl into C1 of acetate.  相似文献   

18.
The anaerobic acetogenic bacterium Acetobacterium woodii can conserve energy by oxidation of various substrates coupled to either carbonate or caffeate respiration. We used a cell suspension system to study the regulation and kinetics of induction of caffeate respiration. After addition of caffeate to suspensions of fructose-grown cells, there was a lag phase of about 90 min before caffeate reduction commenced. However, in the presence of tetracycline caffeate was not reduced, indicating that de novo protein synthesis is required for the ability to respire caffeate. Induction also took place in the presence of CO(2), and once a culture was induced, caffeate and CO(2) were used simultaneously as electron acceptors. Induction of caffeate reduction was also observed with H(2) plus CO(2) as the substrate, but the lag phase was much longer. Again, caffeate and CO(2) were used simultaneously as electron acceptors. In contrast, during oxidation of methyl groups derived from methanol or betaine, acetogenesis was the preferred energy-conserving pathway, and caffeate reduction started only after acetogenesis was completed. The differential flow of reductants was also observed with suspensions of resting cells in which caffeate reduction was induced prior to harvest of the cells. These cell suspensions utilized caffeate and CO(2) simultaneously with fructose or hydrogen as electron donors, but CO(2) was preferred over caffeate during methyl group oxidation. Caffeate-induced resting cells could reduce caffeate and also p-coumarate or ferulate with hydrogen as the electron donor. p-Coumarate or ferulate also served as an inducer for caffeate reduction. Interestingly, caffeate-induced cells reduced ferulate in the absence of an external reductant, indicating that caffeate also induces the enzymes required for oxidation of the methyl group of ferulate.  相似文献   

19.
Nostoc sp. (strain Mac) was shown to be capable of using glucose, fructose, or sucrose as a sole source of carbon and energy in the dark. In the light in the absence of exogenously supplied CO(2), this strain exhibited a more versatile metabolism. In addition to the three sugars above, glycerol and acetate served as sole sources of carbon. This photoheterotrophic growth in the absence of exogenously supplied CO(2) appears to involve O(2)-evolving photosynthesis. The action spectrum for photoheterotrophic growth on acetate closely resembles the action spectrum for photosynthesis. The physiology of photoheterotrophic growth was further investigated through determinations of stable carbon isotope ratios and measurements of gas exchanges. These investigations suggest that respired CO(2) from substrate oxidation is assimilated by the photosynthetic machinery.  相似文献   

20.
The effect of bicarbonate on the growth and product formation by a periodontopathic bacterium, Actinobacillus actinomycetemcomitans, was examined in an anaerobic chemostat culture with fructose as the limiting nutrient. The chemostat cultures were run at dilution rates between 0.04 and 0.25 h-1 and the maximum growth yield (Ymax fructose) was estimated to be 40.3 and 61.7 g dry wt (mol fructose)-1 in the absence and presence of bicarbonate, respectively. The major fermentation products in the absence of bicarbonate were formate, acetate, ethanol and succinate, with small amounts of lactate. The addition of bicarbonate to the medium resulted in a marked decrease in ethanol production and in a significant increase in succinate production. Washed cells possessed activity for the cleavage of formate to CO2 and H2, which seemed to play a role in supplying CO2 for the synthesis of succinate in the absence of bicarbonate. The study of enzyme activities in cell-free extracts suggested that fructose was fermented by the Embden-Meyerhof-Parnas pathway. The values of Ymax ATP and the efficiency of ATP generation (ATP-Eff) during fructose catabolism were estimated and higher values were obtained for the culture in the presence of bicarbonate: 20.2 g dry wt (mol ATP)-1 and 3.0 mol ATP (mol fructose)-1, respectively, versus Ymax ATP = 15.1 and ATP-Eff = 2.7 in the absence of bicarbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号