首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Macas J  Neumann P 《Gene》2007,390(1-2):108-116
Ogre elements are a group of LTR retrotransposons recently discovered in legume plants, where they constitute almost 40% of the genome in some species. They are exceptional in their size (reaching 25 kb) and possess several specific features, including an intron within a polyprotein-coding region, and an extra open reading frame (ORF1) encoding a protein of unknown function located upstream of the gag gene. Although these features make Ogres interesting for further research, identification of additional elements from a broader range of plant taxa has been complicated by the divergence of their sequences, preventing their detection using similarity-based searches. Here we report the results of structure-based computational searches for Ogre elements in available plant genomic sequences, which proved to be more efficient and revealed occurrences of Ogres in three families of dicot plants (Leguminosae, Solanaceae and Salicaceae). In addition, a representative set of 85 elements was retrieved from a model legume species Medicago truncatula. All identified full-length elements were used for comparative analysis, which showed that in spite of only little conservation of their nucleotide sequences, their protein domains were highly conserved, including several regions within ORF1. Further, the elements shared the same functional regions, including a primer binding site complementary to tRNAarg, a conserved motif within a polypurine tract, and a putative intron between the pro and rt/rh coding domains. These findings, together with analysis of their phylogenetic relationship to other retrotransposons based on similarities of rt domains suggest that Ogre elements from different plant taxa have a common origin and thus constitute a distinct group of Ty3/gypsy retrotransposons.  相似文献   

2.
3.
The origin of new diploid, or homoploid, hybrid species is associated with rapid genomic restructuring in the hybrid neospecies. This mode of speciation has been best characterized in wild sunflower species in the genus Helianthus, where three homoploid hybrid species (H. anomalus, H. deserticola, and H. paradoxus) have independently arisen via ancient hybridization events between the same two parental species (H. annuus and H. petiolaris). Most previous work examining genomic restructuring in these sunflower hybrid species has focused on chromosomal rearrangements. However, the origin of all three homoploid hybrid sunflower species also is associated with massive proliferation events of Ty3/gypsy-like retrotransposons in the hybrid species' genomes. We compared the genomic organization of these elements in the parent species and two of the homoploid hybrid species using fluorescence in situ hybridization (FISH). We found a significant expansion of Ty3/gypsy-like retrotransposons confined to the pericentromeric regions of two hybrid sunflower species, H. deserticola and H. paradoxus. In contrast, we detected no significant increase in the frequency or extent of dispersed retrotransposon populations in the hybrid species within the resolution limits of our assay. We discuss the potential role that transposable element proliferation and localization plays in the evolution of homoploid hybrid species.  相似文献   

4.
5.
A phylogenetic analysis of the Ty3/Gypsy group of retrotransposons identified a conserved domain (GPY/F) present in the integrases of several members of this group as well as of certain vertebrate retroviruses. The analysis suggested an evolutionary scheme for the acquisition and loss of the GPY/F domain as well as the acquisition of a chromodomain module in the integrase encoded by this group of elements that may direct targeting specificity in the host genome.  相似文献   

6.
Ty3/gypsy elements represent one of the most abundant and diverse LTR-retrotransposon (LTRr) groups in the Anopheles gambiae genome, but their evolutionary dynamics have not been explored in detail. Here, we conduct an in silico analysis of the distribution and abundance of the full complement of 1045 copies in the updated AgamP3 assembly. Chromosomal distribution of Ty3/gypsy elements is inversely related to arm length, with densities being greatest on the X, and greater on the short versus long arms of both autosomes. Taking into account the different heterochromatic and euchromatic compartments of the genome, our data suggest that the relative abundance of Ty3/gypsy LTRrs along each chromosome arm is determined mainly by the different proportions of heterochromatin, particularly pericentric heterochromatin, relative to total arm length. Additionally, the breakpoint regions of chromosomal inversion 2La appears to be a haven for LTRrs. These elements are underrepresented more than 7-fold in euchromatin, where 33% of the Ty3/gypsy copies are associated with genes. The euchromatin on chromosome 3R shows a faster turnover rate of Ty3/gypsy elements, characterized by a deficit of proviral sequences and the lowest average sequence divergence of any autosomal region analyzed in this study. This probably reflects a principal role of purifying selection against insertion for the preservation of longer conserved syntenyc blocks with adaptive importance located in 3R. Although some Ty3/gypsy LTRrs show evidence of recent activity, an important fraction are inactive remnants of relatively ancient insertions apparently subject to genetic drift. Consistent with these computational predictions, an analysis of the occupancy rate of putatively older insertions in natural populations suggested that the degenerate copies have been fixed across the species range in this mosquito, and also are shared with the sibling species Anopheles arabiensis.  相似文献   

7.
8.
The increasing amount of data generated in recent years has opened the way to exhaustive studies of the relationships among different members of the Ty3/gypsy group of LTR retrotransposons, a widespread group of eukaryotic transposable elements. Former research led to the identification of several independent lineages within this group. One of the worse represented of them is that of mdg1, integrated so far only by the Drosophila retrotransposons mdg1 and 412. Our exhaustive database searches indicate the existence of three other Drosophila members of this lineage. Two of them correspond to elements already known, namely, Stalker and blood, but the third one is a new element, which we have called Pilgrim. This element is well represented within the D. melanogaster genome, as revealed by our Southern blot analysis of different strains. The case of Stalker is particularly remarkable, since its phylogenetic relationships clearly point to the mosaic origin of its genome. Finally, our analysis of the evolution of a small ORF preserved within the 5′ leader region of these elements indicates different evolutionary rates, presumably as a result of distinct selective constraints. Received: 16 October 2000 / Accepted: 6 April 2001  相似文献   

9.
The recent availability of the genome of Anopheles gambiae offers an extraordinary opportunity for comparative studies of the diversity of transposable elements (TEs) and their evolutionary dynamics between two related species, taking advantage of the existing information from Drosophila melanogaster. To this goal, we screened the genome of A. gambiae for elements belonging to the Ty3/gypsy group of long-terminal repeat (LTR) retrotransposons. The A. gambiae genome displays a rich diversity of LTR retrotransposons, clearly greater than D. melanogaster. We have characterized in detail 63 families, belonging to five of the nine main lineages of the Ty3/gypsy group. The Mag lineage is the most diverse and abundant, with more than 30 families. In sharp contrast with this finding, a single family belonging to this lineage has been found in D. melanogaster, here reported for the first time in the literature, most probably consisting of old inactive elements. The CsRn1 lineage is also abundant in A. gambiae but almost absent from D. melanogaster. Conversely, the Osvaldo lineage has been detected in Drosophila but not in Anopheles. Comparison of structural characteristics of different families led to the identification of several lineage-specific features such as the primer-binding site (PBS), the gag-pol translational recoding signal (TRS), which is extraordinarily diverse within the Ty3/gypsy retrotransposons of A. gambiae, or the presence/absence of specific amino acid motifs. Interestingly, some of these characteristics, although in general well conserved within lineages, may have evolved independently in particular branches of the phylogenetic tree. We also show evidence of recent activity for around 75% of the families. Nevertheless, almost all families contain a high proportion of degenerate members and solitary LTRs (solo LTRs), indicative of a lower turnover rate of retrotransposons belonging to the Ty3/gypsy group in A. gambiae than in D. melanogaster. Finally, we have detected significant overrepresentations of insertions on the X chromosome versus autosomes and of putatively active insertions on euchromatin versus heterochromatin.  相似文献   

10.
11.
12.
Sabot F  Sourdille P  Chantret N  Bernard M 《Genetica》2006,128(1-3):439-447
Transposable elements are the main components of grass genomes, especially in Triticeae species. In a previous analysis, we identified a very short element, Morgane_CR626934-1; here we describe more precisely this unusual element. Morgane_CR626934-1 shows high sequence identity (until 98%) with ESTs belonging to other possible small elements, expressed under abiotic and biotic stress conditions. No putative functional polyprotein could be identified in all of these different Morgane-like sequences. Moreover, elements from the Morgane_CR626934-1 subfamily are found only in wheats and Agropyrum genomes and among these species, only Ae. tauschii and T. aestivum present a high copy number of these elements. They are highly conserved in wheat genomes (95.5%). Based on the uncommon characteristics of the described Morgane-like elements, we proposed to classify them in a new group within the Class I LTR retrotransposon, the Morgane group. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

13.
We have detected seventy-six novel LTR retrotransposons in the genome of the mosquito Aedes aegypti by a genome wide analysis using the LTR_STRUC program. We have performed a phylogenetic classification of these novel elements and a distribution analysis in the genome of A. aegypti. These mobile elements belong either to the Ty3/gypsy or to the Bel family of retrotransposons and were not annotated in the mosquito LTR retrotransposon database (TEfam). We have found that  1.8% of the genome is occupied by these newly detected retrotransposons that are distributed predominantly in intergenic genomic sequences and introns. The potential role of retrotransposon insertions linked to host genes is described and discussed. We show that a retrotransposon family belonging to the Osvaldo lineage has peculiar structural features, and its presence is likely to be restricted to the A. aegypti and to the Culex pipiens quinquefasciatus genomes. Furthermore we show that the ninja-like group of elements lacks the Primer Binding Site (PBS) sequence necessary for the replication of retrotransposons. These results integrate the knowledge on the complicate genomic structure of an important disease vector.  相似文献   

14.
15.
16.
Despite recent evidence suggesting that adult trematodes require oxygen for the generation of bioenergy and eggshells, information on the molecular mechanism by which the parasites acquire oxygen remains largely elusive. In this study, the structural and expressional features of globin genes identified in Clonorchis sinensis, a carcinogenic trematode parasite that invades the hypoxic biliary tracts of mammalian hosts, were investigated to gain insight into the molecules that enable oxygen metabolism. The number of globin paralogs substantially differed among parasitic platyhelminths, ranging from one to five genes, and the C. sinensis genome encoded at least five globin genes. The expression of these Clonorchis genes, named CsMb (CsMb1—CsMb3), CsNgb, and CsGbX, according to their preferential similarity patterns toward respective globin subfamilies, exponentially increased in the worms coinciding with their sexual maturation, after being downregulated in early juveniles compared to those in metacercariae. The CsMb1 protein was detected throughout the parenchymal region of adult worms as well as in excretory-secretory products, whereas the other proteins were localized exclusively in the sexual organs and intrauterine eggs. Stimuli generated by exogenous oxygen, nitric oxide (NO), and nitrite as well as co-incubation with human cholangiocytes variously affected globin gene expression in live C. sinensis adults. Together with the specific histological distributions, these hypoxia-induced patterns may suggest that oxygen molecules transported by CsMb1 from host environments are provided to cells in the parenchyma and intrauterine eggs/sex organs of the worms for energy metabolism and/or, more importantly, eggshell formation by CsMb1 and CsMb3, respectively. Other globin homologs are likely to perform non-respiratory functions. Based on the responsive expression profile against nitrosative stress, an oxygenated form of secreted CsMb1 is suggested to play a pivotal role in parasite survival by scavenging NO generated by host immune cells via its NO dioxygenase activity.  相似文献   

17.
We characterised the extent of heterogeneity among PDR1 elements, a Ty1/copia-like retrotransposon family in pea, by restriction mapping and PCR with primers designed to amplify four functional domains. The data suggest that two main subfamilies of PDR1 differ in the size of their 5′-region. There are also sequence variants and rearranged copies which include a wide range of deletions of different sizes and deletions combined with insertions of host DNA, or inversions of various regions of the retrotransposon. A deletion hot-spot has been found at nucleotide position 394, where buffer sequences of 26 bp and 38 bp containing microsatellite motifs have been generated. There is more heterogeneity in the gag domain of PDR1 than in other functional domains, and the extent and pattern of this diversity was assessed among 56 Pisum accessions. We found a higher rate of rearrangement and sequence variation within the gag domain of PDR1 in P. fulvum and P. abyssinicum accessions than would be expected from the degree of insertion site polymorphism. A neighbour-joining phylogenetic tree constructed for gag sequences has a similar branching pattern to the equivalent insertion site tree, implying that the PDR1 family and its gag domain have coevolved with the pea genome. Combining both trees revealed clear and distinct subgroups among the Pisum ssp. Received: 17 March 1999 / Accepted: 20 July 1999  相似文献   

18.
19.
Long terminal repeat retrotransposons are the most abundant mobile elements in the plant genome and play an important role in the genome reorganization induced by environmental challenges. Their success depends on the ability of their promoters to respond to different signaling pathways that regulate plant adaptation to biotic and abiotic stresses. We have isolated a new Ty1-copia-like retrotransposon, named Ttd1a from the Triticum durum L. genome. To get insight into stress activation pathways in Ttd1a, we investigated the effect of salt and light stresses by RT-PCR and S-SAP profiling. We screened for Ttd1a insertion polymorphisms in plants grown to stress and showed that one new insertion was located near the resistance gene. Our analysis showed that the activation and mobilization of Ttd1a was controlled by salt and light stresses, which strengthened the hypothesis that stress mobilization of this element might play a role in the defense response to environmental stresses.  相似文献   

20.
One of the causes of genome size expansion is considered to be amplification of retrotransposons. We determined nucleotide sequences of 24 PCR products for each of six retrotransposons in Brassica rapa and Brassica oleracea. Phylogenetic trees of these sequences showed species-specific clades. We also sequenced STF7a homologs and Tto1 homologs, 24 PCR products each, in nine diploids and three allopolyploids, and constructed phylogenetic trees. In these phylogenetic trees, species-specific clades of diploid species were also formed, but retrotransposons of allopolyploids were clustered into the clades of their original genomes, indicating that these two retrotransposons amplified after speciation of the nine diploids. Genetic variation in these retrotransposons may have arisen before emergence of allopolyploid species. There was a positive correlation between the genome size and the average number of substitutions of STF7a and Tto1 homologs in at least seven diploids. The implications of these results in the genome evolution of Brassicaceae are herein discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号