首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
2.
3.
4.
5.
6.
Discontinuities in the DNA synthesized by an avian retrovirus   总被引:7,自引:6,他引:1       下载免费PDF全文
The unintegrated linear DNA synthesized in cells infected by Rous sarcoma virus is a predominantly double-stranded structure in which most of the minus-strand DNA, complementary to the viral RNA genome, is genome sized, whereas the plus-strand DNA is present as subgenomic fragments. We previously reported the application of benzoylated naphthoylated DEAE-cellulose chromatography to demonstrate that of the linear viral DNA species synthesized in quail embryo fibroblasts infected with Rous sarcoma virus greater than 99.5% contain single-stranded regions and these regions are predominantly composed of plus-strand DNA sequences (T. W. Hsu and J. M. Taylor, J. Virol. 44:47-53, 1982). We now present the following additional findings. (i) There were on the average 3.5 single-stranded regions per linear viral DNA, and these single-stranded regions could occur at many locations. (ii) With a probe to the long terminal repeat, we detected, in addition to a heterogeneous size distribution of subgenomic plus-strand DNA species, at least three prominent discrete size classes. Each of these discrete species had its own specific initiation site, but all had the same termination site. Such species were analogous to those reported by Kung et al. (J. Virol. 37: 127-138, 1981). (iii) These discrete size classes of plus-strand DNA were present not only on the major size class of linear DNA but also on a heterogeneous of slower-sedimenting species, which we have called immature linears. Our interpretation is that we have thus detected several additional sites for the initiation of plus-strand DNA. (iv) The 340-base plus-strand strong-stop DNA was only found associated with the immature linears. (v) From a size and hybridization comparison of these discrete size classes of plus-strand DNA with minus-strand DNA species, as synthesized in the endogenous reaction of melittin-disrupted virions, it was found that the putative additional initiation sites for plus-strand DNA synthesis corresponded to many of the pause sites in the synthesis of minus-strand DNA.  相似文献   

7.
8.
9.
10.
11.
The influence of Rous sarcoma virus (RSV)-associated RNase H on the in vitro synthesis of DNA by the RSV RNA-directed DNA polymerase was determined under conditions whereby RNase H activity was selectively inhibited with NaF. Not only were we unable to detect any effect on the size, structure, or genetic complixity of the DNA product synthesized in the absence of RNase H activity, but the displacement of DNA from the 70S RNA:DNA hybrid structures was also unaffected. The suitability of 70S RNA:DNA hybrid structures synthesized in vitro to serve as a substrate for RNase H is discussed.  相似文献   

12.
13.
14.
15.
The small RNAs of Moloney murine leukemia virus (M-MuLV) were fractionated into at least 15 species by two-dimensional polyacrylamide gel electrophoresis. The pattern of small RNAs is significantly different from that of Rous sarcoma virus. A subset of the virion small RNAs is associated with the genome RNA in the 70S complex. One of the associated molecules, a cellular tRNA, is tightly bound to the genome RNA and serves as the major primer for M-MuLV RNA-directed DNA synthesis in vitro.  相似文献   

16.
The influence of Rous sarcoma virus (RSV)-associated RNase H on the in vitro synthesis of DNA by the RSV RNA-directed DNA polymerase was determined under conditions whereby RNase H activity was selectively inhibited with NaF. Not only were we unable to detect any effect on the size, structure, or genetic complexity of the DNA product synthesized in the absence of RNase H activity, but the displacement of DNA from the 70S RNA:DNA hybrid structures was also unaffected. The suitability of 70S RNA:DNA hybrid structures synthesized in vitro to serve as a substrate for RNase H is discussed.  相似文献   

17.
Intermediates in the synthesis of Rous sarcoma virus DNA in vivo contain a short second strand of DNA (plus strong-stop DNA) synthesized by using the region near the 5' end of the first (minus) strand of DNA as the template. In this report, we show that the 3' end of plus strong-stop DNA is extended about 15 to 20 nucleotides beyond the 5' end of the minus-strand DNA template, probably copying a portion of the tRNATrp molecule that serves as primer for synthesis of the minus strand of DNA. The extra sequences present in plus strong-stop DNA may play a central role in the generation of the long terminal repeat present in mature forms of viral DNA.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号