首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The dystrophin gene is composed of at least 86 exons and the occurrence of several alternative splicing sites, mainly occurring in its 3' region, is a well recognised phenomenon. We have found that exon 4 can also be alternatively spliced in human skeletal and cardiac muscle.  相似文献   

4.
5.
6.
A two-site model for the binding of U1 small nuclear ribonucleoprotein particle (U1 snRNP) was tested in order to understand how exon partners are selected in complex pre-mRNAs containing alternative exons. In this model, it is proposed that two U1 snRNPs define a functional unit of splicing by base pairing to the 3' boundary of the downstream exon as well as the 5' boundary of the intron to be spliced. Three-exon substrates contained the alternatively spliced exon 4 (E4) region of the preprotachykinin gene. Combined 5' splice site mutations at neighboring exons demonstrate that weakened binding of U1 snRNP at the downstream site and improved U1 snRNP binding at the upstream site result in the failure to rescue splicing of the intron between the mutations. These results indicate the stringency of the requirement for binding a second U1 snRNP to the downstream 5' splice site for these substrates as opposed to an alternative model in which a certain threshold level of U1 snRNP can be provided at either site. Further support for the two-site model is provided by single-site mutations in the 5' splice site of the third exon, E5, that weaken base complementarity to U1 RNA. These mutations block E5 branchpoint formation and, surprisingly, generate novel branchpoints that are specified chiefly by their proximity to a cryptic 5' splice site located at the 3' terminus of the pre-mRNA. The experiments shown here demonstrate a true stimulation of 3' splice site activity by the downstream binding of U1 snRNP and suggest a possible mechanism by which combinatorial patterns of exon selection are achieved for alternatively spliced pre-mRNAs.  相似文献   

7.
8.
9.
10.
The vertebrate fast skeletal muscle troponin T gene, TnTf, produces a complexity of isoforms through differential mRNA splicing. The mechanisms that regulate splicing and the physiological significance of TnTf isoforms are poorly understood. To investigate these questions, we have determined the complete sequence structure of the quail TnTf gene, and we have characterized the developmental expression of alternatively spliced TnTf mRNAs in quail embryonic muscles. We report the following: 1) the quail TnTf gene is significantly larger than the rat TnTf gene and has 8 non-homologous exons, including a pectoral muscle-specific set of alternatively spliced exons; 2) specific sequences are implicated in regulated exon splicing; 3) a 900-base pair sequence element, composed primarily of intron sequence flanking the pectoral muscle-specific exons, is tandemly repeated 4 times and once partially, providing direct evidence that the pectoral-specific TnT exon domain arose by intragenic duplications; 4) a chicken repeat 1 retrotransposon element resides upstream of this repeated intronic/pectoral exon sequence domain and is implicated in transposition of this element into an ancestral genome; and 5) a large set of novel isoforms, produced by regulated exon splicing, is expressed in quail muscles, providing insights into the developmental regulation, physiological function, and evolution of the vertebrate TnTf isoforms.  相似文献   

11.
The human calcitonin/CGRP-I (CALC-I) gene can be alternatively expressed into calcitonin mRNA in thyroid C-cells and into CGRP-I mRNA in particular nerve cells. Formation of calcitonin mRNA requires splicing of exons 1, 2, 3 and 4 and addition of poly(A) at exon 4, whereas splicing of exons 1, 2, 3, 5 and 6 and addition of poly(A) at exon 6 yields CGRP-I mRNA. The calcitonin and CGRP-I mRNA-specific splicing reactions were investigated in vitro, in nuclear extracts of HeLa cells, using model precursor RNAs containing the exon 3 to exon 5 region of the gene. A precursor RNA containing the full-length exon 3 to exon 5 region was only poorly spliced in vitro. Therefore, a systematic analysis was performed of the effect of deletions introduced in the intron 3, exon 4 and intron 4 of this precursor RNA on calcitonin/CGRP mRNA-specific splicing. The deletions increased the efficiency of splicing considerably. In all cases CGRP mRNA-specific splicing is strongly favoured over calcitonin mRNA-specific splicing. In addition, splicing reactions using cryptic 5' splice sites were detected which interfered with the usage of processing signals for calcitonin and CGRP mRNA-specific splicing. The results imply a major regulatory role for the exon 4 poly(A) addition reaction in the generation of calcitonin mRNA.  相似文献   

12.
13.
Multiple isoforms of tropoelastin, the soluble precursor of elastin, are the products of translation of splice-variant mRNAs derived from the single-copy tropoelastin gene. Previous data had demonstrated DNA sequence heterogeneity in three domains of rat tropoelastin mRNA, indicating alternative splicing of several exons of the rat tropoelastin gene. Rat tropoelastin genomic clones encompassing the sites of alternative splicing were isolated and sequenced. Two sites of alternative splicing identified in rat tropoelastin mRNA sequences corresponded to exons 13-15 and exon 33 of the rat tropoelastin gene. Furthermore, the variable inclusion of an alanine codon in exon 16 resulted from two functional acceptor sites separated by three nucleotides. DNA sequences flanking exons subject to alternative splicing were analyzed. These exons contained splicing signals that differed from consensus sequences and from splicing signals of constitutively spliced exons. Introns immediately 5' of exons 14 and 33, for example, lacked typical polypyrimidine tracts and had weak, overlapping branch point sequences. Further, a region of secondary structure encompassing the acceptor site of exon 13 may influence alternative splicing of this exon. These results demonstrate that multiple cis-acting sequence elements may contribute to alternative splicing of rat tropoelastin pre-mRNA.  相似文献   

14.
Alternative splicing is an important regulatory mechanism to create protein diversity. In order to elucidate possible regulatory elements common to neuron specific exons, we created and statistically analysed a database of exons that are alternatively spliced in neurons. The splice site comparison of alternatively and constitutively spliced exons reveals that some, but not all alternatively spliced exons have splice sites deviating from the consensus sequence, implying diverse patterns of regulation. The deviation from the consensus is most evident at the -3 position of the 3' splice site and the +4 and -3 position of the 5' splice site. The nucleotide composition of alternatively and constitutively spliced exons is different, with alternatively spliced exons being more AU rich. We performed overlapping k-tuple analysis to identify common motifs. We found that alternatively and constitutively spliced exons differ in the frequency of several trinucleotides that cannot be explained by the amino acid composition and may be important for splicing regulation.  相似文献   

15.
ED-A and ED-B are facultative type III homologies of fibronectin, encoded by alternatively spliced exons, described in man and in rat. A hybrid alpha-globin-fibronectin minigene containing the ED-B region from the human gene has been transfected in human cell lines derived from various tissues, in order to study the processing of the generated precursor RNA in the different cell environments. In most tested lines the pre-RNA is alternatively spliced and produces two mature RNAs, with and without the ED-B exon, in different ratios that closely resemble the corresponding endogenous fibronectin RNAs. In a hepatoma cell line, Hep 3B, only one RNA is produced, in which the ED-B exon is absent; the same pattern of splicing is observed in liver. The data show that all the information required to produce accurate and regulated alternative splicing of the ED-B exon is contained in the fragment used and cell specific factors are necessary for the pre-RNA to be differentially spliced in the various cell lines. In contrast, expression in Hep 3B of a similar gene containing the ED-A area failed to reproduce the liver specific splicing pattern. Therefore regulation of ED-A processing is likely to involve different mechanisms to those responsible for control of ED-B splicing.  相似文献   

16.
17.
18.
19.
20.
Polypyrimidine tract binding protein (PTB) represses some alternatively spliced exons by direct occlusion of splice sites. In repressing the splicing of the c-src N1 exon, we find that PTB acts by a different mechanism. PTB does not interfere with U1 snRNP binding to the N1 5' splice site. Instead, PTB prevents formation of the prespliceosomal early (E) complex across the intervening intron by preventing the assembly of the splicing factor U2AF on the 3' splice site of exon 4. When the unregulated 5' splice site of the upstream exon 3 is present, U2AF binding is restored and splicing between exons 3 and 4 proceeds in spite of the N1 exon bound PTB. Thus, rather than directly blocking the N1 splice sites, PTB prevents the 5' splice site-dependent assembly of U2AF into the E complex. This mechanism likely occurs in many other alternative exons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号