首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ebola hemorrhagic fever (EHF) and Marburg hemorrhagic fever (MHF) are rare viral diseases, endemic to central Africa. The overall burden of EHF and MHF is small in comparison to the more common protozoan, helminth, and bacterial diseases typically referred to as neglected tropical diseases (NTDs). However, EHF and MHF outbreaks typically occur in resource-limited settings, and many aspects of these outbreaks are a direct consequence of impoverished conditions. We will discuss aspects of EHF and MHF disease, in comparison to the "classic" NTDs, and examine potential ways forward in the prevention and control of EHF and MHF in sub-Saharan Africa, as well as examine the potential for application of novel vaccines or antiviral drugs for prevention or control of EHF and MHF among populations at highest risk for disease.  相似文献   

2.
Marburg and Ebola viruses can cause large hemorrhagic fever (HF) outbreaks with high case fatality (80-90%) in human and great apes. Identification of the natural reservoir of these viruses is one of the most important topics in this field and a fundamental key to understanding their natural history. Despite the discovery of this virus family almost 40 years ago, the search for the natural reservoir of these lethal pathogens remains an enigma despite numerous ecological studies. Here, we report the discovery of Marburg virus in a common species of fruit bat (Rousettus aegyptiacus) in Gabon as shown by finding virus-specific RNA and IgG antibody in individual bats. These Marburg virus positive bats represent the first naturally infected non-primate animals identified. Furthermore, this is the first report of Marburg virus being present in this area of Africa, thus extending the known range of the virus. These data imply that more areas are at risk for MHF outbreaks than previously realized and correspond well with a recently published report in which three species of fruit bats were demonstrated to be likely reservoirs for Ebola virus.  相似文献   

3.
Marburg hemorrhagic fever is rare yet among the most severe diseases affecting humans, with case fatality ratio even higher than 80%. By analyzing the largest documented Marburg hemorrhagic fever epidemic, which occurred in Angola in 2005 and caused 329 deaths, and data on viral load over time in non-human primates, we make an assessment of transmissibility and severity of the disease. We also give insight into the control of new Marburg hemorrhagic fever epidemics to inform appropriate health responses. We estimated the distribution of the generation time to have mean 9 days (95%CI: 8.2–10 days) and standard deviation 5.4 days (95%CI: 3.9–8.6 days), and the basic reproduction number to be  = 1.59 (95%CI: 1.53–1.66). Model simulations suggest that a timely isolation of cases, starting no later than 2–3 days after symptoms onset, is sufficient to contain an outbreak. Our analysis reveals that Marburg hemorrhagic fever is characterized by a relatively small reproduction number and by a relatively long generation time. Such factors, along with the extremely high severity and fatality, support the rare occurrence of large epidemics in human populations. Our results also support the effectiveness of social distancing measures - case isolation in particular - to contain or at least to mitigate an emerging outbreak. This work represents an advance in the knowledge required to manage a potential Marburg hemorrhagic fever epidemic.  相似文献   

4.

Background

Marburg virus (MARV), a zoonotic pathogen causing severe hemorrhagic fever in man, has emerged in Angola resulting in the largest outbreak of Marburg hemorrhagic fever (MHF) with the highest case fatality rate to date.

Methodology/Principal Findings

A mobile laboratory unit (MLU) was deployed as part of the World Health Organization outbreak response. Utilizing quantitative real-time PCR assays, this laboratory provided specific MARV diagnostics in Uige, the epicentre of the outbreak. The MLU operated over a period of 88 days and tested 620 specimens from 388 individuals. Specimens included mainly oral swabs and EDTA blood. Following establishing on site, the MLU operation allowed a diagnostic response in <4 hours from sample receiving. Most cases were found among females in the child-bearing age and in children less than five years of age. The outbreak had a high number of paediatric cases and breastfeeding may have been a factor in MARV transmission as indicated by the epidemiology and MARV positive breast milk specimens. Oral swabs were a useful alternative specimen source to whole blood/serum allowing testing of patients in circumstances of resistance to invasive procedures but limited diagnostic testing to molecular approaches. There was a high concordance in test results between the MLU and the reference laboratory in Luanda operated by the US Centers for Disease Control and Prevention.

Conclusions/Significance

The MLU was an important outbreak response asset providing support in patient management and epidemiological surveillance. Field laboratory capacity should be expanded and made an essential part of any future outbreak investigation.  相似文献   

5.
The first case of epidemic hemorrhagic fever in Japan was seen in Osaka in 1960. The etiologic agent of this disease has not yet been isolated, but a close etiologic relation between Korean hemorrhagic fever and epidemic hemorrhagic fever in Japan has been suspected because of similarities in the clinical and pathological pictures of the two diseases. This relation has now been confirmed serologically by demonstrating specific immunofluorescent antibodies to Korean hemorrhagic fever virus in 19 of 20 sera obtained from subjects 7 to 17 years after an acute attack of epidemic hemorrhagic fever.  相似文献   

6.
The data bases (DB) on the spread of plague, yellow fever and contagious virus hemorrhagic fevers (CVHF) in foreign countries have been created. These DB contain information on the main international air and sea ports and their relationships with natural focal territories. The data base "Sanitary control. Yellow fever" contains information on different species serving as vectors for yellow fever virus. Information on the circulation of the causative agents of Ebola fever, Lassa fever and Marburg disease in African countries has been introduced into DB, the differentiation of countries by the degree of the potential danger of the CVHF spread has been made.  相似文献   

7.
Marburg virus (MARV), the causative agent of a severe hemorrhagic fever, has a characteristic filamentous morphology. Here we report that co-expression of MARV glycoprotein and matrix protein (VP40) in mammalian cells leads to spontaneous budding of filamentous particles strikingly similar to wild-type MARV. In addition, these particles elicit an immune response in BALB/c mice. The generation of non-replicating Marburg virus-like particles (VLPs) should significantly facilitate the research on molecular mechanisms of MARV assembly and release. Furthermore, VLPs may be an excellent vaccine candidate against Marburg infection.  相似文献   

8.
Features of the Argentine hemorrhagic fever are described in the review. Epidemiology, etiology, clinical presentation and pathogenesis of the disease are examined. Special consideration is given to the features of the pathological agent of Argentine hemorrhagic fever--the Junin virus. Features of the disease diagnostics are indicated--virological and serological studies, immunochemical and molecular-biological methods of identification of the pathological agent and antibodies against it. Approaches to etiotropic therapy of this disease and vaccination are examined. Based on the foreign experience perspective guidance for the creation of the system of protection of the population of the Russian Federation against Argentine hemorrhagic fever are presented.  相似文献   

9.
The lack of a mouse model has hampered an understanding of the pathogenesis and immunity of Marburg hemorrhagic fever (MHF), the disease caused by marburgvirus (MARV), and has created a bottleneck in the development of antiviral therapeutics. Primary isolates of the filoviruses, i.e., ebolavirus (EBOV) and MARV, are not lethal to immunocompetent adult mice. Previously, pathological, virologic, and immunologic evaluation of a mouse-adapted EBOV, developed by sequential passages in suckling mice, identified many similarities between this model and EBOV infections in nonhuman primates. We recently demonstrated that serially passaging virus recovered from the liver homogenates of MARV-infected immunodeficient (SCID) mice was highly successful in reducing the time to death in these mice from 50 to 70 days to 7 to 10 days after challenge with the isolate MARV-Ci67, -Musoke, or -Ravn. In this study, we extended our findings to show that further sequential passages of MARV-Ravn in immunocompetent mice caused the MARV to kill BALB/c mice. Serial sampling studies to characterize the pathology of mouse-adapted MARV-Ravn revealed that this model is similar to the guinea pig and nonhuman primate MHF models. Infection of BALB/c mice with mouse-adapted MARV-Ravn caused uncontrolled viremia and high viral titers in the liver, spleen, lymph node, and other organs; profound lymphopenia; destruction of lymphocytes within the spleen and lymph nodes; and marked liver damage and thrombocytopenia. Sequencing the mouse-adapted MARV-Ravn strain revealed differences in 16 predicted amino acids from the progenitor virus, although the exact changes required for adaptation are unclear at this time. This mouse-adapted MARV strain can now be used to develop and evaluate novel vaccines and therapeutics and may also help to provide a better understanding of the virulence factors associated with MARV.The filoviruses, Marburgvirus and Ebolavirus (MARV and EBOV), cause severe hemorrhagic fevers in humans and nonhuman primates (27). The incubation time is estimated to be 3 to 21 days, with human case fatality rates reaching 90% in some outbreaks. Filoviral hemorrhagic fevers are characterized by a nonspecific viral prodrome in the early stage of infection, including fever, headaches, and myalgia (27). This is followed by a hemorrhagic phase that can include development of a maculopapular rash, petechiae, and bleeding from the gums, intestines, and other mucosal surfaces. Death usually occurs within a week of initial symptoms and is thought to be due to uncontrolled viral replication, hypotension-induced shock caused by increased vascular permeability, and multiorgan failure, likely caused by disseminated intravascular coagulation and extensive necroses in the liver, spleen, intestine, and many other major organ systems (27).Human-derived MARVs (isolates Angola, Musoke, Ravn, and Ci67) do not kill immunocompetent adult mice (23). Furthermore, there are no published reports of any lethal mouse-adapted MARV. The current mouse-adapted EBOV, strain Zaire (ZEBOV), was developed by performing nine sequential passages of ZEBOV 1976 virus in suckling mice, followed by two sequential plaque picks. The resulting virus was uniformly lethal to mice inoculated intraperitoneally (i.p.). Pathological evaluation of infected mice identified many similarities and only a few differences between this model (7, 22) and infections in nonhuman primates (21).In a previous study, we took a slightly different approach to mouse adaptation of MARV and found that serially passaging virus recovered from the liver homogenates of MARV-Ravn-infected adult mice with severe combined immunodeficiency (SCID mice) resulted in the generation of SCID-adapted MARV-Ravn (scid-MARV) that rapidly killed SCID mice but did not kill adult immunocompetent mice (51). In this study, we used scid-MARV as starting material for the first round of infection of adult immunocompetent BALB/c mice and serially passaged virus recovered from the liver homogenates of the BALB/c mice. MARV-Ravn was chosen over SCID-adapted MARV-Ci67 or -Musoke because it adapted more rapidly to SCID mice than the other isolates did. This produced a mouse-adapted MARV-Ravn strain (ma-MARV) that could kill adult BALB/c mice. Serial sampling studies to characterize the pathogenesis of ma-MARV revealed that this model was very similar to the guinea pig and nonhuman primate Marburg hemorrhagic fever (MHF) models, including rapid viremia, induction of D-dimers (fibrin degradation products), thrombocytopenia, profound loss of circulating and tissue lymphocytes, and marked liver damage. Additionally, we compared the immunological responses of mice after infection with either nonadapted wild-type MARV-Ravn (wt-MARV) or ma-MARV. This mouse model of MARV infection not only should advance our understanding of MARV pathogenesis and immunity but also may play a critical role in discovery of therapeutics for MARV infection.  相似文献   

10.
Marburg virus, a filovirus, causes severe hemorrhagic fever with hitherto poorly understood molecular pathogenesis. We have investigated here the vectorial transport of the surface protein GP of Marburg virus in polarized epithelial cells. To this end, we established an MDCKII cell line that was able to express GP permanently (MDCK-GP). The functional integrity of GP expressed in these cells was analyzed using vesicular stomatitis virus pseudotypes. Further experiments revealed that GP is transported in MDCK-GP cells mainly to the apical membrane and is released exclusively into the culture medium facing the apical membrane. When MDCKII cells were infected with Marburg virus, the majority of GP was also transported to the apical membrane, suggesting that the protein contains an autonomous apical transport signal. Release of infectious progeny virions, however, took place exclusively at the basolateral membrane of the cells. Thus, vectorial budding of Marburg virus is presumably determined by factors other than the surface protein.  相似文献   

11.
Marburg virus (family Filoviridae) causes sporadic outbreaks of severe hemorrhagic disease in sub-Saharan Africa. Bats have been implicated as likely natural reservoir hosts based most recently on an investigation of cases among miners infected in 2007 at the Kitaka mine, Uganda, which contained a large population of Marburg virus-infected Rousettus aegyptiacus fruit bats. Described here is an ecologic investigation of Python Cave, Uganda, where an American and a Dutch tourist acquired Marburg virus infection in December 2007 and July 2008. More than 40,000 R. aegyptiacus were found in the cave and were the sole bat species present. Between August 2008 and November 2009, 1,622 bats were captured and tested for Marburg virus. Q-RT-PCR analysis of bat liver/spleen tissues indicated ∼2.5% of the bats were actively infected, seven of which yielded Marburg virus isolates. Moreover, Q-RT-PCR-positive lung, kidney, colon and reproductive tissues were found, consistent with potential for oral, urine, fecal or sexual transmission. The combined data for R. aegyptiacus tested from Python Cave and Kitaka mine indicate low level horizontal transmission throughout the year. However, Q-RT-PCR data show distinct pulses of virus infection in older juvenile bats (∼six months of age) that temporarily coincide with the peak twice-yearly birthing seasons. Retrospective analysis of historical human infections suspected to have been the result of discrete spillover events directly from nature found 83% (54/65) events occurred during these seasonal pulses in virus circulation, perhaps demonstrating periods of increased risk of human infection. The discovery of two tags at Python Cave from bats marked at Kitaka mine, together with the close genetic linkages evident between viruses detected in geographically distant locations, are consistent with R. aegyptiacus bats existing as a large meta-population with associated virus circulation over broad geographic ranges. These findings provide a basis for developing Marburg hemorrhagic fever risk reduction strategies.  相似文献   

12.
The filoviruses, Ebola and Marburg, are two of the most pathogenic viruses, causing lethal hemorrhagic fever in humans. Recent discoveries suggest that filoviruses, along with other phylogenetically or functionally related viruses, utilize a complex mechanism of replication exploiting multiple cellular components including lipid rafts, endocytic compartments, and vacuolar protein sorting machinery. In this review, we summarize these recent findings and discuss the implications for vaccine and therapeutics development.  相似文献   

13.
In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.  相似文献   

14.
The major arboviral diseases in mainland China include Japanese encephalitis, dengue fever, Crimean-Congo hemorrhagic fever (also known as Xinjiang hemorrhagic fever), and tick-borne encephalitis. These and other newly found arbovirus infections due to Banna virus and Tahyna virus contribute to a large and relatively neglected disease burden in China. Here we briefly review the literature regarding these arboviral infections in mainland China with emphasis on their epidemiology, primary vectors, phylogenetic associations, and the prevention programs associated with these agents in China.  相似文献   

15.
流行性出血热病毒感染乳小白鼠的病理组织学与病毒抗原定位研究郭广松,肖红,程丽,文莉,杨占秋(湖北医科大学病理学教研室,武汉430071)(湖北医科大学病毒研究所,武汉430071)关键词病毒抗原,流行性出血热,乳小白鼠,病理变化Huggirls(19...  相似文献   

16.
Recombinant vesicular stomatitis virus (VSV) vectors expressing homologous filoviral glycoproteins can completely protect rhesus monkeys against Marburg virus when administered after exposure and can partially protect macaques after challenge with Zaire ebolavirus. Here, we administered a VSV vector expressing the Sudan ebolavirus (SEBOV) glycoprotein to four rhesus macaques shortly after exposure to SEBOV. All four animals survived SEBOV challenge, while a control animal that received a nonspecific vector developed fulminant SEBOV hemorrhagic fever and succumbed. This is the first demonstration of complete postexposure protection against an Ebola virus in nonhuman primates and provides further evidence that postexposure vaccination may have utility in treating exposures to filoviruses.  相似文献   

17.
Marburg and Ebola viruses as aerosol threats   总被引:1,自引:0,他引:1  
Ebola and Marburg viruses are the sole members of the genus Filovirus in the family Filoviridae. There has been considerable media attention and fear generated by outbreaks of filoviruses because they can cause a severe viral hemorrhagic fever (VHF) syndrome that has a rapid onset and high mortality. Although they are not naturally transmitted by aerosol, they are highly infectious as respirable particles under laboratory conditions. For these and other reasons, filoviruses are classified as category A biological weapons. However, there is very little data from animal studies with aerosolized filoviruses. Animal models of filovirus exposure are not well characterized, and there are discrepancies between these models and what has been observed in human outbreaks. Building on published results from aerosol studies, as well as a review of the history, epidemiology, and disease course of naturally occurring outbreaks, we offer an aerobiologist's perspective on the threat posed by aerosolized filoviruses.  相似文献   

18.
Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35) was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP) if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,), two Marburg strains (Marburg Angola and Marburg Ravn) and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26–Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years.  相似文献   

19.
Between July 1975 and April 1980, 71 patients were admitted to the Second Attached Hospital of Hubei Provincial Medical College in Wuchang with the diagnosis of epidemic hemorrhagic fever (EHF). The clinical course among these patients was similar to that described for patients with Korean hemorrhagic fever, and hemorrhagic fever with renal syndrome of the U.S.S.R. The overall mortality was 11.2 percent. Sera obtained from some of these patients as well as from patients admitted to the First Attached Hospital of Hubei Provincial Medical College were tested against an antigen associated with Korean hemorrhagic fever and showed exceedingly high antibody titers. We conclude that EHF in Central China represents the same or a closely related disease process as Korean hemorrhagic fever.  相似文献   

20.
Ebola virus causes outbreaks of severe viral hemorrhagic fever with high mortality in humans. The virus is highly contagious and can be transmitted by contact and by the aerosol route. These features make Ebola virus a potential weapon for bioterrorism and biological warfare. Therefore, a vaccine that induces both systemic and local immune responses in the respiratory tract would be highly beneficial. We evaluated a common pediatric respiratory pathogen, human parainfluenza virus type 3 (HPIV3), as a vaccine vector against Ebola virus. HPIV3 recombinants expressing the Ebola virus (Zaire species) surface glycoprotein (GP) alone or in combination with the nucleocapsid protein NP or with the cytokine adjuvant granulocyte-macrophage colony-stimulating factor were administered by the respiratory route to rhesus monkeys--in which HPIV3 infection is mild and asymptomatic--and were evaluated for immunogenicity and protective efficacy against a highly lethal intraperitoneal challenge with Ebola virus. A single immunization with any construct expressing GP was moderately immunogenic against Ebola virus and protected 88% of the animals against severe hemorrhagic fever and death caused by Ebola virus. Two doses were highly immunogenic, and all of the animals survived challenge and were free of signs of disease and of detectable Ebola virus challenge virus. These data illustrate the feasibility of immunization via the respiratory tract against the hemorrhagic fever caused by Ebola virus. To our knowledge, this is the first study in which topical immunization through respiratory tract achieved prevention of a viral hemorrhagic fever infection in a primate model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号